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Motivation

The fable of bundle of sticks — reversed
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A 17th century illustration of the fable by Jacob Gole from Pieter de la Court's Sinryke Fabulen
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Divide et decide!

[ We need to make sure they do not all just learn the same
[ X > Data, D > Decision
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Random Forests (RF)

L1 |Leo Breiman 2001

LI Supervised learning for classification and regression

L1 Divide and decide (conquer)

L Ensemble Method which grows trees as base learners

[ Combines randomised decision trees, aggregates the prediction
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Decision Trees

3 Letn(m) = #{x, € R |i = 1,...,n} be the # of obs in region R
L1 Defining thle classification accuracy of node m classifying class k:
P = Y 1G;=h.

Ll Possible choices for the impurity measure:

» Misclassification error: — n(my) # of pts on the left side
oy = ) (4 _ A<mL>) nmg) (1 _ A<mR>>
. o™ n(m) P )T n(m) Py
» Gini index:
n(my;) n(myp)
(M(T) = L 2A<mL><1 _ A<mL>> + R 2A<mR)<1 _ A<mR>>
OY™(T) ) P, p, ) P, P,

» Cross-entropy:
n(ml) Alm.: A\ AlMm: A\

n(m)

m,€{m;,mp}

B Generally, no difference between Gini impurity and entropy wrt performance, see Raileanu and Stoffel
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CART

L1 Classification And Regression Trees

L1 Decision Tree algorithms that are used for classification

[ Regression trees for predictive modelling (very old pb)

[ Choosing cuts perpendicular to the axes by optimising criteria
[ Split criterion: Gini impurity (for classification) and prediction

squared error (for regression)
: ——
Engel (1857) )
Regressogram: step functions as
approximations | _—
N 300 oo 7 K"O ’ T?:?EUC:‘-ZDEFE.IFE 2::30 I;
Chakrabarty et al (2009) — 'calegory food share * mean fbod share
Engel S I—aW reCOﬂSldered Figure 3.1d: Comparison of Regressogram and Engel’s smoother

“.. je aermer eine Familie ist, einen desto groesseren Antheil von der Gesamtausgabe muss zur Beschaffung der Nahrung aufgewendet werden ...”
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Bagging

[l Bootstrap aggregating

[ Generate bootstrap samples from original dataset Sy, 55, - ..

[ Construct predictor for each sample Py, Ps, ..., P

: : P+P+...+P
@ Decide by averaging S L
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Algorithm 1: Breiman’s random forest predicted value at x.

Input: Training set D,,. number of trees A > 0, a,, € {1.....n},
mtry € {1,...,p}, nodesize € {I,..., 2,}. and x € &,

Output: Prediction of the random forest at x. BOOtStrapplng (st randomization)

forj=1... .M do
Select a,, ponts, with (or withont) replacement, iniformly in 72, In the
following steps. only these a, observations are used.
Set P = (&) the list containing the cell associated with the root of the
tree.
Set Pgnal = 0 an empty hst.
while 7 # D do
Let A be the first element of P.
if A contains less than nodesize pomts or if all X; « A are equai
then
Remaove the cell A from the list P.
Prhinal < Concatenate(Pginal. A).
else
Scleet uniformly, without replacement, a subset My € {1,..., p} < (2nd randomization)
of cardinality mtry.
Select the hest split in A by optimizing the CART-split criterion CART
along the coordinates in M,,, (see teat for details).
Cut the cell A according to the best split. Call Ay, and Ag the
two resulting cells.
Remave the cell A from the list P.
P  C'oncatenate(P, Ap, Ap). -
end Aggregating
end -
Computc the predicted value m,(x: @,, D,,) at x equal te the average of Mg (3560 Ops D)) — 1 3 ra(x:0,,Dy).
the Y; falling in the cell of x in partition Pgaal. ) M = ’
end
C'ompute the random forest estimate m;, (X:@.... ;. D,) at the query

point x according to (1).
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Advantages

Howard (Kaggle) and Bowles (Biomatica) ‘'ensemble of decision trees

(random forests) have been the most successful general-purpose

algorithm in modern times °

Performs well when # variables exceeds # of observations

Very few parameters to tune

Can be applied to large scale problems/ high dim feature spaces
Easily adaptable to ad-hoc learning tasks and return measures
High accuracy

Easily parallelizable

L1 0 0 O O L
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Outline

1. Introduction ¢/

2. Babylon

3. Trespassing Random Forests
4. Pointed Sticks for self defence
5. What to do next?

12. Philosophy. Breiman passionately believed that statistics should be moti-
vated by problems in data analysis. Comments such as

If statistics is an applied field and not a minor branch of mathematics, then more than
99% of the published papers are useless exercises. [Breiman (1995b)]

Trespassing Random Forests



Babylon

Theory speaks and Practice follows ?

“‘Despite their widespread use, a gap remains between the
theoretical understanding of random forests and their practical
performance. This algorithm, which relies on complex data-
dependent mechanisms, is difficult to analyze and its basic
mathematical properties are still not well understood.

As observed by Denil et al. (2014), this state of affairs has led to
polarization between theoretical and empirical contributions to the
literature. Empirically focused papers describe elaborate
extensions to the lbasic random forest framework but come with
no clear guarantees. In contrast, most theoretical papers focus on
simplifications or stylized versions of the standard algorithm, where
the mathematical analysis is more tractable.”

Biau G. and Scornet E. (20106)

Trespassing Random Forests
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Random Forests Lingo
LI CART

W)
QO
Q
Q2

>
Q

Random
Forests

Purely RF/ central RF
Median RF

Quantile RF
Generalized RF
Dynamic RF

Local linear forests

ooz @d  Neural

Trespassing Random Forests
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Purely RF (Breiman 2001)

L1 A family of simplified models

[l Basic framework for accessing theoretical properties
Model (RF)

[ The root &
L1 At each leaf
» choose mtry variables uniformly

» Find the best split using CART, data dependent
Model (PRF) k=0 e
0 The root & = [0,1]¢ b /ﬁf’\/ e
O Select smoothness parameter k L S .
0 Repeat k € N times (k controls the size of terminal node)
» Randomly choose a node, to be split, uniformly among all terminal
nodes. Randomly choose spilit variable

» Randomly choose split point - data independent

Trespassing Random Forests
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Purely uniform RF (Genuer 2012)
[ An alternative to PRF
O Ford =1

Model (PURF)
£ The root X = [0,1]

[1 Select smoothness parameter k controlling the size of terminal node

[ Repeat k € N times (for tree with level k)

» Randomly choose a node, to be split, uniformly among all terminal
nodes
» Randomly choose split variable

» Randomly choose split point - data independent
[ Consistent under Lipschitz assumptions (Genuer 2012)

Trespassing Random Forests
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Centered forests (Breiman 2004) . .

[ Example of PRF T

O Independent of whole data .

Model (Centered forests) o ‘
3 The root & = [0,1]¢ ° ® e

L1 No resampling step

[ Select smoothness param k and repeat k times

» Randomly choose a node, to be split, uniformly among all
terminal nodes

» Randomly choose split variable

» Split in the centre

& Each tree ends up with 2% leaves

n
m Consistent as k = oo and T > 00 (Scornet 2015)

Trespassing Random Forests
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Median RF (Devroye et al. 1996)

[ Good trade-off between CRF and Breiman’s RF
[ Independent of response variable

Model (MRF)

& The root & = [0,1]¢

[ No resampling step

[ Repeat until there is only one observation in each cell

» Randomly split a node, uniformly among all terminal nodes
» Randomly choose split variable
» Split in the empirical median of data in the cell

I] In general nOt ConSiStent (Gyérfi et al. 2002) observations without replacement among the original sample
an “« : :

m If a, = oo and > 0, then median RF are consistent even
n

though individual trees are not (Scornet 2016)

Trespassing Random Forests
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Orthogonal decision trees (Kargupta et al. 20006)

[ Way to construct redundancy free decision trees
L1 Trees are functionally orthogonal to each other and correspond to
PC of underlying functional space

Model (ODT)

0 The root X

[ Construct Fourier spectrum of the tree (algebraic representation
of the trees)

LI Perform Eigenanalysis and PCA

[ Convert PCs to trees in original space

[ Apply RF algorithm on these trees

Trespassing Random Forests
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Quantile regression forests (Meinshausen 2006)

[ Estimates conditional quantiles instead of conditional mean
LI Computes the whole conditional distribution of response var

Model (QRF)

£ The root I

[ Select k, the tree level

[ For each leaf of each tree
» Note all observations (not just their average)
» Split using CART

@ Consistent for & = [0,1]¢ with additional assumptions such as
Lipschitz continuity of conditional cdf

Trespassing Random Forests
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Generalized RF (Athey et al. 2018)

[ Estimates params that are identified via local moments condition
L1 Develops robust regression procedures via Huberization

Model (GRF)

0 The root X

[ choose k and resampling rate

[1 Repeat k times
» | abeling step > calculate pseudo outcomes, define the

forest-based adaptive neighborhood for each datapoint
» Regression step > Split using CART

[ Consistent and asymptotically normal

Trespassing Random Forests
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Dynamic RF (Bernard et al. 2012)

L1 Unlike original RF where trees are uncorrelated, here trees are

grown by taking into account the sub-forest already built
[l Guides the tree induction so that each tree compliments the

existing trees as much as possible

LI Only reliable trees are allowed to grow in the forest

L1 Inspired by boosting (manipulates the importance through
assigning weights)

Model (DRF)

[0 The root X

[ choose k and resampling rate. Assign same weight to all training
iInstances

[ Repeat k times
» Same as RF
» Update the weights on class counts acc. to importance

Trespassing Random Forests
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Online RF (Saffari et al. 2009, Denil et al. 2013 ..)

L1 Do not require accessibility to entire training set at once

[ Data incorporated in the model with time

[ Trees are dropped from the forest based on performance and
replaced by new ungrown trees

[ Approximately: sample independent partitions
Agl), . AEIM) ~ MP(A, [O,l]d), fit them and average their
partitions, where MP is Mondrian Process (Roy and Teh, 2008)

[ Example: Mondrian forests, Information forests

[ Proven to be consistent

[0 Choice of complexity param A ?

Dirichlet in BBI

Trespassing Random Forests
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Consistency of PRF (base forests)

[ Consider an estimate of the form

m,x) = ) W, (Y,
=1

Theorem (Stone, 1977). Weights W, . non negative and sum to one. Then
the estimate m,,(x) is consistent m(x) = E[Y | X = x] iff
1. There is a constant C such that, for every measurable function

g :[0,11Y - Rwith E|g(X)]| < o,

E) (W, ()] 8(X)] < CE[g(X)], foralin > 1
i=1y
2. Foralla > 0. Z W (X)I{||X; = X]|| > a} — O, in probability
i=1

3. max W _(X) — 0, in probability
1<i<n

Stone conditions for RF " 4
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Choosing number of trees in a Mondrian forest

& Denote m, ,, ,the (randomized) Mondrian forest estimator with M
trees and parameter A Let

(*) Var(Y|X) < 6% < o as.

Theorem (Mourtada, Gaiffas). Assume (*) and that the regression

function m is /-Lipschitz. Then:
4dl> (1 + A)?
R py,) < —5= +———(20" +9|m|[3)
1/(d+2) gives

In particular, A = 4, ® n

R (m/l,M,n) - @(n —2/(d+2))

which is ,,Chuck’s speed” for Lipschitz (p=7) ,balls® in d dimensions

Chuck speed limiz

[ True for every M > 1. But in practice more trees perform better,
why? How to choose M? —

Trespassing Random Forests
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Neural Random Forests

[ Perceptron to the rescue
[ this CART tree is actually a 2 layer NN !

(e

-J

o0
.

20)
.

0.1

Figure 1: Tree partitioning in dimension d = 2, with n = 6 data points.

Trespassing Random Forests
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Neural Random Forests OB o)

H Perceptron, SFM Book ! N .

Universitext

Jiirgen Franke U

Wolfgang Karl Hardle
Christian Matthias Hafner

Statistics of
Financial &
Markets

An Introduction

Fifth Edition

Input Iayer

¥

(u>‘).\c)
:

\\ \ I,
\\\-’
/

//

~ Sy

4

(o) (o

(=

p —

Q Fignre 2: An example of regression tree (top) and the correspanding neural

&) Springer network (down).

QUANTLETS

First hidden layer. The first hidden laver of neurons corresponds to £ — 1

perceplrons (one [or each inner tree node), whose activation is defined as
r(he(x)) = 7(a = i, ),

where 7(u) = 21,0~ 1 is a threshold activation function. The weight vector
is merely asingle one-hot vector for feature 5, and —a;, is the bias value. So.
for each split in the tree, there i3 a neuron in layer 1 whose activity encodes
the relative position of an input x with respect to the concerned split. In
total, the first layer outputs the +1-vector (7(hy(x]), .. .. 7(hg 1(x))). which
describes all decisions of the inner tree nodes {including nodes off the tree X

Trespassing Random Forests
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Neural Random Forests

Input layer > & OQutput layer
L1 Independent Training ) @
. //<\04)h\
[ Each tree calculated independently s o8
\\>/\< ‘r // & \\\\7
" " ~ 3 . '-
[l Resulting regression fct T 7)
2 (6)
. (9]
(8)
) i
| Py uX) = m(X) |2 > 07
To allow for training based on gradient backpropagetion, the activation func- o _Av_ms':
tions must be differentiable. A natural idea is to replace the original relay-
type activation function 7(u) = 21,>¢ — 1 with a smooth approximation of
it; for this the hyperbolic tangent activation function
o(u) := tanh(i) = - c:u - e:u . l, -~ 4
edde v el A0
T 8
which has a range from —1 to 1 is chosen. More preciszly, we use o,(u) = r_;,)\\ 1) BN
c(mu) at every neuron of the first hidden layer anc oy(u) = o(y:u) at every ~ — ~— 20
reuron of the second one. Herz, v, and v, are positive hypepparameters / 2 0 N
e
& 3)
9
72 approach infinity, the continuous functions o, and o, converke to the ) 1—1
Fizure 3: Methed 1@ Indeperdent trammng.
hyper params
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Neural Random Forests

Inpmie. laywer E ¥ Onzput layer
[ Perceptron to the rescue ? " @)
|
) N s \
| 537 ,(X) —m(X)|” = 07 = N\
’ /1 @l N\
/ 4 5) 9 \\
// (3) AN
/ / 110 N\
/ /// \\\
i \
/ / N
xy) / \\
For a hyperrectangle A = [a,b] x - X [aq,b4] € [0,1]%, we let AV = = 3
[T M[a,.;,b,-] and dx" = dz;...dz; jdz;y...deg. Assume we are given a \ }Q
measurable function f : [0, 1]¢ — R together with A = [a;,&)| % -- % [az,bg] © A A\ 7
[0,1]%, and consider the following two statements: ' ‘\\\\\\\ 77
. \\ \ g
(#) For any j € {1,....d}, the function NN 4] yd
\\\Q’}\ 5
oy [ 00 NN
A2 3)\_’ /ﬁ
is constant on [a;, b;; v \:/ 8]
3)
(¢) The function f is constant on A. = 9
- 10
Figura 4 Method 2 Joint craining
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Neural Random Forests

[ Consistency

Theorem (Consistency of r,,, and s,,,). Assume that X is uniformly
distributed in [O,l]d,||Y||OO < 00, and r € . Assume, in addition, that
K., 7,7, = o0 such that, as n tends to infinity,

K%log(y, K> K*21o
2 108(r2K) > 00, K2e—2y, — 0, and 73 108(11) > 0

n 71
Then, asn — o0,

El7y (X)) = rX) " =0 and  E|s3,,X) —sX)|* = 0

Trespassing Random Forests
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Mathematical framework for NRF
[ Additive models (AM) satisfy the condition (%)

d
f) = ) f(x)
j=1

L1 Additive models have been extensively studied eg:

>

vV v vVvVvyYy

Trespassing Random Forests

Hardle WK, Hall P (1993) study the backfitting algorithm for AM along with its
convergence properties and consistency of its estimators

Hardle WK, Tsybakov AB (1995) consider additive nonparametric regression on
principal components

Fan J, Hardle WK, Mammen E (1998) estimate the low dim components in AM
Hardle WK et al.(2001) developed structural tests for AM

Yang L, Sperlich S, Hardle WK (2003) developed tests for generalised AM
Hardle WK et al. (2004) provided bootstrap inference in semiparam. gen. AM
Liu R, Yang L, Hardle WK (2013) provide efficient estimation of gen. AM
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Implied functionals

[ Model free causal inference with binary treatment effects
[ Generalized RF (GRF) by Athey et al. (2016) tackle the problem via
generalised method of moments (GMM), e.g. for
» Quantile regression
» Treatment effect estimation
» Instrumental variables
L GRF can estimate functions with different loss functions

Trespassing Random Forests
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Application

[ Treatment effect analysis of numlber of children on labor force
participation of mothers in the US in Athey et al. (2019)

[ Data:
» Subset of 1980 US census data, including only married mothers

with > 2 children ﬁﬁnb\( ....... i

P Target variable: Did the mother work in the year before the
census”?

[ Analysis of labor-force participation of mothers with > 3 children

» Treatment effect: Does mother have > 3 oL

» Instrumental variable: Do first children have different gender? oL o
LI Covariates:

> Age of mother at birth of first child vli ‘

» Age of mother at census
» Years of education of mother
» Race of mother

» Income of father
Trespassing Random Forests
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IV Regression
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41
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0 20 40 60 80 100

Father's Income [S1k/year]

Mother 22 years old at first birth

Fig.: GRF estimates with pointwise 95% confidence intervals for causal effect of having a their child on

probability that mother works for pay. CLATE T > Probability mother working |
Source: Fig. 3 in Athey et al 2019

Trespassing Random Forests

design of the following 4 slides by Marius Sterling
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Effective weights

n = 500,1000,2000
X=—1+2i/n,i=1,...n

0(x;, x,) = max(0,1 — |x;|/n), n =0.2
Y, = 0(X,) + ¢, & ~ N(0,6°)

n

O(x) = 0x) + ) a(x)E(x)
i=1

a;(x) based on RF trained on (X, ;).

c.=10

£

Cfiactive weights () for X;--1.€36

0

0.08
1

0.04
1

0.02

AR NN o g i N g,

e e ey

€2
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x2

eff. weights at x; = (0,0.5) ¢,=0.1

m
¥

GREF _effective weiqhtSZDQ
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RFs are locally adaptive Smoothers

B (H1) Fix x € [0,1]¢, and assume that I, =XY) Y >0as.and
N, <x, @j) = Zl IX,-eAn(x, ®j> and A, <x, ®j> is the cell containing x

LI Then, one of the following two conditions holds:
» (H1.1)There exist sequences (an), (bn) such that, a.s.

n

a, <N, (,®)<b, and a <$ZN (x,@m)gb

» (H1.2) There exist sequences (en), (an), (bn) such that, a.s.
1. Eg |N,(x,0)| > 1
2. Pla,<N,(x,©)<Db,|D,| >1-¢,/2

3. P la, < Ee [N,(x.®)] <b, | @n] >1—¢/2
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Kernel based on random forests (KeRF) (Scornet 2015)

[ | .
RF estimates . Yllxie A (x, ®j>

M
My (x,@l, ...,@M) = %Z Z

j=11 i=1 Nn(x,®j>

1 M n

Z Z YiIX,-eAn(x, @j)

Z]Aian <X, ®]) j=1 i=1

I KeRF estimates
Ay (X, 01, ..., Oy)

Proposition: Assume that (H1.1) is satisfied. Thus, almost surely,

n

a

‘mM,n(x) — n”tM,n(x) ‘ < L rhM,n(x)

n

1 Hence RFs are kernel estimates, it # obs in each cell Is controlled
[ (H1.1) holds true for some type of random forests
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,Chuck’s speed limiz*

I RFs are local kernel estimators
L1 Convergence rates calculated in min max framework
I All smoothers follow the eternal Charles Stone rule

A very small ,ball” yields increased precision
but dimension hits you exponentially hard.

Chuck’s speed limiz: ,ball“ = functional class (p), dimension (d)

min max MISE(m,) = O(n~2P/Cr+d)

LI The Olymp is right: RFs cannot escape the eternal rules!
[ Non-eternal optimists: smaller balls (like AMs) do the job!

» Return to (Mourtada, Gaiffas) o 3
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In the words of the founder

‘But the cleverest algorithms are no substitute for human
intelligence and knowledge of the data in the problem.’

“lake the output of random forests not as absolute truth, but as
smairt computer generated guesses that may be helpful in leading
to a deeper understanding of the problem.’
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Pointed Stick
L Monty Python Flying Circus
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Appendix b2

Stone Theorem for single trees

X €A (x,0)}
Condition 1: Set W _(x) = in tree estimate m, (x)
N,(x,0)

Condition 2: Note that foralla > (

E[Z WeCOL{|X; - X, > a} I{1X; - X, > a}

i=1

[ X € A, 0))
- E[Z N,(x, 0)

i=1

E[Z I{X €A (x,0)}

IH{|X —X||..>a} X1, {A(X,0)>al2

i=1
Because I{ || X; — X||, > a} X1, 1A (X,0) <a/2 =0. Thus,

Liiam{A,X.0) > al2x Y T{X, € A, (x, O)}{||X; - X||, > a}

E[Z Wi COL[IX; = Xlo, > a)
i=1

=1

<E

< P|dam{A,(X,0) > a/2| - 0 asn — oo (per assumption)
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Condition 3: The tree partition has 2% cells, denoted by A, ..., Ay . For 1 <i < 2K et
N, be the number of points among X, Xj, ..., X, falling into A;. Finally, set

S = {X, X, ...,Xn}. Since these points are independent and identically distributed,
fixing the set S (but not the order of the points) and ®, the probability that X falls in the

N.
ith cell is ——— Thus, for every fixed ¢ > 0,
n+1
N, 2k
P(N,(X.0) < t| = E|P[N,X.0) <t]S5.0]| = E[ ) < f
n+1 n+1

:N<t+1

Thus, by assumption, N, (X,0) - oo asn — o
Note:

< E

E [ max W>(X)

1<i<n

I{X €A (x,0)) ] ll{xi €A (x,0))
max < E

>0 asn — o©
1<i<n N, (x, 0) N, (x,0) ]
Since N (X, ®) — oo in probability, as n — oo

Imp: Forest consistency results from the consistency of each tree.

» Return to Stone theorem
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