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Motivation 1-1

Instructive dependent extremes

”All situations in which the interrelationships between extremes are
involved are the most interesting and instructive.”

Wilhelm von Humboldt
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Motivation 1-2

Quantiles and Expectiles

� Quantiles and Expectiles are tail measures.
� Capture tail behavior of conditional distributions.
� Applications in
I Finance: VaR and Expected Shortfall
I Weather: Energy, Agriculture, Drought, Rainfall
I Neuroscience: Risk aversion
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Motivation 1-3

(Functional) Principal Component Analysis
(FPCA)

� captures high dimensional data (curves),
Ramsey & Silverman (2008),

� dimension reduction for complex data over space and time,
� interpretability of principal components (PC),
� identification of similarities /differences via PC scores,
� possibility to forecast.
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Motivation 1-4

"Principal Components" for expectiles

PCA: best L2 approximation by a k-dimensional subspace.
What about τ -quantile or τ -expectile approximation?

Applications:

� Weather derivatives /
weather extremes

� Extreme events / risk
modeling

� Electricity load
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Motivation 1-5

Trend of storm extremes

� Hurricane curves
� Burdejova et al. (2016)
� different linear trend

for every τ -level

eτn (t) = ατ (t)+nβτ (t)+ετ (t)

� trend only in upper levels
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Motivation 1-6

Expectile demand models

� Electricity demand
I Quarter-hourly
I Jan.2010 - Dec.2012
I distributional forecast
I Schulz &

Lopez-Cabrera (2016)

� Water demand
� Gas demand
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Motivation 1-7

"Principal Components" for expectiles

� naive approach:
usual PCA on the estimated expectile curves

� Principal components in an asymmetric norm:

PCA + Expectiles = ‖PCA‖ατ,α
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Outline

1. Motivation X

2. Quantiles and Expectiles
3. Algorithms for "PCA" in an asymmetric norm
4. Simulations
5. Application - fMRI brain data
6. Application - Chinese Temperature data



Quantiles and Expectiles 2-1

Quantiles and Expectiles

For Y an Rp-valued rv:
τ -quantile:

qτ (Y ) = argmin
q∈Rp

E‖Y − q‖1τ,1,

τ -expectile
eτ (Y ) = argmin

e∈Rp
E‖Y − e‖2τ,2.

where for α = 1, 2

‖y‖ατ,α =

p∑
j=1

|yj |α ·
{
τ I{yj≥0}+(1− τ) I{yj<0}

}
.
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Quantiles and Expectiles 2-2

Quantiles and Expectiles
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Figure 1: Loss functions for τ = 0.9 ; τ = 0.5 ; α = 1 (solid); α = 2 (dashed)

LQRcheck

Principal components in an asymmetric norm ●
●

●
●●

●

●●●●●●●
●

●
●●
●● ● ●●●●● ●●●

●

●●
●●
●●●

●●●
●

●
●

●●●

●
● ●

●●
●● ●

●
●
●
●●●●

●●● ●●
●●●

●●●

●
●●●
●

●●●
●
●

●

●●
●●●

●

●
●●
●

●
● ●
●●● ●
●●●

● ●●●● ●
●●

●●●

●●●
●

●●●

● ●●
●

●
●

●
●

● ●
●
●●●

●
●

●●
● ● ●

●
●
●

●●

●●
●● ●● ●●

●
●
●●

●

●

(−3,−1]
(−1,0]
(0,1]
(1,4]

https://github.com/QuantLet/Local_Quantile_Regression/tree/master/LQRcheck


Quantiles and Expectiles 2-3

Quantiles vs. Expectiles

� Newey and Powel (1987) introduced expectiles:
I simpler to compute
I efficient estimators
I for asym. cov. matrix for need to compute density

� expectiles sensitive to extreme values:
I preferred in the calculation of risk measures

Kuan et al. (2009): VaR vs. EVaR

Appendix- Expectile as Quantile

Appendix-Expected shortfall
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PCA in an asymmetric norm 3-1

PCA geometry

� PCA: minimize error vs. maximize variance

PCA review: the geometry

7 / 18
Figure 2: Best one dimensional approximation of two-dimensional variables
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PCA in an asymmetric norm 3-2

"PEC" geometry

Figure 3: One dimensional approximation of two-dimensional variables in
an asymmetric L1 (magenta) and L2 (blue) norm
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PCA in an asymmetric norm 3-3

"PEC" as error minimizers

Find best k-dimensional approximation Ψ∗k :

Ψ∗k = argmin
Ψk∈Rn×p :rank(Ψk)=k+1

||Y −ΨkΨ>k Y ||2τ,2

BUT eτ (X + Y ) 6= eτ (X ) + eτ (Y ) and Ψ∗k 6⊇ Ψ∗k−1, thus no basis
for Ψ∗k .
Solution (via asymmetric weighted least squares: LAWS)
� Top Down (TD): first find Ψ∗k , then find Ψ̂1, the best 1-D

subspace contained in Ψ∗k , and so on.

� Bottom Up (BUP): first find Ψ∗1, then find Ψ̂2, the best 2-D
subspace which contains Ψ∗1, and so on.
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PCA in an asymmetric norm 3-4

"PEC" as variance maximizers

Define the τ -variance for X ∈ R

Varτ (X ) = E‖X − eτ (X )‖2τ,2
The principal expectile component(PEC)

φ∗τ = argmax
φ∈Rp ,φ>φ=1

Varτ (φ>Yi )

φ̂∗τ = argmax
φ∈Rp ,φ>φ=1

1
n

n∑
i=1

(φ>Yi − µτ )2wi ,

where µτ ∈ R is the τ -expectile of φ>Y1, . . . φ
>Yn, and

wi =

{
τ if

∑p
j=1 Yijφj > µτ ,

1− τ otherwise.
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PCA in an asymmetric norm 3-5

PEC is weighted PC!

Given the true weights wi and

I+
τ = {i ∈ {1, . . . , n} : wi = τ}, I−τ = {i ∈ {1, . . . , n} : wi = 1−τ},

n+ = |I+
τ | and n− = |I−τ |, then the estimator of τ -expectile is:

êτ =
τ
∑

i∈I+
τ
Yi + (1− τ)

∑
i∈I−τ Yi

τn+ + (1− τ)n−
.

φ∗τ is the eigenvector for largest eigenvalue of Cτ where

Cτ =
τ

n

 ∑
i∈I+

τ

(Yi − êτ )(Yi − êτ )>

 +
1− τ

n


∑

i∈I−τ

(Yi − êτ )(Yi − êτ )>

 .
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PCA in an asymmetric norm 3-6

PEC is constrained PC!

Theorem
Suppose the true weights are given and êτ and Cτ defined as before.
Then φ∗τ is the solution to the following optimization problem:

maximize φ>Cτφ

subject to φ>Yi > φ>êτ for i ∈ I+
τ (1)

φ>φ = 1.
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PCA in an asymmetric norm 3-7

Algorithm for computing PEC

Idea: start with randomly generated wi and iterate between
the following two steps.

� Compute êτ , φ∗τ and µτ as above,
� Update the weights wi via:

wi =

{
τ if

∑p
j=1 Yijφj > µτ ,

1− τ otherwise.
,

� stop if there is no change in wi .

LAWS estimation

Principal components in an asymmetric norm ●
●

●
●●

●

●●●●●●●
●

●
●●
●● ● ●●●●● ●●●

●

●●
●●
●●●

●●●
●

●
●

●●●

●
● ●

●●
●● ●

●
●
●
●●●●

●●● ●●
●●●

●●●

●
●●●
●

●●●
●
●

●

●●
●●●

●

●
●●
●

●
● ●
●●● ●
●●●

● ●●●● ●
●●

●●●

●●●
●

●●●

● ●●
●

●
●

●
●

● ●
●
●●●

●
●

●●
● ● ●

●
●
●

●●

●●
●● ●● ●●

●
●
●●

●

●

(−3,−1]
(−1,0]
(0,1]
(1,4]



PCA in an asymmetric norm 3-8

Algorithm for computing PEC

Theorem
The LAWS algorithm is well-defined, and is a gradient descent
algorithm. Thus it converges to a critical point of the defined
optimization problem.

Theorem
If Y1, . . . ,Yn ∈ R are n real numbers, LAWS finds their
τ -expectile eτ in O{log(n)} iterations.

LAWS_expectile
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PCA in an asymmetric norm 3-9

Properties of PEC

Random variable Y ∈ Rp. Assume the PEC φ∗τ (Y ) is unique.
� Invariance under translation: φ∗τ (Y + c) = φ∗τ (Y ) for all

c ∈ Rp.
� Rotational invariance: φ∗τ (BY ) = Bφ∗τ (Y ) for all orthogonal

matrix B ∈ Rp×p.
If the distribution of Y is elliptical, φ∗τ (Y ) = classical PCA of
Y for any τ ∈ (0, 1).

� Consistency: φ∗τ (Yn)
P→ φ∗τ (Y ).
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PCA in an asymmetric norm 3-10

Finite sample analysis

� TopDown, BottomUp - consistency? show

� Robustness: skewness, fat tails, heteroscedasticity? show

� Relative speed, convergence rate show
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Simulation 4-1

Simulation

Yi (tj) = µ(tj) + f1(tj)α1i + f2(tj)α2i + εij

with i = 1, . . . , n, j = 1, . . . , p and tj equi-spaced in [0,1].

µ(t) = 1 + t + exp{−(t − 0.6)2/0.05}
f1(t) =

√
2 sin(2πt); f2(t) =

√
2 cos(2πt)

αr ,i ∼ N(0, σ2r ),

with setup (1): σ21 = 36, σ22 = 9 and (2): σ21 = 16, σ22 = 9.
Estimate k=2 components in 500 simulation runs.

PEC_sim_setup
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Simulation 4-2

Scenarios

Errors:
� εij ∼ N(0, σ2ε ),

� εij ∼ N(0, µ(tj)σ2ε ),

� εij ∼ t(5),

� εij ∼ U(0, σ2ε ) + U(0, σ2ε )

� εij ∼ logN(0, σ2ε )

with σ2ε = 0.5 for setup (1) and σ2ε = 1 for (2).
� small sample: n=20, p=100
� medium sample: n=50, p=150
� large sample: n=100, p=200

PEC_sim_setup
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Simulation 4-3

MSE against sample

0.
0

0.
5

1.
0

1.
5

BUP TD PEC

n=20   p=100
n=50   p=150
n=100 p=200

Figure 4: average MSE of BUP, TD and PEC by 500 simulations back
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Simulation 4-4

MSE against scenarios

0.
0
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5

1.
0

1.
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BUP TD PEC

U(0, 1)+U(0, 1)
N(0, σ)
N(0, σi)
t(5)
logN(0, σ)

Figure 5: average MSE of BUP, TD and PEC by 500 simulations back
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Simulation 4-5

Computational time

sample small medium large
τ/sec BUP TD PEC BUP TD PEC BUP TD PEC
0.90 1.24 0.70 0.57 2.91 1.59 1.39 7.53 4.02 2.71
0.95 1.64 1.13 0.55 4.01 2.68 1.57 10.53 6.88 3.03
0.98 2.36 2.05 0.56 5.56 4.59 1.56 14.62 10.96 3.54

Table 1: Average time in seconds for convergence of the algorithms (un-
converged cases excluded) by 500 simulations
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Simulation 4-6

Convergence rate

sample small medium large
τ/rate BUP TD PEC BUP TD PEC BUP TD PEC
0.90 0.02 0.00 0.24 0.01 0.00 0.23 0.00 0.00 0.20
0.95 0.18 0.03 0.22 0.05 0.00 0.26 0.06 0.00 0.21
0.98 0.43 0.22 0.21 0.23 0.04 0.25 0.17 0.00 0.24

Table 2: Convergence rates (ratio of converged to unconverged cases by
30 iterations) of the algorithms by 500 simulation runs
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Application to fMRI data 5-1

fMRI data

� 19 volunteers
� 256 Risk investment task (stimulus)
� 1400 scans (every 2s)
� measure Blood Oxygenation Level Dependent Effect

� take data "voxel-wise", use all information
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Application to fMRI data 5-2

fMRI data

Free icons obtained from: icons8.com
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Application to fMRI data 5-3

fMRI data - Risk attitude

Following common Markowitz mean-variance model
Majer et al. (2014), Mohr and Nagel (2010)

Figure 6: Risk attitude of 19 individuals
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Application to fMRI data 5-4

Application to fMRI data

risk .att =
β0 +β1ψ

ainsL
1,τ +β2ψ

ainsR
1,τ +β3ψ

DMPCF
1,τ +β4ψ

ainsL
2,τ +β5ψ

ainsR
2,τ +β6ψ

DMPCF
2,τ

where ψ·
k,τ is the score of k-th PEC
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Figure 7: R2 for risk attitude explained by 1st and 2nd PEC scores

PEC_fmri
Principal components in an asymmetric norm ●

●
●
●●

●

●●●●●●●
●

●
●●
●● ● ●●●●● ●●●

●

●●
●●
●●●

●●●
●

●
●

●●●

●
● ●

●●
●● ●

●
●
●
●●●●

●●● ●●
●●●

●●●

●
●●●
●

●●●
●
●

●

●●
●●●

●

●
●●
●

●
● ●
●●● ●
●●●

● ●●●● ●
●●

●●●

●●●
●

●●●

● ●●
●

●
●

●
●

● ●
●
●●●

●
●

●●
● ● ●

●
●
●

●●

●●
●● ●● ●●

●
●
●●

●

●

(−3,−1]
(−1,0]
(0,1]
(1,4]

https://github.com/QuantLet/PCA-in-an-Asymmetric-Norm/tree/master/PEC_fMRI


Application to fMRI data 5-5

Application to fMRI data

Figure 8: R2 for risk attitude explained by PEC scores τ = 0.6.
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Application to Chinese Temperature 6-1

Application to Chinese Temperature

Daily average temperatures in 159 stations in China in period
1957-2009.
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Application to Chinese Temperature 6-2

Chinese temperature data

time over year
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Figure 9: Figure 10: Averaged (over years) temperature curves (gray) and the esti-

mated average expectiles by PEC for τ=0.1, 0.9
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Application to Chinese Temperature 6-3

1st and 2nd PECs
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Figure 10: The estimated first PEC (left) and 2nd PEC (right) for τ = 0.1 (dashed)

and τ = 0.9 (solid) computed with three proposed algorithms TopDown, BottomUp

and PrincipileExpectile.
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Application to Chinese Temperature 6-4

1st and 2nd PECs
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Figure 11: The differences of estimated PECs for τ = 0.1 and τ = 0.9 from estimated

PEC for τ = 0.5, computed with PrincipileExpectile algorithm. Differences for 1st

component are shown in left, for 2nd component in right
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Application to Chinese Temperature 6-5

Interpretation

� Indicate changes in distribution from lighter to heavier tails
and vice-versa.

� Scores indicates the periodic change over years.
� Positive score on PC1 – heavier tails in spring and winter.
� Positive score on PC2 – heavier tails in summer

(January-March).
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Application to Chinese Temperature 6-6

北北北京京京 - Dimension reduction

ExpBEI,0.95 ≈ Exp0.95 + 3.3× PEC1,0.95 + 0.6× PEC2,0.95
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Figure 12: Approximation via PEC for the temperature expectile curve of Beijing for

τ=0.95
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Application to Chinese Temperature 6-7

PEC scores

Figure 13: Scores on 1st PEC (left) and 2nd PEc (right) for τ=0.9
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Application to Chinese Temperature 6-8

1st PEC scores

Figure 14: Scores on 1st PEC (left) and climate zones
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Application to Chinese Temperature 6-9

2nd PEC scores

Figure 15: Scores on 2nd PEC (left) and index TX90p

PEC_temperature
Note: TX90p - warm days indicator, the core indicator by WMO.
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Conclusion 8-1

Conclusion

� Dimension reduction technique for tail event curves.

� Two ways to define PC for τ -expectiles: minimize error in the
τ -norm (BUP and TD), and maximize the τ -variance.

� Maximize τ -variance (PEC) is a version of weighted PCA.
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Conclusion 8-2

Conclusion

� PEC outperforms BUP and TD in simulations.

� PEC robust to ’fattails’ and skewness of the data distribution.

� In practice the outputs of BUP, TD, and PEC do not differ
much.

� fMRI: τ = 0.6 provides the best explanation of risk attitude.

� Temperature: clarified seasonal and long-term component.
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Appendix 10-1

Expectile-quantile correspondence

τ(s) =
sqs(Y )−

∫ qs(Y )
−∞ ydF (y)

E(Y )− 2
∫ qs(Y )
−∞ ydF (y)− (1− 2s)qs(Y )

(2)

s-quantile corresponds to expectile with transformation τ(s).
Back to Expectiles
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Appendix 10-2

Expectile-quantile correspondence
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Figure 16: Quantiles (solid) and expectiles (dashed) of a normal N(0,1)

Back to Expectiles
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Appendix 10-3

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

eτ = argmin
e

E
{
|τ − I{Y<e} |(Y − e)2

}
1− 2τ
τ

E
{

(Y − eτ ) I{Y<eτ}
}

= eτ − E(Y )

Taylor (2008):

E (Y |Y < eτ ) = eτ +
τ {eτ − E(Y )}
(1− 2τ)F (eτ )

Back to Expectiles
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Appendix 10-4

Skorokhod space D([0, 1])

space of real functions f : [0, 1]→ R
(also known as "càtlàg" functions) which
� are right-continuous
� have left limits everywhere

E.g. C.d.f is càtlàg
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Appendix 10-5

LAWS estimation
Schnabel and Eilers (2009):

min
n∑

i=1

wi (τ)(yi − µi )
2

where
wi (τ) =

{
τ if yi > µi

1− τ if yi ≤ µi ,

µi expected value according to some model.

Iterations:
� fixed weights, closed form solution of weighted regression
� recalculate weights

until convergence criterion met.
Back to PEC
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Appendix 10-6

LAWS estimation
Example:
Classical linear regression model

Y = Xβ + ε

where E (ε |X ) = 0 and µ = E (Y |X ) = Xβ.

β̂ = argmin
β

n∑
i=1

wi (yi − µi )
2

Then:

β̂ = (X>WX )−1XWY

with W diagonal matrix of fixed weights wi .

Back to PEC
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Appendix 10-7

PEC 6= PCA

Coordinate-wise Y t
i ,j i.i.d. with some distribution of Y

eτ,i{Ej(Y t
ij )} L→ eτ (Ȳ )

Ei{eτ,j(Y t
ij )} L→ eτ (Y )

where Yj are i.i.d. copies of Y and Ȳ = 1
J
∑J

j=1 Yj

PEC = PCA iff Ȳ L
= Y

It holds for Cauchy or Y a.s.
= constant

Principal components in an asymmetric norm ●
●

●
●●

●

●●●●●●●
●

●
●●
●● ● ●●●●● ●●●

●

●●
●●
●●●

●●●
●

●
●

●●●

●
● ●

●●
●● ●

●
●
●
●●●●

●●● ●●
●●●

●●●

●
●●●
●

●●●
●
●

●

●●
●●●

●

●
●●
●

●
● ●
●●● ●
●●●

● ●●●● ●
●●

●●●

●●●
●

●●●

● ●●
●

●
●

●
●

● ●
●
●●●

●
●

●●
● ● ●

●
●
●

●●

●●
●● ●● ●●

●
●
●●

●

●

(−3,−1]
(−1,0]
(0,1]
(1,4]


	Motivation
	Quantiles and Expectiles
	PCA in an asymmetric norm
	Simulation
	Application to fMRI data
	Application to Chinese Temperature
	Conclusion
	Conclusion
	Literature
	Appendix



