Real Options and Land Valuation An Empirical Study

<u>Steffen Brenner</u> <u>Rainer Schulz</u> Wolfgang Härdle

Humboldt-Universität zu Berlin University of Aberdeen Business School Humboldt-Universität zu Berlin, SFB 649

Real Options

Introduction

Real option theory is well-developed

Real option models allow to value

oil fields

- new pharmaceuticals
- vacant land

How accurate are valuations?

How useful is the approach for making investment decisions?

Investment decisions

Owner of a real asset has to make the following decisions

- ► Use the asset immediately or later
 - Should oil field be exploited immediately?
 - Should shopping center be developed immediately?
- \blacktriangleright Sell the asset at market value V
 - How to determine the market value?
 - Depends on asset's use...

Capital budgeting: standard approach

Asset's immediate value

$$\frac{\mathcal{E}[C_p]}{1+R} \quad - \qquad \qquad I$$

Project's present value – Implementation costs

Use asset immediately whenever

Project's present value - Implementation costs ≥ 0

(or sell it at its NPV).

What if use decision is irreversible and owner can postpone use?

Option characteristic of some real asset

owner can choose between different alternatives

Different to financial options, real options

- are not standardized
- are not traded at exchanges
- have a real asset as underlying

Example: Property development

Implementation cost are 55 in all states

NPV (residual value) is zero and postponing development is better.

How to value a real option?

Real options can be valued with the replicating portfolio approach

Construct a portfolio consisting of

underlying asset (building in the example)

riskfree bond

so that

portfolio replicates real option's cash flows

Rule out arbitrage opportunities

Value of portfolio = Value of real option

Example, continued: Property development

Replicating portfolio: Buy 0.6 'buildings' today, which cost $0.6 \times \$55 = \33 and borrow \$21 at the riskfree rate of 5%.

Literature overview

McDonald and Siegel: 1986, The value of waiting to invest, *QJE*Paddock, Siegel, and Smith: 1988, Option valuation of claims on real assets: The case of offshore petroleum leases, *QJE*Titman: 1985, Urban land prices under uncertainty, *AER*Capozza and Li: 2002, Optimal land development decisions, *JUE*Quigg: 1993, Empirical testing of real option-pricing models, *JF*

Flexibility of land ownership

When to develop?

option of deferral

What to built?

option of use (if multi-use is possible)

With which size?

option of scale

Bewag data

Electricity company Bewag in Berlin had

- old transformer stations not needed for operation
- listed buildings
- costly if held undeveloped

Feasibility analysis

- find ideas for redevelopment
- estimate the value of developed site
- estimate the implementation costs

Action

- develop? or sell sites + ideas?
- contact potential buyers

Projects

- MetaHaus (MetaDesign)
- Atelierhaus Zeppelin
- Vitra Design Museum
- Administrative building 'Substation Scharnhorst'

Data

Information on 12 sites

- current state of sites
- cash flow forecast after development
- surveyor valuations

Research questions

- What are real option land values?
- How good are they compared to other valuations?
- What has happened with the sites?

Table 1: Descriptive Statistics

Most sites have listed buildings on them

- Iow flexibility of use choice
- Iow flexibility of size choice

Flexibility exists in timing of redevelopment (deferral option)

Allows use of a 'simple' real options model

- only value driver are rents
- ▶ land is indestructible \Rightarrow American option

The model

D(t) is the rent in period t, R the required return rate

Rental growth rate follows a Brownian motion

$$\frac{dD(t)}{D(t)} = G \times dt + \sigma \times dW$$

Rental growth rate = Expected growth rate + Shock

The current value of building is then

$$V(t) = \frac{D(t)}{R - G}$$
$$= \frac{D(t)}{\theta}$$

Residual value

Residual value gives value of land under the premise that land can be developed only now or never.

The NPV of immediate development is

$$\mathsf{NPV} = V(t) - I \; ,$$

where \boldsymbol{I} are the implementation costs of the development project

Residual value is then

 $L_R(t) = \max[V(t) - I, 0]$

Real Options

Real option value

Real option value gives the value of land under the premise that land development can be postponed.

It holds that

If $L_R(t) = 0$, then $L_O(t) > L_R(t)$ because

- \blacktriangleright immediate development would mean $V(t)-I\leqslant 0$
- ▶ leave land undeveloped and wait for higher $V(t) \Rightarrow$ positive value

If $L_R(t) > 0$, the following aspects are important

- 1. undeveloped land is like holding building's capital value
 - \blacktriangleright expected return rate on V(t) compensates for risk
 - money value of implementation costs sinks
 - \Rightarrow benefit of waiting
- 2. land produces no income \boldsymbol{D}

 \Rightarrow cost of waiting

Develop if benefit of waiting = cost of waiting and

 $L_O(t) = L_R(t) > 0$

18

Real Options

Figure 1: Residual and real option land values

The real option valuation formula

$$L_O(t) = \begin{cases} \left(\frac{D^*}{\theta} - I\right) \times \left\{\frac{D(t)}{D^*}\right\}^{\alpha} & \text{, if } D(t) < D^*, \\ \\ \frac{D(t)}{\theta} - I & \text{, if } D(t) \ge D^* \end{cases}$$

with

$$D^* = \frac{\alpha}{\alpha - 1} \times \theta \times I$$

$$\alpha = \frac{1}{\sigma^2} \left[0.5 \times \sigma^2 - (R_f - \theta) + \sqrt{\{0.5 \times \sigma^2 - (R_f - \theta)\}^2 + 2 \times R_f \times \sigma^2} \right]$$

 R_f is the riskfree interest rate, set to 4.2%

20

Real Options -

Tables 2 and 3: Volatility σ and development criteria

For every transaction, four different valuations are observed

- real option value
- residual value
- simple comparison value
- adjusted comparison value

Results

Table 1: Statistics for the valuation ratios of the different techniques

	Mean	Median	Std. Dev.	Min	Max	MSE
Q_E	114.7	85.7	86.9	41.7	355.9	77.6
Q_A	86.8	80.3	28.8	50.3	131.2	10.1
Q_R	84.0	76.3	69.4	0.0	198.0	50.7
Q_O	94.5	76.3	57.8	22.7	198.6	33.8

Notes: Figures in percent. MSE is the Mean Squared Error.

Real option values react very sensitive to θ and σ

Using homogenous cap rate $\theta = 6.4\%$

$$\blacktriangleright \text{ recall: } \theta = R - G$$

• WertV: $\theta \in [5.0\%, 6.5\%]$

improves real option values (mean error reduces to -4%, MQF 26.7%). Other options can be modelled with higher volatilities.

Reverse the question: What are the implied volatilities?

 Table 5: Implied volatilities

Summary and outlook

Property development comes with much flexibility.

Real options approach considers flexibility explicitly and values it.

Empirical micro study shows that

- real option values are better than residual values
- do not consider all options
- implied volas can be calculated with historical transactions
- \Rightarrow task for the future: more data...

