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What are Weather derivatives (WD)?

Hedge weather related risk exposures:
(] Payments based on weather-related measurements
(] Underlying: temperature, rainfall, wind, snow, frost
Chicago Mercantile Exchange (CME):
(J Monthly/seasonal temperature Future/Option contracts
(] 18 US, 9 European and 2 Asian-Pacific cities

() From 2.2 billion USD in 2004 to 22 billion USD through
September 2005

.
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Weather Derivative
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Figure 1: A WD table quoting prices

Mercantile Exchange’s Weather-i
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1-4

Pricing Methods

Price of a contingent claim F":
F = exp {~rT}E? [(1)] (1)

I: weather index, ¥(I): payoff of the derivative at expiration, r:
risk free interest rate, @): risk neutral probability measure

CJ Burn analysis: F = exp{—rT}In" '3[ ¢(L)

[J Stochastic Model/Daily simulation

Market ist Incomplete: need of a equivalent measure @) as a
pricing measure

>
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Stochastic Pricing Model for Temperature
Derivatives

[J Mean reversion model: Dornier et al. (2000), Alaton et al.
(2002)

[J Fractional Brownian Motion: Brody et al. (2002)

(1 ARMA model with seasonal ARCH innovations: Campbell
and Diebold (2005)

[0 CAR model with seasonal volatility: Benth et al. (2007)
AIM: Calibrate WD from weather data and CME data
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CME WD data

HDD-WD for Berlin 20031022-20060303 (289 days).
451 contracts: prices (0, 676.55), maturity (-35, 112)

DAY: 20031219
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Outline

1. Motivation v
2. Weather Derivatives Indices
3. Stochastic Pricing Model: CAR(p)

4. Application to Berlin data
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Weather Derivatives (WD) 2-1

Temperature Indices

Heating degree day (HDD): over a period [y, 72]
T2
/ max(K — T,,0)du (2)
T1
Cooling degree day CDD): over a period [1, 72]
T2
/ max(Ty — K, 0)du (3)
T1

K is the baseline temperature (typically 18°C or 65°F), T, is
the average temperature on day u.
—
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Weather Derivatives (WD)
Weather indices: temperature

Average of average temperature (AAT): measure the
"excess” or deficit of temperature. The average of average
temperatures over |71, 73] days is:

1 2
/ T.du
T — T2 Jpy

Cumulative averages (CAT): The accumulated average
temperature over [y, 2] days is:

T2
/ T.du
T1
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Weather Derivatives (WD) 2-3

Weather indices: temperature

Event indices: number of times a certain meteorological event
occurs in the contract period

[ Frost days: temperature at 7:00-10.00 local time is less
than or equal to —3.5°C

HDD-CDD parity:

CDD(r, 1) — HDD(11,12) = CAT (11, 72) — K

(] Sufficient to analyse only CDD and CAT futures
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Weather Derivatives (WD) 2-4

Weather indices: temperature

HDDs for Berlin
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Figure 2: HDDs for Berlin over 57 years. Stations: Berlin Tempelhof (black lme)
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Weather Derivatives (WD) 2-:
Stochastic Model for temperature
Define the vectorial Ornstein-Uhlenbleck process X; € RP:

dXt = AXtdt + eptO'tdBt

er: k’th unit vector in RP for k =1, ...p, oy > 0: temperature
volatility, A: p X p-matrix, By: Wiener Process, ag: constant

0 1 0 ... 0

0 o 1 ... 0

A= : . :
0 0 1

—OQp —Op_1 ... —Q1

Solution of X; = x € RP:

Xs=exp(A(s—1t))x+ /ts exp (A(s — u))e,0,dBy
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Weather Derivatives (WD) 2-6

Xi; is a CAR (p) model

Resulting discrete-time dynamics:

For p =1, then X; = Xi+:
dX1: = —o1 X1¢dt + 0:d By
For p =2,
Xi(t12) = (2= 01)Xq41) + (1 — a2 — 1) Xy + 0¢(Bi—1 — By)
For p = 3,

Xigt3 = B—a1)Xigo) + (201 —a2 —3) X4y + (—a1 + a2 —az + 1) Xy
+  0¢(Bi—1 — By)
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Weather Derivatives (WD)

Temperature Dynamics

Continuous-time AR(p) (CAR(p)) model for Temperature:

Ty = Ay + X1y

X4 q’'th coordinate of vector X with ¢ =1,..,p
Ay4: seasonality function

X1t is a CAR (p) model

Stationarity holds when the variance matrix:

t
/ a?t_s) exp(A(s))epe;— exp(A/])ds

converges as t — 00

Calibrating Weather derivatives



Weather Derivatives (WD) 2-8
Girsanov theorem: 3 an equivalent probability measure Q7 :

t
B! :Bt—/ 0., du
0

is a Brownian montion for t < Tax. 8¢ a real valued, bounded
and piecewise continous function (market price of risk).
Under QY

dXt = (AXt + epatﬂt)dt + epatdBf (8)

with explicit dynamics, for s > ¢ > 0:
Xs = exp(A(s—1t))x+ / exp (A(s — u))epoy,0,du
¢
—i—/ exp (A(s — u))ep0,dBY 9)
¢

s

s /1
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Weather Derivatives (WD) 2-9

Temperature futures price

Under the @ risk neutral probability:
0=exp{—r(r2 — )} E?[Y — Fly.r, )| 7] (10)
Under the QY pricing probability:
Fltrm) = B V|7 (1)

where Y may be equal to the payoff from the CAT/HDD/CDD
future
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Weather Derivatives (WD) 2-10

CAT futures price

0 2
Foargmm) = EY [/ max(Ts)ds]]:t}
T1

T2 T2
= Audu + athQXt + / Guauat,nﬂ epdu
’7—71—2 T1
+ Ououe] A7t {exp (A(ma —u)) — 1} epdu
T1

atrym = e] A7 {exp(A(r2 — 1)) — exp(A(r1 — 1))}
I, : p X p identity matrix

: 6 : . _ 0
Time Q°-dynamics of Foar: dFcar(r m) = Otatr mepdBy
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Weather Derivatives (WD) 2-11

CAT call option

written on a CAT future during the period [r, 7] is:
CCAT(t,T,Tl,TQ) = €xp {_T(T - t)}
< A (Foarmn,m — K)2d(t,T,m,1m))

T
+ / E%Amm)dw(d<t,T,n,r2>>}<12>

where
Feartm m) -k

T
\/ft E%AT(S,Tl ,Tz)ds

d (ta T7 1, 7-2) —

and
ECAT(S,Tl,TQ) = 0tat 1 ,1€p
and ® denotes the standard normal cdf.
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Weather Derivatives (WD) 2-12

Hedging strategy for CAT call option

Delta of the call option:

aCCAT(t,T,Tl ,T2)

O(d(t,T,m1,72)) = T )
iT1,T2

(13)

Hold: close to zero CAT futures when the option is far out of
the money, otherwise close to 1.
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Weather Derivatives (WD) 2-13

CDD futures price

T2
Fepp(trm) = BY [/ maX(Tu—K,O)dulft]
T1

T2 m SQT ex S—
:/ Ut,s¢|: {tese] exp (A t))Xt}} ds

1 UtS

5

where my; .1 = As —c+ fTsl oub.e] exp (As—t)epdu +
s 2

Ugs = [’ o2 {elT exp (As—)ep} du

Y(z) = 2®(7) + () with x = e] exp (A(s — 1)) X,

® is the standard normal cdf
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Weather Derivatives (WD) 2-14

CDD futures dynamics

T2
dFcpD(tr ) = Jt/ {91T eXP(A(S—t))ep}

m{t,s,e] exp (A(s —1))X;}

Ut,s

x ®

dsdB!

CDD volatility Xcpp(s,r ) recovers CAT volatility
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Weather Derivatives (WD) 2-15

CDD call options

CepptTim,m) = exp{-—r(t—1)}x
E [max (/ Vst < mdeX) ds — K, 0)] (14)
T1 Ur,s x=X4¢
index = <T, s,e] exp (A(s —t))x + / e exp (A(s — u))e, 0,0, du
¢
+ z:s,t,TYv)

Y is a std. normal variable,
2
ES’LT ft {31 exp (A(s —u))ep} o2du
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Weather Derivatives (WD) 2-16

Hedging strategies CDD call options
Let C = max(Fopp(r,r,m) — K, 0) be the payoff of the option,
its Clark Ocone representation is:
T
c=E?[C] + / EQ (D, C|F,)dB! (15)
0
Then, the hedging strategy in CDD-futures:

_ 0
HCDD(t)Tl’TQ) = EchD(t,Tl ,Tz) EQ [D7 C|ft:| (16)

where D; is the Malliavin derivative
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Applications

Berlin temperature

Daily average temperatures: 1950/1/1-2006/7 /24
(J Station: BERLIN-TEMP.(FLUGWEWA)
(1 29 February removed
[ 20645 recordings
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Applications 3-2

Seasonality

Suppose seasonal function with trend:

2 (t —
Ay = ag + a1t + ascos (M>

365

Estimates: do = 91.52(90.47,92.56),d; = 0.00(0.00, 0.00), G =
97.96(97.22,98.69),ds = —165.1(—165.5, —164.6) with 95% confidence
bounds RMSE = 38.2048, R? : 0.7672
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Applications

Seasonality

Temperalure in tenth <C

Figure 3: Temperature in Berlin 1990-2000
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Applications 3-4

Temporal dependence

Remove seasonality: Y; = T; — Ay
ADF-Test:

(1-L)y = c1+cotrend+7Ly+a1(1—L)Ly+...ap(1— L) LPy+u

[ 7= —39.812, with 1% critical value equal to -2.5659
J Reject Hyp (7 = 0), hence Y; is a stationary process I(0)
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Applications 3-5

PACF

AR(3): Yips = 0.91Y; 1o — 0.20Y;41 + 0.07Y; + (510.63) 2 &;
CAR(3)-parameters: a3 = 2.09, as = 1.38,a3 = 0.22
Stationarity condition for the CAR(3) is fulfilled:

A1 = —0.2317, A2,3 = —0.9291 £ 0.29341.

PACF, alpha = 0.05
12 T T T T T T T T T

Partial Autoccarrelation function

Figure 4: Partial autocorrelation function (PACF) s
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Applications 3-6

Residuals

Squared residuals

0 0z 04 [ 08 1 12 14 18 18 E

Nuriker of days .
®10

Figure 5: Residuals (up) and squared residuals (down) of the AR(3). Rejec-

tion of Hy for zero-mean residuals at 1% significance level .
T |
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Applications 3.7
Seasonal volatility

Close to zero ACF for residuals of AR(3) and according to
Box-Ljung statistic the first few lags are insignificant.

ACF, alpha=0.05
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Figure 6: ACF for residuals AR(3) s
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Applications 3-8
Seasonal volatility

Highly seasonal ACF for squared residuals of AR(3)

ACF, alpha=0.05
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Figure 7: ACF for squared residuals AR(3)
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Applications 3-9
Calibration of daily variances of residuals AR(3) for 56 years:

- - 2irt [ 2imt
oy =c1 + Z Cak COS % + C2i+41SIn %

Seasonal Wariance

o a0 100 150 200 250 300 350
Days

Figure 8: Seasonal variance: daily empirical variance (blue line), fitted

squared volatility function (red line) at 10% significance level

Calibrating Weather derivatives




Applications 3-10

ACF, alpha=0.05
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Figure 9: ACF for residuals (up) and squared residuals (down) after dividing

out the seasonal volatility
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Applications 3-11
Residuals become normal

T-test: Accept Hy of normality with p= 0.9611, Skewness=
-0.0765, Kurtosis=3.5527.
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Figure 10: Left: pdf for residuals (black line) and a normal pdf (red line).
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Applications 3-12
Samuelson Effect

<107 CAT volatility term structure

CAT volatility

T b

a 50 100 150 200 250 300 330
Measurement month

Figure 11: The CAT term structure of volatility
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Applications 3-13

Samuelson and Autoregressive effect

CAT volatility
CAT volatility

142 143 144 145 148 147 148 149 150 151 142 143 144 145 148 147 148 149 150 151
Trading days prior 1o measurement period (June) Trading days prior to measurement period (June)

Figure 12: CAT volatility prior of 2 contracts in June: one with measurement
period of 1 month (blue line) and the other of 1 week (red line)
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Applications 3-14

AR(3)-contribution to CAT volatility
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Figure 13: AR(3) contribution to the CAT volatility prior of 2 contracts in

June.

Calibrating Weather derivatives



Applications 3-15

to do..

Compute market price risk 6, from WD data:

0 T2
Foar(mm = E° U maX<Ts)ds!fJ
T1

T2 T2
= Audu + atm’TQXt + / Guauatmﬂ epdu
’7"1[-2 T1
+ fuoune] A7 {exp (A(12 — u)) — I} epdu
T1

0, is a real valued piecewise linear function:

0(u) :{ Or,u € (u1, us) }

027 (NS (Ul, UQ)

- e
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Research 4-16

Questions

[J Explicit prices/hedging strategies of WD traded at CME
[ Spatial dependence in temperature dynamics: DSFM?

[J Random internal climate/urbanisation variability

[J Role of the strike value
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Conclusion

Conclusion

[0 CAR(3) model for the temperature dynamics

(] Samuelson effect and autoregressive effect observed in
Berlin data
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Conclusion 5-4
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Conclusion

Appendix

Residuals with and without seasonal volatility:

Lag Qstatres QSIGres Qstat,esl QSIGresl
1 0.03 0.85 0.67 0.41
2 0.05 0.97 0.74 0.69
3 3.16 0.36 4.88 0.18
4 4.70 0.32 6.26 0.18
5 4.76 0.44 6.67 0.24
6 5.40 0.49 7.17 0.30
7 6.54 0.47 7.51 0.37
8 10.30 0.24 10.34 0.24
9 14.44 0.10 14.65 0.10
10 21.58 0.01 21.95 0.10

(@24
]
<

Table 1: Q test using Ljung-Box’s for residuals with (res) and without
seasonality in the variance (resl)
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Conclusion 5-6
Appendix

Proof CAR(3) ~ AR(3):
Let
0 1

A= 0 0 1
—Q3 —Q2 —O1
- Use Bt_|_1 — Bt = €t

- Substitute iteratively in X7 dynamics:

Xl(tJrl) — Xl(t) = Xl(”dt + otet

X2(t+1) — X?(t) = X3(t)dt + otet

X3(t+1) — X3(t) = —a3X1(t)dt — azXQ(t)dt - alXS(t)dt + otet

Xi(t+2) = X1(¢4+1) = X1(e4+1)dt + orqp1€041

Xo(t+2) — Xa(t+1) = X3(t4+1)dt + 0416041

X3(t42) — X3(t41) = —3Xy(p41)dt — a2Xopq1ydt — a1 X3 1)dt + orqp1€p41
X1(t+3) = X1(t4+2) = X1(t42)dt + orq2€r42

Xot+43) — Xo(t42) = X3(t42)dt + orq2€i42

X3(t43) — X3(t42) = —3Xq(p42)dt — a2Xp(pq9)dt — a1 X34 2)dt + ory2€r42
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