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Modelling Trading Volumes 1-2

Trading Volumes

Forecasting Trading Volumes

and larger modelling bias.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Motivation 1-1

Flash Crash
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Figure 1: Stock prices of International Business Machines (IBM) and Ex-
celon (EXC) during the �ash crash on 20100506 at the NASDAQ stock
market
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Motivation 1-2

Objectives

� Price Duration Dynamics
I Local adaptive Multiplicative Error Model (MEM)
I Balance between modelling bias and parameter variability

� Forecasting Flash Equity Dynamics
I Estimation windows with potentially varying lengths
I (Extreme) price movements, execution strategies
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Motivation 1-3

Statistics and Quantitative Finance

Statistics

� Modelling bias vs. parameter variability

� Flexible framework and predictive accuracy

Quantitative Finance Practice

� Irregularly spaced data

� Execution strategies

Adaptive Modelling of Price Duration and Flash Equity Dynamics

14:30 14:45 15:00
110

120

130
IBM

14:30 14:45 15:00
0

25

50
EXC



Motivation 1-4

Example 1

Price Duration

A fund manager is trading a large number of shares of a company.

How long does it take (in seconds) that the price goes down/up by
some �xed amount, say by 1%?
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Motivation 1-5

Example 2

Price Reversion

A fund manager observes that the price (suddenly) goes down/up.

Is a price reversion predicted? If yes, how long does the predicted
recovery last (in seconds)?
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Outline

1. Motivation X

2. Multiplicative Error Model (MEM)

3. Local Parametric Approach (LPA)

4. Price Duration and Flash Equity Dynamics

5. Conclusions
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Multiplicative Error Model (MEM) 2-1

Multiplicative Error Model (MEM)

� Engle (2002), MEM(p, q), Fi - information set up to i

yi = µiεi , E [εi |Fi−1 ] = 1

µi = ω +

p∑
j=1

αjyi−j +

q∑
j=1

βjµi−j , ω > 0, αj , βj ≥ 0

� Hautsch (2012) - comprehensive MEM literature overview
I yi - squared (de-meaned) log return: GARCH(p, q)
I yi - volume, bid-ask spread, duration: ACD(p, q)

Engle, Robert F. on BBI:

Adaptive Modelling of Price Duration and Flash Equity Dynamics

14:30 14:45 15:00
110

120

130
IBM

14:30 14:45 15:00
0

25

50
EXC



Multiplicative Error Model (MEM) 2-2

Autoregressive Conditional Duration (ACD)

1. Exponential-ACD, Engle and Russel (1998) EACD

εi ∼ Exp (1), θE = (ω,α,β)>, α = (α1, . . . , αp), β = (β1, . . . , βq)

2. Weibull-ACD, Engle and Russel (1998) WACD

εi ∼ G (s, 1), θW = (ω,α,β, s)>

Weibull, E. H. Waloddi on BBI:
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Multiplicative Error Model (MEM) 2-3

Parameter Estimation

� Consistent parameter estimation

� Data calibration with time-varying intervals

� Quasi maximum likelihood estimates (QMLEs) of θE and θW

θ̃I = arg max
θ∈Θ

LI (y ;θ) (1)

I I = [i0 −m, i0] - interval of (m + 1) observations at i0
I LI (·) - log likelihood, EACD and WACD
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Multiplicative Error Model (MEM) 2-4

Estimation Quality

� Mercurio and Spokoiny (2004), Spokoiny (2009)

� Quality of estimating true parameter vector θ∗ by QMLE θ̃I in
terms of Kullback-Leibler divergence; Rr (θ∗) - risk bound

Eθ∗

∣∣∣LI (θ̃I )− LI (θ
∗)
∣∣∣r ≤ Rr (θ∗) Gaussian Regression

� 'Modest' risk, r = 0.5 (shorter intervals of homogeneity)

� 'Conservative' risk, r = 1 (longer intervals of homogeneity)

Kullback, Solomon and Leibler, Richard A. on BBI:

Adaptive Modelling of Price Duration and Flash Equity Dynamics

14:30 14:45 15:00
110

120

130
IBM

14:30 14:45 15:00
0

25

50
EXC



Local Parametric Approach (LPA) 3-1

Local Parametric Approach (LPA)

� LPA, Spokoiny (1998, 2009)
I Time series parameters can be locally approximated
I Finding the (longest) interval of homogeneity

I Balance between modelling bias and parameter variability

� Time series literature
I GARCH(1, 1) models - �íºek et al. (2009)
I Realized volatility - Chen et al. (2010)
I Multiplicative Error Models - Härdle et al. (2014)
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Local Parametric Approach (LPA) 3-2

Interval Selection

� (K + 1) nested intervals with length nk = |Ik |

I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IK
θ̃0 θ̃1 θ̃k θ̃K

Example: Price durations

Fix i0, Ik = [i0 − nk , i0], nk =
[
n0c

k
]
, c > 1

{nk}14k=0
= {60 obs., 75 obs., . . . , 360 obs.}, c = 1.25
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Local Parametric Approach (LPA) 3-3

Local Change Point Detection Example

� Fix i0, sequential test (k = 1, . . . ,K )
H0 : parameter homogeneity within Ik vs. H1 : ∃ change point within Jk

Motivation 1-1
Motivation 1-1

i0 − nk+1 i0 − nk τ i0 − nk−1 i0

Jk+1 Jk Ik−1

Ik

Ik+1

Local Adaptive MEM

and larger modelling bias.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor

19

Local Adaptive MEM

and larger modelling bias.
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Tk = sup
τ∈J

k

{
LA

k,τ

(
θ̃A

k,τ

)
+ LB

k,τ

(
θ̃B

k,τ

)
− LI

k+1

(
θ̃I

k+1

)}
,

with Jk = Ik \ Ik−1, Ak,τ = [i0 − nk+1, τ ] and Bk,τ = (τ, i0]
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Local Parametric Approach (LPA) 3-4
Critical Values, zk Critical Values
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Figure 2: Critical values for low (α̃ + β̃ = 0.84) and high (α̃ + β̃ = 0.93)
weekly persistence and 'modest' risk (r = 0.5) with ρ = 0.25, Härdle et
al. (2014)
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Local Parametric Approach (LPA) 3-5

Adaptive Estimation

� Compare Tk at every step k with zk

� Data window index of the interval of homogeneity - k̂

� Adaptive estimate

θ̂ = θ̃
k̂
, k̂ = max

k≤K
{k : T` ≤ z`, ` ≤ k}

� Note: rejecting the null at k = 1, θ̂ equals QMLE at I0
If the algorithm goes until K , θ̂ equals QMLE at IK
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Price Duration and Flash Equity Dynamics 4-1

Data

� NASDAQ Stock Market
I Trading days: 20100503, 20100506 (Flash crash), 20100510
I Transactions at every 25 miliseconds
I Daily trading period: 09:30-16:00
I Duration series: price moves up or down (0.95 quantile of the

series)
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Price Duration and Flash Equity Dynamics 4-2

Data

� Companies
I Stocks without crash

Goldman Sachs (GS), Zions Bancorporation (ZION)
I Normal crash

International Business Machines (IBM), Procter&Gamble (PG)
I Penny stocks

Accenture (ACN), Excelon (EXC)
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Price Duration and Flash Equity Dynamics 4-3
Price Duration
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Figure 3: Price duration of GS on 20100503 (left), 20100506 (middle) and
20100510 (right). Price movement: down or up
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Price Duration and Flash Equity Dynamics 4-4
Price Duration
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Figure 4: Price duration of ZION on 20100503 (left), 20100506 (middle)
and 20100510 (right). Price movement: down or up
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Price Duration and Flash Equity Dynamics 4-5
Price Duration
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Figure 5: Price duration of IBM on 20100503 (left), 20100506 (middle)
and 20100510 (right). Price movement: down or up
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Price Duration and Flash Equity Dynamics 4-6
Price Duration
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Figure 6: Price duration of PG on 20100503 (left), 20100506 (middle) and
20100510 (right). Price movement: down or up
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Price Duration and Flash Equity Dynamics 4-7
Price Duration
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Figure 7: Price duration of ACN on 20100503 (left), 20100506 (middle)
and 20100510 (right). Price movement: down or up
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Price Duration and Flash Equity Dynamics 4-8
Price Duration
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Figure 8: Price duration of EXC on 20100503 (left), 20100506 (middle)
and 20100510 (right). Price movement: down or up

Adaptive Modelling of Price Duration and Flash Equity Dynamics

14:30 14:45 15:00
110

120

130
IBM

14:30 14:45 15:00
0

25

50
EXC



Conclusions 5-1

Conclusions

Price Duration Dynamics

� Di�erent price duration dynamics across stocks

� Stocks without crash share stable dynamics

Forecasting Flash Equity Dynamics

� Stocks a�ected by the �ash crash exhibit three di�erent
regimes

� Evidence for price reversion
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Figure 6: Estimated length of the interval of homogeneity nk̂ (in hours) for seasonally
adjusted trading volumes of selected companies in the case of modest (r = 0.5, blue) and
conservative modelling risk (r = 1, red), using an EACD(1, 1) model for data from NAS-
DAQ trading on 22 February 2008. We use the interval scheme with K = 13 estimation
windows.

We apply the LPA to seasonally adjusted 1-min aggregated trading volumes for all five

stocks at each minute from 22 February to 31 December 2008 (215 trading days, in total

77400 trading minutes). We use two specifications (EACD and WACD) with two risk

levels (modest, r = 0.5, and conservative, r = 1). Furthermore, schemes (a) with K = 8

and (b) with K = 13 are employed to set the estimation windows.

The empirical results can be summarised as follows:

(i) Interval of homogeneity - The distribution of all interval lengths is similar across all

five stocks, see Figure 7. The interval of homogeneity ranges between 60 minutes

and 6 hours for all cases. Intervals for AAPL and INTC are slightly larger than those

for other companies. In the course of a typical trading day, even after removing

the seasonal component, one observes slightly shorter intervals in the opening and

closing phase, see Figure 8. We attribute this to a higher variation of trading

volumes during the market opening and closure.

(ii) Risk level - the length of the intervals is shorter and more variable in the modest

risk case (r = 0.5) than in the conservative case (r = 1), see Figures 7 and 8.

Practically, if an investor aims for obtaining more precise estimates, it is advisable

to select longer estimation periods, such as 4-5 hours. By doing so, the investor
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Appendix 7-1
Exponential-ACD (EACD)

ACD Parameter Estimation

� Engle and Russel (1998), εi ∼ Exp (1)

LI (y ;θE ) =
n∑

i=max(p,q)+1

(
− logµi −

yi

µi

)
I {i ∈ I} (2)
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Figure 9: Log likelihood - EACD(1,1), θ∗
E

= (0.10, 0.20, 0.65)>
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Appendix 7-2
Weibull-ACD (WACD)

ACD Parameter Estimation

� Engle and Russel (1998), εi ∼ G (s, 1)

LI (y ;θW ) =
∑
i∈I

[
log

s

yi
+ s log

Γ (1 + 1/s) yi
µi

−
{

Γ (1 + 1/s) yi
µi

}s]
I {i ∈ I}

(3)
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Figure 10: Log likelihood - WACD(1,1), θ∗
W

= (0.10, 0.20, 0.65, 0.85)>
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Appendix 7-3

Gaussian Regression Estimation Quality

Yi = f (Xi ) + εi , i = 1, . . . , n, weights W = {wi}ni=1

L (W , θ) =
n∑
i=1

` {Yi , fθ (Xi )}wi , log-density ` (·), θ̃ = arg max
θ∈Θ

L (W , θ)

1. Local constant, f (Xi ) ≈ θ∗, εi ∼ N
(
0, σ2

)
Eθ∗

∣∣∣L(W , θ̃)− L(W , θ∗)
∣∣∣r ≤ E |ξ|2r , ξ ∼ N (0, 1)

2. Local linear, f (Xi ) ≈ θ∗>Ψi , εi ∼ N
(
0, σ2

)
, basis functions

Ψ = {ψ1 (X1) , . . . , ψp (Xp)}, multivariate ξ

Eθ∗
∣∣∣L(W , θ̃)− L(W , θ∗)

∣∣∣r ≤ E |ξ|2r , ξ ∼ N (0, Ip)
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Appendix 7-4

Local Change Point Detection LCP

Example: Price duration

� Scheme with (K + 1) = 14 intervals and �x i0
� Assume I0 = 60obs. is homogeneous

� H0 : parameter homogeneity within I1 = 75min.
I De�ne J1 = I1 \ I0 - observations from yi0−75 up to yi0−60
I For each τ ∈ J1 �t log likelihoods over A1,τ , B1,τ and I2
I Find the largest likelihood ratio - TI1,J1
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Appendix 7-5

Critical Values, zk Critical Values

� Simulate zk - homogeneity of the interval sequence I0, . . . , Ik
� 'Propagation' condition (under H0)

Eθ∗
∣∣∣LIk (θ̃k)− LIk (θ̂k)

∣∣∣r ≤ ρkRr (θ∗) , k = 1, . . . ,K (4)

ρk = ρk/K for given signi�cance level ρ, θ̂
k
- adaptive estimate

� Check zk for (nine) di�erent θ∗ Parameter Dynamics - Quartiles

I EACD and WACD, K ∈ {8, 13}, r ∈ {0.5, 1}, ρ ∈ {0.25, 0.50}
I Findings: zk are virtually invariable w.r.t. θ∗ given a scenario

Largest di�erences at �rst two or three steps
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Appendix 7-6

Parameter Dynamics

Estimation EACD(1, 1) WACD(1, 1)
window Q25 Q50 Q75 Q25 Q50 Q75

1 week 0.85 0.89 0.93 0.82 0.88 0.92
2 days 0.77 0.86 0.92 0.74 0.84 0.91
1 day 0.68 0.82 0.90 0.63 0.79 0.89
3 hours 0.54 0.75 0.88 0.50 0.72 0.87
2 hours 0.45 0.70 0.86 0.42 0.67 0.85
1 hour 0.33 0.58 0.80 0.31 0.57 0.80

Table 1: Quartiles of estimated persistence levels
(
α̃ + β̃

)
, Härdle et al.

(2014)
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Appendix 7-7

Parameter Dynamics Critical Values

Model
Low Persistence Moderate Persistence High Persistence

Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

EACD, α̃ 0.28 0.22 0.18 0.30 0.23 0.19 0.31 0.24 0.20

EACD, β̃ 0.56 0.62 0.67 0.59 0.66 0.71 0.62 0.68 0.73

WACD, α̃ 0.28 0.21 0.17 0.30 0.23 0.18 0.32 0.24 0.19

WACD, β̃ 0.54 0.60 0.65 0.58 0.65 0.70 0.60 0.68 0.74

Table 2: Quartiles of estimated ratios β̃/
(
α̃ + β̃

)
(estimation windows

covering 1800 observations) conditional on the persistence level: low
{EACD (0.85), WACD (0.82)}, moderate {EACD (0.89), WACD (0.88)}
or high {EACD (0.93), WACD (0.92)}, Härdle et al. (2014)
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