Cross Country Evidence for the Empirical Pricing Kernel Puzzle

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://case.hu-berlin.de

Motivation

- Understanding asset prices highest need for more investments
- □ Pricing kernel (PK)
 - Market price for state-contingent payoffs
 - Physical state probabilities
- Example: booms and recessions

Motivation

Motivation

- Pricing kernel, K
 - Preference based models marginal rate of substitution
 - Arbitrage free models Radon-Nikodym derivative of the physical measure w.r.t. the risk neutral measure

► Risk Neutral Valuation ► PK - Black-Scholes

Johann Radon on BBI:

Motivation

- - $ightharpoonup \widehat{\mathcal{K}}$ any estimate of the PK
 - ► Direct and indirect estimation ► PK Estimation
 - ► EPK puzzle locally increasing EPK

Figure 1: EPK's: Rosenberg and Engle (2002), Aït-Sahalia and Lo (2000), Brown and Jackwerth (2012)

Cross Country Evidence for the EPK Puzzle

EPK Puzzle

Figure 2: EPK's for various maturities (left) and different estimation dates for fixed maturity 1M (right), Grith et al. (2013)

EPK Puzzle

Figure 3: EPK's across moneyness κ and maturity τ for DAX from 20010101-20011231, Giacomini and Härdle (2008)

Cross Country Evidence for the EPK Puzzle —

EPK Puzzle

Figure 4: Upper panel: estimated risk neutral density \hat{q} and historical density \hat{p} . Lower panel: EPK and 95% uniform confidence bands on 20060228, Härdle et al. (2014)

Cross Country Evidence for the EPK Puzzle -

EPK Puzzle

Figure 5: EPK for the US stock market. Data: returns of 20 industry-sorted portfolios from 19630731 to 19951231 with human capital (lagged labor income), Dittmar (2002)

Cross Country Evidence for the EPK Puzzle -

Objectives

- □ Pricing Kernel (PK) estimation
 - State-dependent utility
 - Generalized Method of Moments (GMM)
- - Six worldwide largest markets
 - Time-varying EPK, statistical properties

Research Questions

- Does empirical evidence from equity data suggest a locally increasing EPK?
- Are the estimation results significant?
- How do PK estimates vary across countries and over time?

Outline

- 1 Motivation ✓
- 2. Pricing Kernel (PK)
- 3. Generalized Method of Moments (GMM)
- 4. Empirical Results
- 5. DACH Project Proposal
- 6. Conclusion

Preference Based Model

- oxdot Representative agent with exogenous income ω_t
- Budget constraints

$$c_t = \omega_t - q_t^{\top} S_t \tag{1}$$

$$c_{t+1} = \omega_{t+1} + q_t^{\top} S_{t+1} \tag{2}$$

with consumption c_t , k assets, prices $S_t = \left(S_{1,t}, \ldots, S_{k,t}\right)^{\top}$, asset holdings $q_t = \left(q_{1,t}, \ldots, q_{k,t}\right)^{\top}$

 $oxed{\Box}$ Returns $R_{t+1} = \left(S_{1,t+1}/S_{1,t}, \dots, S_{k,t+1}/S_{k,t}\right)^{\top}$

State-Independent Preferences

Utility maximization

```
\max_{c_{t+1}} \mathsf{E}_t \left[ u \left( c_{t+1} \right) \right], under constraints (1) and (2)
```

with utility function of the representative agent $u(\cdot)$, $\mathsf{E}_t[\cdot] = \mathsf{E}[\cdot \mid \mathcal{F}_t]$, \mathcal{F}_t - information set up to t

State-Independent Preferences

$$\mathcal{K}_{t}\left(c_{t+1}\right) = \beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}$$

where β is the discount factor

State-Dependent Preferences

□ Reference dependent utility function, Grith et al. (2013)

$$u(c_{t+1},x) = u(c_{t+1}) \mathsf{I} \{x \in [0,x_0)\} + bu(c_{t+1}) \mathsf{I} \{x \in [x_0,\infty)\},$$

State variable x, reference point x_0 and parameter b

Utility maximization

$$\max_{c_{t+1}} \mathsf{E}_t \left[u \left(c_{t+1}, x \right) \right]$$
, under constraints (1) and (2)

State-Dependent Preferences

$$\mathcal{K}_{t}(c_{t}, c_{t+1}) = \beta_{1} \frac{u'(c_{t+1})}{u'(c_{t})} I\{x \in [0, x_{0})\} +$$

$$+ \beta_{2} \frac{u'(c_{t+1})}{u'(c_{t})} I\{x \in [x_{0}, \infty)\},$$

$$\beta_1 = \beta$$
, $\beta_2 = \beta b$

Setup

- ⊡ Consumption growth is linear in the market portfolio gross return, Cochrane (2001); $c_{t+1} \stackrel{\text{def}}{=} r_{m,t+1} = S_{m,t+1}/S_{m,t}$
- \Box State variable x is $r_{m,t+1}$
- \Box Parameter $\theta = (\beta_1, \beta_2, x_0)^{\top}$
- \Box Log utility, $u(y) = \log y$, u'(y) = 1/y

Pricing Kernel

State-dependent PK

$$\mathcal{K}_{\theta,t}(r_{m,t+1}) = \beta_1 r_{m,t+1}^{-1} \mathsf{I} \left\{ r_{m,t+1} \in [0, x_0) \right\} + \\ + \beta_2 r_{m,t+1}^{-1} \mathsf{I} \left\{ r_{m,t+1} \in [x_0, \infty) \right\}$$

Asset Pricing

Generalized Method of Moments

 \square Hansen (1982), expectation of k moment conditions

$$\mathsf{E}_{t}\left[\mathcal{K}_{\theta,t}\left(r_{m,t+1}\right)R_{t+1}-1_{k}\right]=0_{k}$$

GMM Estimation

1. Iterated GMM

Hansen and Singleton (1982), Ferson and Foerster (1994)

$$\widetilde{\theta}_n \stackrel{\mathsf{def}}{=} \arg \min_{\theta} \left\{ g_n^{\top} \left(\theta \right) g_n \left(\theta \right) \right\}, \quad \widetilde{W}_n = n^{-1} \sum_{t=0}^{n-1} g(\widetilde{\theta}_n) g(\widetilde{\theta}_n)^{\top}$$

$$\widehat{\theta}_{n} \stackrel{\mathsf{def}}{=} \arg \min_{\theta} \left\{ g_{n}^{\top} \left(\theta \right) \widetilde{W}_{n}^{-1} g_{n} \left(\theta \right) \right\}, \quad \widehat{W}_{n} = n^{-1} \sum_{t=0}^{n-1} g \left(\widehat{\theta}_{n} \right) g \left(\widehat{\theta}_{n} \right)^{\top}$$

GMM Estimation

2. GMM with Hansen-Jagannathan (HJ) weighting matrix Jagannathan and Wang (1996), Hansen and Jagannathan

(1997),
$$\widetilde{W}_n = n^{-1} \sum_{t=0}^{n-1} R_t R_t^{\top}$$

GMM Hypothesis Testing

- Test statistic

$$D = n g_n^\top (\widetilde{\theta}_n) \widetilde{W}_n^{-1} g_n (\widetilde{\theta}_n) - n g_n^\top (\widecheck{\theta}_n) \widecheck{W}_n^{-1} g_n (\widecheck{\theta}_n) \overset{\mathcal{L}}{\to} \chi_j^2,$$

with j parameter restrictions, two estimates, e.g., $\widetilde{\theta}_n$ and $\widecheck{\theta}_n$ with weighting matrices \widetilde{W} and \widecheck{W} , respectively

Data

- Markets: Australian Securities Exchange (AUS), Deutsche Börse (GER), Tokyo Stock Exchange (JPN), SIX Swiss Exchange (SUI), LSE (UK), NYSE (US)
- ☑ Series: stock market indices, 20 largest blue chips per market
- \square Windows: $n \in \{250 \ (1 \ \text{year}), 500 \ (2 \ \text{years}), 1250 \ (5 \ \text{years})\}$

PK Estimation

Scenarios

Case 1. $\beta_1, \beta_2 > 0$ - state-dependent, unconstrained

Case 2. $\beta_2>\beta_1>0$ - state-dependent, constrained

Case 3. $eta_1=eta_2=eta>0$ - state-independent

GMM Estimation

	GMM with HJ matrix			Iterated GMM		
	(1)	(2)	(3)	(1)	(2)	(3)
AUS	1.19	1.31	1.39	1.08	1.25	1.42
GER	0.85	0.91	1.00	0.81	0.90	1.01
JPN	0.68	0.71	0.80	0.66	0.71	0.81
SUI	1.01	1.06	1.15	0.88	0.96	1.17
UK	0.84	0.89	0.95	0.79	0.86	0.97
US	0.91	0.96	1.01	0.84	0.95	1.03

Table 1: Average optimal objective function for two competing techniques and three scenarios: (1) $\beta_1, \beta_2 > 0$, (2) $\beta_1 > \beta_2 > 0$ and (3) $\beta_1 = \beta_2 = \beta = 0$. The estimation window covers n = 500 observations (2 years).

Cross Country Evidence for the EPK Puzzle -

Parameter Dynamics

Figure 6: Time series of the estimated parameters β_1 and β_2 across six worldwide largest stock markets for case 2 ($\beta_2 > \beta_1 > 0$). We employ the iterated GMM estimation technique with n = 500 (2 years).

Reference Point Analysis

Figure 7: Kernel density plots (Gaussian kernel with optimal bandwidth) of optimal reference point x_0 for case 2 ($\beta_2 > \beta_1 > 0$). We employ the iterated GMM estimation technique with n = 500 (2 years).

Cross Country Evidence for the EPK Puzzle

Empirical Pricing Kernels

Figure 8: Empirical pricing kernels across six worldwide largest stock markets (for average parameter values): case 1, $\beta_1, \beta_2 > 0$ and case 2, $\beta_1 = \beta_2 = \beta$.

Cross Country Evidence for the EPK Puzzle

Hypothesis Testing

	lte	erated GN	/M	GMM with HJ matrix		
	1 year	2 years	5 years	1 year	2 years	5 years
AUS	76.32	79.49	67.76	68.64	69.88	70.21
GER	89.94	88.99	81.76	81.55	84.27	86.30
JPN	84.22	83.02	83.15	83.60	84.67	76.93
SUI	92.06	88.47	87.14	85.21	79.77	80.62
UK	82.13	86.43	79.26	86.20	73.61	81.32
US	78.16	75.92	74.85	70.44	52.64	54.81

Table 2: Percentage of rejections of the null hypothesis of the D-test (H_0 : $\beta_1 = \beta_2 = \beta$) as indicator for the existence of the EPK puzzle across the worldwide largest six stock markets.

Empirical Results — 4-8

Germany: EPK Dynamics

Figure 9: EPK on the German stock market in 2005.

Country Specific and Cross Country Evidence for the Empirical Pricing Kernel Puzzle

- DACH Deutschland (D), Österreich (A), Schweiz (CH)
- Principal investigators
 - Wolfgang Karl Härdle, Humboldt-Universität zu Berlin
 - ► Thorsten Hens, Universität Zürich
 - Nikolaus Hautsch, Universität Wien

- Duration: 3 years
- Keywords: asset pricing, financial markets, pricing kernels, cross country study
- Research
 - Non-/semiparametric modelling and financial statistics
 - Behavioural finance and asset pricing
 - Liquidity and volatility modelling

- Objectives
 - PK estimation using market data leading financial markets
 - Connecting behavioural finance and market dynamics (investor behaviours, welfare impact of speculation)
 - ► EPK and market characteristics (e.g., liquidity, volatility)
 - Pricing and portfolio optimization in risk management practice

- Highlights
 - ▶ Promoting young researchers 3 postdoctoral positions
 - Research Data Center
 Databases of the International Test of Risk Attitudes
 - High quality research
 - Academic exchange: visiting researchers, two workshops

Conclusion — 6-1

Conclusion

- □ Pricing Kernel (PK) estimation
 - State-dependent utility admits PK nonmonotonicity
 - ▶ GMM successfully used for estimation and hypothesis testing
- - Time-varying preferences
 - Optimal reference point slightly above 1, statistically significant results
 - DACH project proposal

Cross Country Evidence for the Empirical Pricing Kernel Puzzle

Maria Grith Wolfgang Karl Härdle Andrija Mihoci

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://case.hu-berlin.de

References

Aït-Sahalia, Y. and Lo, A.

Nonparametric Risk Management and Implied Risk Aversion

Brown, D.P. and Jackwerth, J.

Journal of Econometrics 94: 9-51, 2000

The Pricing Kernel Puzzle: Reconciling Index Option Data and Economic Theory

Contemporary Studies in Economics and Financial Analysis: Derivative Securities Pricing and Modelling **94**: 155–183, 2012

🏲 Cochrane, J.H.

Asset Pricing

Princeton University Press, 2001

References

Dittmar, R.F.

Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns

Journal of Finance 62(1): 369–403, 2002

Ferson, W.E. and Foerster, S.R.

Finite sample properties of the Generalized Method of Moments in tests of conditional asset pricing models Journal of Financial Economics **36**: 29–55, 1994

References

Giacomini, E. and Härdle, W.K.

Dynamic Semiparametric Factor Models in Pricing Kernel Estimation

in Functional and Operational Statistics, Dabo-Niang, S. and Ferraty, F. (Eds), Contributions to Statistics, Springer Verlag ISBN 978-3-7908-2061-4. 181–187, 2008

Grith, M., Härdle, W.K. and Krätschmer, V. Reference Dependent Preferences and the EPK Puzzle CRC 649 Discussion Paper, 2013-023, invited resubmission to Review of Finance 01.06.2014

References

Grith, M., Härdle, W.K. and Park, J.

Shape Invariant Modeling of Pricing Kernels and Risk Aversion
Journal of Financial Econometrics 11(2): 370–399, 2013

Härdle, W.K., Okhrin, Y. and Wang, W. *Uniform Confidence Bands for Pricing Kernels*Journal of Financial Econometrics, 2014

Hansen, L.P.

Large sample properties of generalized method of moments estimators

Econometrica 50: 1029-1054, 1982

References

References

Hansen, L.P. and Jagannathan, R.

Assessing specification errors in stochastic discount factor models

Journal of Finance **52**: 557-590, 1997

Hansen, L.P. and Singleton, K.J.

Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models

Econometrica 50: 1269-1286, 1982

🗾 Jagannathan, R. and Wang, Z.

The Conditional CAPM and the Cross-Section of Expected Returns

Journal of Finance **51**(1): 3-53, 1996

References

Newey, W.K. and West, K.D.

Hypothesis Testing with Efficient Method of Moments Estimation

International Economic Review 28(3): 777-787, 1987

Rosenberg, J.V. and Engle, R.F.

Empirical Pricing Kernels

Journal of Financial Economics 64(3): 341–372, 2002

🖥 Schweri, U.

Is the Pricing Kernel U-Shaped?

National Centre of Competence in Research Financial Valuation and Risk Management Working Paper 732, 2011

Cross Country Evidence for the EPK Puzzle

Risk Neutral Valuation Motivation

 \square Present value of the payoffs $\psi(S_T)$

$$P_0 = \mathsf{E}_Q \left[e^{-\mathsf{Tr}} \psi(s_T) \right] = \int_0^\infty e^{-\mathsf{Tr}} \psi(s_T) \; \mathcal{K}(s_T) p(s_T) \; ds_T$$

r risk free interest rate, $\{S_t\}_{t\in[0,T]}$ stock price process, p pdf of S_T , Q risk neutral measure, $\mathcal{K}(\cdot)$ pricing kernel Appendix

PK under the Black-Scholes Model Motivation

 \odot Geometric Brownian motion for S_t

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

 μ mean, σ volatility, W_t Wiener process

Fischer Black and Myron S. Scholes on BBI:

PK under the Black-Scholes Model Motivation

Physical density p is log-normal, $\tau = T - t$

$$p_t(S_T) = \frac{1}{S_T \sqrt{2\pi\sigma^2\tau}} \exp\left[-\frac{1}{2} \left\{ \frac{\log(S_T/S_t) - \left(\mu - \frac{\sigma^2}{2}\right)\tau}{\sigma\sqrt{\tau}} \right\}^2 \right]$$

Risk neutral density q is log-normal: replace μ by r

Appendix

PK under the Black-Scholes Model Motivation

 \square PK is a decreasing function in S_T for fixed S_t

$$\mathcal{K}(S_t, S_T) = \left(\frac{S_T}{S_t}\right)^{-\frac{\mu-r}{\sigma^2}} \exp\left\{\frac{(\mu - r)(\mu + r - \sigma^2)\tau}{2\sigma^2}\right\}$$
$$= b\left(\frac{S_T}{S_t}\right)^{-\delta}$$

$$b=\exp\left\{rac{(\mu-r)\left(\mu+r-\sigma^2
ight) au}{2\sigma^2}
ight\}$$
 and $\delta=rac{\mu-r}{\sigma^2}\geq 0$ constant relative risk aversion (CRRA) coefficient

Appendix — 8-5

PK Estimation Motivation

- - ightharpoonup q risk neutral density; p physical density
 - ▶ Aït-Sahalia and Lo (2000), Rosenberg and Engle (2002), Giacomini and Härdle (2008), Brown and Jackwerth (2012), Grith et al. (2013), Härdle et al. (2014)
- oxdot Direct estimation, $\widehat{\mathcal{K}} = \mathcal{G}_{\widehat{\theta}}$
 - \triangleright Given function G, parameter θ
 - Dittmar (2002), Schweri (2011)

Robert F. Engle on BBI:

