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Motivation

Corporate Bankruptcy

• Does a company survive or go bankrupt within the prediction

period?

• Are there any changes in the dynamics of its indicators?
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Motivation 3

Available Information

• fundamental indicators

• option and stock trading data

• announcements

• macroeconomic indicators

• corporate governance principles

• employee profiles

• expert assessments

Predicting Corporate Bankruptcy with SVMs



Motivation 4

Applications

• estimating bankruptcy risks

• company bond rating (e.g. AAA, C, BB) based on the default

probability

• loss given default (LGD) estimation (Basel II)

• pricing of non-traded companies (IPOs, private companies)
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General Questions

• What structural changes are typical for failing companies?

• What indicators are most useful for predicting default?

• What methods should be used to extract maximum information

contained in the performance indicators?

– stock and option markets

– expert assessment

– statistical tools
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Bankruptcy Prediction Methods

• Multivariate discriminant analysis Beaver (1966), Altman (1968)

Z-score:

Zi = a1xi1 + a2xi2 + ...+ adxid = a>xi,

where xi = (xi1, ..., xid)
> ∈ R

d are financial ratios for the i-th

company.

successful company: Zi ≥ z

failure: Zi < z
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Linear Discriminant Analysis
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Linear Discriminant Analysis
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Bankruptcy Prediction Methods (cont.)

• Probit model Martin (1977), Ohlson (1980)

E[yi|xi] = Φ (a0 + a1xi1 + a2xi2 + ...+ adxid) , yi = {0, 1}

• Logit model

E[yi|xi] =
exp(a0 + a1xi1 + ...+ adxid)

1 + exp(a0 + a1xi1 + ...+ adxid)

• Gambler’s ruin Wilcox (1971)

• Recursive partitioning Frydman et al. (1985)

• Neural networks (1990’s)
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Linearly Non-separable Classification Problem
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The Benchmark Moody’s Model

E[yi|xi] = Φ{a0 +
d
∑

j=1

ajfj(xij)}

fj are estimated non-parametrically on univariate models
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Outline of the Talk
√

1. Motivation

2. Support Vector Machines and Their Optimal

Properties

3. Expected Risk vs. Empirical Risk Minimization

4. Realization of SVMs

5. Non-linear Case

6. Company Classification with SVMs
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Support Vector Machines and their Optimal Properties 13

Support Vector Machines (SVMs)

SVMs are a group of methods for classification and regression that make

use of classifiers providing “high margin”.

• SVMs possess a flexible structure which is not chosen a priori

• Optimality of SVMs is given by the statistical learning theory

• SVMs do not rely on asymptotic properties; they are optimal for

small samples, i.e. in most practically significant cases

• SVMs always give a unique solution
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Classification Problem

Training set: {(xi, yi)}ni=1 with the distribution P (xi, yi).

Find the class y of a new object x using the classifier f : X 7→ {±1},
such that the expected risk R(f) is minimal.

xi is the vector of the i-th object characteristics;

yi ∈ {−1,+1} or {0, 1} is the class of the i-th object.

Regression Problem

Setup as for the classification problem but: y ∈ R
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Expected Risk Minimization

If P (x, y) is known, then the expected risk

R(f) =

∫

1

2
|f(x)− y|dP (x, y) = EP (x,y)[L]

can be minimized directly over P (x, y)

fopt = argmin
f∈F

R(f)

The loss L = 1
2 |f(x)− y| = 0 if classification is correct

= 1 if classification is wrong

F is the set of (non)linear classifier functions
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Empirical Risk Minimization

In practice P (x, y) is usually unknown: use Empirical Risk

R̂(f) =
1

n

n
∑

i=1

1

2
|f(xi)− yi|

Minimization (ERM) over the training set {(xi, yi)}ni=1

f̂n = argmin
f∈F

R̂(f)
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Empirical Risk vs. Expected Risk

Function class

Risk

f fopt fn

R
Remp

Remp (f)

R (f)

ˆ

ˆ

ˆ
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Expected Risk vs. Empirical Risk Minimization 18

Convergence

From the law of large numbers

lim
n→∞

R̂(f) = R(f)

In addition ERM satisfies

lim
n→∞

min
f∈F

R̂(f) = min
f∈F

R(f)

if “F is not too big”.

Predicting Corporate Bankruptcy with SVMs



Expected Risk vs. Empirical Risk Minimization 19

Vapnik-Chervonenkis (VC) Bound

This is a basic result of the Statistical Learning Theory that already

started in the 1960s:

R(f) ≤ R̂(f) + φ

(

h

n
,
ln(η)

n

)

when the bound holds with probability 1− η and

φ

(

h

n
,
ln(η)

n

)

=

√

h(ln 2n
h + 1)− ln(

η
4 )

n

Minimize VC bound – Structural Risk Minimization – search for the

optimal model structure described by Sh ⊆ F ; f ∈ Sh.
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Vapnik-Chervonenkis (VC) Dimension

Definition. h is VC dimension of a set of functions if there exists a set

of points {xi}hi=1 such that these points can be separated in all 2h

possible configurations, and no set {xi}qi=1 exists where q > h satisfies

this property.

Example 1. The functions A sin θx has an infinite VC dimension.

Example 2. Three points on a plane can be shattered by a set of linear

indicator functions in 2h = 23 = 8 ways (whereas 4 points cannot be

shattered in 2h = 24 = 16 ways). The VC dimension equals h = 3.
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VC Dimension (cont.)
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Linear SVMs. Separable Case

The training set: {(xi, yi)}ni=1, yi = {±1}, xi ∈ R
d. Find the classifier

with the highest margin.
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Realization of the SVMs 23

Let x>w + b = 0 be a separating hyperplane. Then d+ (d−) will be the

shortest distance to the closest objects from the classes +1 (−1).
x>i w + b ≥ +1 for yi = +1

x>i w + b ≤ −1 for yi = −1
combine them into one constraint

yi(x
>
i w + b)− 1 ≥ 0 ∀i (1)

The canonical hyperplanes x>i w + b = ±1 are parallel and the distance

between each of the them and the separating hyperplane is d± = 1/‖w‖.
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Linear SVMs. Separable Case

The margin is d+ + d− = 2/‖w‖. To maximize it minimize the

Euclidean norm ‖w‖ subject to the constraint (1).
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The Lagrangian Formulation

The Lagrangian for the primal problem

LP =
1

2
‖w‖2 −

n
∑

i=1

αi{yi(x>i w + b)− 1}

The Karush-Kuhn-Tucker (KKT) Conditions

∂LP

∂wk
= 0 ⇔

∑n
i=1 αiyixik = 0 k = 1, ..., d

∂LP

∂b = 0 ⇔
∑n

i=1 αiyi = 0

yi(x
>
i w + b)− 1 ≥ 0 i = 1, ..., n

αi ≥ 0
αi{yi(x>i w + b)− 1} = 0
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Realization of the SVMs 26

Substitute the KKT conditions into L and obtain the Lagrangian for the

dual problem

LD =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
>
i xj

The primal and dual problems are

min
wk,b

max
αi

LP

max
αi

LD

s.t.

αi ≥ 0
n
∑

i=1

αiyi = 0

Since the optimization problem is convex the dual and primal

formulations give the same solution.
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The Classification Stage

The classifier function is:

f(x) = sign(x>w + b)

where

w =
∑n

i=1 αiyixi

b = 1
2 (x+ + x−)

>w

x+ and x− are any support vectors from each class

αi = argmax
αi

LD

subject to the constraints.
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Linear SVMs. Non-separable Case

In the non-separable case it is impossible to separate the data points

with hyperplanes without an error.

o
x

x

x

x x

x
x

x

x

o

o

o

o

o
o

o

o

x

o

o

o

x

x

Predicting Corporate Bankruptcy with SVMs



Realization of the SVMs 29

The problem can be solved by introducing the positive variables {ξi}ni=1

in the constraints

x>i w + b ≥ 1− ξi for yi = 1

x>i w + b ≤ −1 + ξi for yi = −1
ξi ≥ 0 ∀i
If ξi > 1, an error occurs. The objective function in this case is

1

2
‖w‖2 + C(

n
∑

i=1

ξi)
ν

where ν is a positive integer controlling sensitivity to outliers

C controls the generalization power

Under such a formulation the problem is convex.
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The Lagrangian Formulation

The Lagrangian for the primal problem for ν = 1:

LP =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi{yi(x>i w + b)− 1 + ξi} −
n
∑

i=1

ξiµi

The primal problem:

min
wk,b,ξi

max
αi,µi

LP
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The KKT Conditions
∂LP

∂wk
= 0 ⇔ wk =

∑n
i=1 αiyixik k = 1, ..., d

∂LP

∂b = 0 ⇔
∑n

i=1 αiyi = 0

∂LP

∂ξi
= 0 ⇔ C − αi − µi = 0

yi(x
>
i w + b)− 1 + ξi ≥ 0

ξi ≥ 0
αi ≥ 0
µi ≥ 0
αi{yi(x>i w + b)− 1 + ξi} = 0
µiξi = 0
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For ν = 1 the dual Lagrangian will not contain ξi or their Lagrange

multipliers

LD =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
>
i xj (2)

The dual problem is

max
αi

LD

subject to

0 ≤ αi ≤ C
n
∑

i=1

αiyi = 0
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Linear SVM. Non-separable Case
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Non-linear Case 34

Non-linear SVMs

Map the data into the Hilbert space H and perform classification there

Ψ : Rd 7→ H

Notice, that in the Lagrangian formulation (2) the training data appear

only in the form of dot products x>i xj , which can be mapped into

Ψ(xi)
>Ψ(xj).

If a kernel function K exists such that K(xi, xj) = Ψ(xi)
>Ψ(xj), then

we can use K without knowing Ψ explicitly.
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Mercer’s Condition (1909)

A necessary and sufficient condition for a symmetric function K(xi, xj)

to be a kernel is that it must be positive definite, i.e. for any data set

x1, ..., xn and any real numbers λ1, ..., λn the function K must satisfy

n
∑

i=1

n
∑

j=1

λiλjK(xi, xj) ≥ 0

Some examples of kernel functions:

K(xi, xj) = e−‖xi−xj‖
2/2σ2

– Gaussian kernel

K(xi, xj) = (x
>
i xj + 1)

p – polynomial kernel

K(xi, xj) = tanh(kx
>
i xj − δ) – hyperbolic tangent kernel
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Non-linear Case 36

Classes of Kernels

A stationary kernel is the kernel which is translation invariant

K(xi, xj) = KS(xi − xj)

An isotropic (homogeneous) kernel is one which depends only on the

norm of the lag vector (distance) between two data points

K(xi, xj) = KI(‖xi − xj‖)

A local stationary kernel is the kernel of the form

K(xi, xj) = K1(
xi + xj
2

)K2(xi − xj)

where K1 is a non-negative function, K2 is a stationary kernel.
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Non-linear Case 37

Matérn kernel

KI(‖xi − xj‖)
KI(0)

=
1

2ν−1Γ(ν)
(
2
√
ν‖xi − xj‖

θ
)νHν(

2
√
ν‖xi − xj‖

θ
)

where Γ is the Gamma function and Hν is the modified Bessel function

of the second kind of order ν.

The parameter ν allows to control the smoothness. The Matérn kernel

reduces to the Gaussian kernel for ν →∞.
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Company Analysis

Source: annual reports of the companies from 1998-1999 available

through the Securities and Exchange Commision (SEC) (www.sec.gov)

• n=84.

• 42 companies survived and 42 companies went bankrupt by

2001-2002.

The failing and surviving companies were matched in size and industry.

The bankruptcy was declared by filing Chapter 11 of the Bankruptcy

Code.
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The companies were characterized by 14 variables from which the

following financial ratios were calculated:

1. Profit measures: EBIT/TA, NI/TA, EBIT/Sales;

2. Leverage ratios: EBIT/Interest, TD/TA, TL/TA;

3. Liquidity ratios: QA/CL, Cash/TA, WC/TA, CA/CL, STD/TD.

4. Activity or turnover ratios: Sales/TA, Inventories/COGS.

The average capitalization of a company: $8.12 bln. d = 14
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Cluster Analysis of the Companies

Operating Bankrupt

EBIT/TA 0.263 0.015

NI/TA 0.078 -0.027

EBIT/Sales 0.313 -0.040

EBIT/INT 13.223 1.012

TD/TA 0.200 0.379

TL/TA 0.549 0.752

SIZE 15.104 15.059
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Operating Bankrupt

QA/CL 1.108 1.361

CASH/TA 0.047 0.030

WC/TA 0.126 0.083

CA/CL 1.879 1.813

STD/TD 0.144 0.061

Sales/TA 1.178 0.959

INV/COGS 0.173 0.155

There are 19 members in the cluster of survived companies and 65

members in cluster of failed companies. The result significantly changes

in the presence of outliers.
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Company Classification with SVMs.

The Influence of Different Classifier
Complexities
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Figure 1: The case of a low complexity of classification functions (near

linear functions are used, the radial basis is 20Σ1/2). The generalization

ability is fixed (C = 1).
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Figure 2: The case of an average complexity of the classifier functions

(the radial basis is 2Σ1/2). The generalization ability is fixed (C = 1)
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Figure 3: The case of a highly complex classification functions (the radial

basis is 0.53Σ1/2). The generalization ability is fixed (C = 1)
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Company Classification with SVMs.

The Influence of Different Generalization
Abilities
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Figure 4: The case of a very high generalization ability (C = 0.01). The

radial basis is fixed at 2Σ1/2
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Figure 5: The case of an average generalization ability (C = 1). The

radial basis is fixed at 2Σ1/2
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Figure 6: The case of low generalization ability (C = 100). The radial

basis is fixed at 2Σ1/2
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