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What are Weather derivatives (WD)?

Hedge weather related risk exposures:
� Payments based on weather-related measurements
� Underlying: temperature, rainfall, wind, snow, frost

Chicago Mercantile Exchange (CME):
� Monthly/seasonal temperature Future/Option contracts
� 18 US, 9 European and 2 Asian-Pacific cities
� From 2.2 billion USD in 2004 to 22 billion USD through

September 2005
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Weather Derivative

Figure 1: A WD table quoting prices of May 2005 contracts. Source: Chicago

Mercantile Exchange’s Weather-i
Calibrating Weather derivatives



1-4

Pricing Methods

Price of a contingent claim F :

F = exp {−rT}EQ [ψ(I)] (1)

I: weather index, ψ(I): payoff of the derivative at expiration, r:
risk free interest rate, Q: risk neutral probability measure

� Burn analysis: F = exp {−rT}n−1
∑n

t=1 ψ(It)
� Stochastic Model/Daily simulation

Market ist Incomplete: need of a equivalent measure Q as a
pricing measure
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Stochastic Pricing Model for Temperature
Derivatives

� Mean reversion model: Dornier et al. (2000), Alaton et al.
(2002)

� Fractional Brownian Motion: Brody et al. (2002)
� ARMA model with seasonal ARCH innovations: Campbell

and Diebold (2005)
� CAR model with seasonal volatility: Benth et al. (2007)

AIM: Calibrate WD from weather data and CME data
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CME WD data

HDD-WD for Berlin 20031022-20060303 (289 days).
451 contracts: prices (0, 676.55), maturity (-35, 112)
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Outline

1. Motivation X

2. Weather Derivatives Indices

3. Stochastic Pricing Model: CAR(p)

4. Application to Berlin data
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Temperature Indices

Heating degree day (HDD): over a period [τ1, τ2]∫ τ2

τ1

max(K − Tu, 0)du (2)

Cooling degree day CDD): over a period [τ1, τ2]∫ τ2

τ1

max(Tu −K, 0)du (3)

K is the baseline temperature (typically 18◦C or 65◦F), Tu is
the average temperature on day u.
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Weather Derivatives (WD) 2-2

Weather indices: temperature

Average of average temperature (AAT): measure the
”excess” or deficit of temperature. The average of average
temperatures over [τ1, τ2] days is:

1
τ1 − τ2

∫ τ2

τ1

Tudu (4)

Cumulative averages (CAT): The accumulated average
temperature over [τ1, τ2] days is:∫ τ2

τ1

Tudu (5)
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Weather indices: temperature

Event indices: number of times a certain meteorological event
occurs in the contract period

� Frost days: temperature at 7:00-10.00 local time is less
than or equal to −3.5◦C

HDD-CDD parity:

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT (τ1, τ2)−K

� Sufficient to analyse only CDD and CAT futures
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Weather indices: temperature

Figure 2: HDDs for Berlin over 57 years. Stations: Berlin Tempelhof (black line),

Berlin Dahlem (blue line), Postdam (red line)
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Stochastic Model for temperature

Define the vectorial Ornstein-Uhlenbleck process Xt ∈ Rp:

dXt = AXtdt+ eptσtdBt

ek: k’th unit vector in Rp for k = 1, ...p, σt > 0: temperature
volatility, A: p× p-matrix, Bt: Wiener Process, αk: constant

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 . . . . . . 0 1
−αp −αp−1 . . . −α1


Solution of Xt = x ∈ Rp:

Xs = exp (A(s− t))x +
∫ s

t
exp (A(s− u))epσudBu
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X1t is a CAR (p) model

Resulting discrete-time dynamics:

For p = 1, then Xt = X1t:

dX1t = −α1X1tdt + σtdBt

For p = 2,

X1(t+2) ≈ (2− α1)X1(t+1) + (α1 − α2 − 1)X1(t) + σt(Bt−1 −Bt)

For p = 3,

X1(t+3) ≈ (3− α1)X1(t+2) + (2α1 − α2 − 3)X1(t+1) + (−α1 + α2 − α3 + 1)X1(t)

+ σt(Bt−1 −Bt)
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Temperature Dynamics

Continuous-time AR(p) (CAR(p)) model for Temperature:

Tt = Λt +X1t (6)

Xq: q’th coordinate of vector X with q = 1, .., p
Λt: seasonality function
X1t is a CAR (p) model
Stationarity holds when the variance matrix:∫ t

o
σ2

(t−s) exp(A(s))epe>p exp(A>s )ds (7)

converges as t→∞
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Girsanov theorem: ∃ an equivalent probability measure Qθ :

Bθ
t = Bt −

∫ t

0
θudu

is a Brownian montion for t ≤ τmax. θt: a real valued, bounded
and piecewise continous function (market price of risk).
Under Qθ:

dXt = (AXt + epσtθt)dt+ epσtdB
θ
t (8)

with explicit dynamics, for s ≥ t ≥ 0:

Xs = exp (A(s− t))x +
∫ s

t
exp (A(s− u))epσuθudu

+
∫ s

t
exp (A(s− u))epσudB

θ
u (9)
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Temperature futures price

Under the Q risk neutral probability:

0 = exp {−r(τ2 − t)}EQ
[
Y − F(t,τ1,τ2)|Ft

]
(10)

Under the Qθ pricing probability:

F(t,τ1,τ2) = EQθ
[Y |Ft] (11)

where Y may be equal to the payoff from the CAT/HDD/CDD
future
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CAT futures price

FCAT (t,τ1,τ2) = EQθ

[∫ τ2

τ1

max(Ts)ds|Ft

]
=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +
∫ τ2

τ1

θuσuat,τ1,τ2epdu

+
∫ τ2

τ1

θuσue>1 A
−1 {exp (A(τ2 − u))− Ip} epdu

at,τ1,τ2 = e>1 A
−1 {exp(A(τ2 − t))− exp(A(τ1 − t))}

Ip : p× p identity matrix

Time Qθ-dynamics of FCAT : dFCAT (t,τ1,τ2) = σtat,τ1,τ2epdB
θ
t
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CAT call option

written on a CAT future during the period [τ1, τ2] is:

CCAT (t,T,τ1,τ2) = exp {−r(T − t)}
×

{
(FCAT (t,τ1,τ2) −K)Φ(d (t, T, τ1, τ2))

+
∫ T

t
Σ2

CAT (s,τ1,τ2)dsφ(d (t, T, τ1, τ2))
}

(12)

where
d (t, T, τ1, τ2) =

FCAT (t,τ1,τ2)−K√∫ T
t Σ2

CAT (s,τ1,τ2)ds

and
ΣCAT (s,τ1,τ2) = σtat,τ1,τ2ep

and Φ denotes the standard normal cdf.
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Hedging strategy for CAT call option

Delta of the call option:

Φ(d (t, T, τ1, τ2)) =
∂CCAT (t,T,τ1,τ2)

∂FCAT (t,τ1,τ2)
(13)

Hold: close to zero CAT futures when the option is far out of
the money, otherwise close to 1.
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CDD futures price

FCDD(t,τ1,τ2) = EQθ

[∫ τ2

τ1

max(Tu −K, 0)du|Ft

]
=

∫ τ2

τ1

υt,sψ

[m{t,s,e>1 exp (A(s−t))Xt}
υt,s

]
ds

where m{t,s,x} = Λs − c+
∫ s
τ1
σuθue>1 exp (As−t)epdu+ x

υ2
t,s =

∫ s
t σ

2
u

{
e>1 exp (As−t)ep

}2
du

ψ(x) = xΦ(x) + φ(x) with x = e>1 exp (A(s− t))Xt

Φ is the standard normal cdf
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CDD futures dynamics

dFCDD(t,τ1,τ2) = σt

∫ τ2

τ1

{
e>1 exp(A(s− t))ep

}
×Φ

[
m

{
t, s, e>1 exp (A(s− t))Xt

}
vt,s

]
dsdBθ

t

CDD volatility ΣCDD(s,τ1,τ2) recovers CAT volatility
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CDD call options

CCDD(t,T,τ1,τ2) = exp {−r(τ − t)} ×

E
[
max

(∫ τ2

τ1

υτ,sψ

(
mindex
υτ,s

)
ds−K, 0

)]
x=Xt

(14)

index =
(
τ, s, e>1 exp (A(s− t))x +

∫ τ

t
e>1 exp (A(s− u))epσuθudu

+ Σs,t,τY )

Y is a std. normal variable,
Σ2

s,t,T =
∫ T
t

{
e>1 exp (A(s− u))ep

}2
σ2

udu
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Hedging strategies CDD call options

Let C = max(FCDD(τ,τ1,τ2) −K, 0) be the payoff of the option,
its Clark Ocone representation is:

C = EQθ
[C] +

∫ τ

0
EQθ

[D,C|Ft]dBθ
t (15)

Then, the hedging strategy in CDD-futures:

HCDD(t,τ1,τ2) = Σ−1
CDD(t,τ1,τ2) EQθ

[D,C|Ft] (16)

where Dt is the Malliavin derivative
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Berlin temperature

Daily average temperatures: 1950/1/1-2006/7/24
� Station: BERLIN-TEMP.(FLUGWEWA)
� 29 February removed
� 20645 recordings
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Seasonality

Suppose seasonal function with trend:

Λt = a0 + a1t+ a2cos

(
2π(t− a3)

365

)
Estimates: â0 = 91.52(90.47, 92.56), â1 = 0.00(0.00, 0.00), â2 =

97.96(97.22, 98.69), â3 = −165.1(−165.5,−164.6) with 95% confidence
bounds RMSE = 38.2048, R2 : 0.7672
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Seasonality

Figure 3: Temperature in Berlin 1990-2000
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Temporal dependence

Remove seasonality: Yt = Tt − Λt

ADF-Test:

(1−L)y = c1+c2trend+τLy+α1(1−L)Ly+ . . . αp(1−L)Lpy+u

� τ = −39.812, with 1% critical value equal to -2.5659
� Reject H0 (τ = 0), hence Yi is a stationary process I(0)

Calibrating Weather derivatives



Applications 3-5

PACF
AR(3): Yi+3 = 0.91Yi+2 − 0.20Yi+1 + 0.07Yi + (510.63)

1
2 εi

CAR(3)-parameters: α1 = 2.09, α2 = 1.38, α3 = 0.22
Stationarity condition for the CAR(3) is fulfilled:
λ1 = −0.2317, λ2,3 = −0.9291± 0.2934i.

Figure 4: Partial autocorrelation function (PACF)
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Figure 5: Residuals (up) and squared residuals (down) of the AR(3). Rejec-
tion of H0 for zero-mean residuals at 1% significance level
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Seasonal volatility

Close to zero ACF for residuals of AR(3) and according to
Box-Ljung statistic the first few lags are insignificant.

Figure 6: ACF for residuals AR(3)
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Seasonal volatility

Highly seasonal ACF for squared residuals of AR(3)

Figure 7: ACF for squared residuals AR(3)
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Calibration of daily variances of residuals AR(3) for 56 years:

σ2
t = c1 +

4∑
i=1

{
c2k cos

(
2iπt
365

)
+ c2i+1 sin

(
2iπt
365

)}

Figure 8: Seasonal variance: daily empirical variance (blue line), fitted
squared volatility function (red line) at 10% significance level
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Figure 9: ACF for residuals (up) and squared residuals (down) after dividing
out the seasonal volatility
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Residuals become normal

T-test: Accept H0 of normality with p= 0.9611, Skewness=
-0.0765, Kurtosis=3.5527.

Figure 10: Left: pdf for residuals (black line) and a normal pdf (red line).
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Samuelson Effect

Figure 11: The CAT term structure of volatility
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Samuelson and Autoregressive effect

Figure 12: CAT volatility prior of 2 contracts in June: one with measurement
period of 1 month (blue line) and the other of 1 week (red line)
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AR(3)-contribution to CAT volatility

Figure 13: AR(3) contribution to the CAT volatility prior of 2 contracts in
June.
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to do..

Compute market price risk θu from WD data:

FCAT (t,τ1,τ2) = EQθ

[∫ τ2

τ1

max(Ts)ds|Ft

]
=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +
∫ τ2

τ1

θuσuat,τ1,τ2epdu

+
∫ τ2

τ1

θuσue>1 A
−1 {exp (A(τ2 − u))− Ip} epdu

θu is a real valued piecewise linear function:

θ(u) =
{
θ1, u ∈ (u1, u2)
θ2, u ∈ (u1, u2)

}
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Questions

� Explicit prices/hedging strategies of WD traded at CME
� Spatial dependence in temperature dynamics: DSFM?
� Random internal climate/urbanisation variability
� Role of the strike value
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Conclusion

� CAR(3) model for the temperature dynamics
� Samuelson effect and autoregressive effect observed in

Berlin data
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Appendix

Residuals with and without seasonal volatility:

Lag Qstatres QSIGres Qstatres1 QSIGres1

1 0.03 0.85 0.67 0.41
2 0.05 0.97 0.74 0.69
3 3.16 0.36 4.88 0.18
4 4.70 0.32 6.26 0.18
5 4.76 0.44 6.67 0.24
6 5.40 0.49 7.17 0.30
7 6.54 0.47 7.51 0.37
8 10.30 0.24 10.34 0.24
9 14.44 0.10 14.65 0.10
10 21.58 0.01 21.95 0.10

Table 1: Q test using Ljung-Box’s for residuals with (res) and without
seasonality in the variance (res1)
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Appendix

Proof CAR(3) ≈ AR(3):
Let

A =

 0 1 0
0 0 1

−α3 −α2 −α1


- Use Bt+1 −Bt = εt
- Substitute iteratively in X1 dynamics:
X1(t+1) −X1(t) = X1(t)dt + σtεt

X2(t+1) −X2(t) = X3(t)dt + σtεt

X3(t+1) −X3(t) = −α3X1(t)dt− α2X2(t)dt− α1X3(t)dt + σtεt

X1(t+2) −X1(t+1) = X1(t+1)dt + σt+1εt+1
X2(t+2) −X2(t+1) = X3(t+1)dt + σt+1εt+1
X3(t+2) −X3(t+1) = −α3X1(t+1)dt− α2X2(t+1)dt− α1X3(t+1)dt + σt+1εt+1
X1(t+3) −X1(t+2) = X1(t+2)dt + σt+2εt+2
X2(t+3) −X2(t+2) = X3(t+2)dt + σt+2εt+2
X3(t+3) −X3(t+2) = −α3X1(t+2)dt− α2X2(t+2)dt− α1X3(t+2)dt + σt+2εt+2
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