Statistics II: Exercise Session 4

1 Theory of estimation

1.1 Basic concepts

True parameter of the population	θ
Estimator	$\widehat{\theta} = g(X_1, \dots, X_n)$
Estimated value	$\widehat{\vartheta} = g(x_1, \dots, x_n)$

Unbiased estimator

$$E[\widehat{\theta}] = E[g(X_1, \dots, X_n)] = \vartheta$$

Unbiasedness means, that given a large number of samples the average over all estimations lies near the true parameter.

Mean squared error (MSE)

$$MSE(\widehat{\theta}) = E[(\widehat{\theta} - \vartheta)^2] = \underbrace{E[(\widehat{\theta} - E[\widehat{\theta}])^2]}_{=Var(\widehat{\theta})} + \underbrace{(E[\widehat{\theta}] - \vartheta)^2}_{Bias^2}$$

Efficient estimator

Assume unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$.

- Estimator $\hat{\theta}_1$ is relatively efficient compared to $\hat{\theta}_2$, if $\operatorname{Var}(\hat{\theta}_1) \leq \operatorname{Var}(\hat{\theta}_2)$.
- Estimator $\hat{\theta}_1$ is **absolutely efficient** for parameter ϑ , if it has the smallest variance among all unbiased estimators of ϑ .

1.2 Estimation methods

Maximum likelihood method

Likelihood function
$$L(\vartheta) = L(\vartheta|x_1, \dots, x_n) = \prod_{i=1}^n f(x_i|\vartheta) \rightarrow \text{maximize}$$

Log-likelihood function $\log\{L(\vartheta)\} = \sum_{i=1}^n \log\{f(x_i|\vartheta)\} \rightarrow \text{maximize}$

Least squares method

Quadratic form
$$Q(\vartheta) = \sum_{i=1}^{n} (x_i - E[X_i])^2 = \sum_{i=1}^{n} (x_i - g_i(\vartheta))^2 \rightarrow \text{minimize}$$

Exercises

7-1: Unbiasedness

A population has the mean μ and the variance σ^2 . Let (X_1, X_2, X_3) be a simple (theoretical) random sample from this population. The following three estimators are given:

$$\widehat{\theta}_1 = \frac{1}{3}(X_1 + X_2 + X_3); \widehat{\theta}_2 = \frac{1}{4}(2X_1 + 2X_3); \widehat{\theta}_3 = \frac{1}{3}(2X_1 + X_3).$$

- a) Which of these estimators are unbiased?
- b) Which of them would you prefer according to the efficiency criterion? (Reason!)

7-3: Lamps

A supply of N = 1000 lamps is examined by means of a simple random sample of size n = 20. With help of the random variable X: "Number of defective lamps in the random sample of size n = 20" the number d of defective lamps in the supply is estimated.

- a) Determine an unbiased estimator $\hat{\theta} = f(X)$ for d and show that $E(\hat{\theta}) = d$ holds.
- b) In a given sample the number of defective lamps is 3. How many defective lamps would you estimate to be in the supply altogether?

7-5: Gambling machine

A gambling machine has the following probability distribution for a win X per game (in EUR):

x	-1	0	+1
$\mathbf{P}(X=x)$	p	p	1-2p

The producer of these gambling machines asked a statistician to perform an estimate of p in order to know whether p is changing during the usage of the machines.

a) The statistician draws a random sample of size n = 6, i.e. he plays the machines exactly 6 times and writes down the wins. The sample $(X_1, X_2, X_3, X_4, X_5, X_6)$ had the following realization: (-1, 1, -1, 0, 1, 1). Verbalize this sample result.

- b) State the following probabilities: P(X = 0); P(X = -1); P(X = 1).
- c) How would you determine the probabilities for the win X per game, given the sample above, if you did not have any information about the probability distribution of X?
- d) What is the probability $P\{(X_1, X_2, X_3, X_4, X_5, X_6) = (-1, 1, -1, 0, 1, 1)\}$ given the probability distribution above?
- e) Determine the maximum likelihood estimator for p in this problem.
- f) Estimate p by maximum likelihood method using the given sample result.
- g) Estimate p by least squares method using the given sample result.