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Motivation 1-1

Contagion and systemic risk measures

[] Connectedness measures from volatility, Diebold and Yilmaz
(2014, JoE).
] Credit risk
» Factor/Copula models, Cherubini and Mulinacci (2015).
» Econometric models, Lucas et al. (2014, JBES).

[ Expected shortfall, Acharya et al. (2010) and Brownlees and
Engle (2012).
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Motivation

Conditional quantile-based measures

CoVaR and ACoVaR, Adrian and Brunnermeier (2011).
Properties of CoVaR, Mainik and Schaanning (2014, SRM).
Large “p" and linear quantiles, Hautsch et al. (2014, RoF).
Large “p" and non-linear quantiles, Hardle et al. (2015).
CAViaR, Engle and Manganelli (2004, JBES).

VAR for VaR, White et al. (2015, JoE) .
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Motivation 1-3

Contribution

[0 Consistent framework to measure contagion/systemic risk.

» No structural assumptions on conditional quantile!
» Bivariate relations, sub-portfolios, systemic analysis.
» Intuitive properties and simple interpretation.

[ Sparse Hierarchical Archimedean Copula (HAC).

» Few parameters.
» Flexible dependence in tail area.
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Contagion and Systemic Risk 2-1

Conditional quantile

[J Two rv Xj and X, with joint cdf F(xx,x;) and conditional cdf
Fx Xp=x (X1 )= P(Xk < x| Xe = x¢).
[1 Conditional quantile, « € (0,1),
-1
QXk‘X//:X//(a): FXk‘X,/:X;/(a)'
[] Unconditional margins

> = Fix) and Qo) = F¥(a),
» U =Fi(X;) and U; ~ U(0,1), j = k, .
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Contagion and Systemic Risk 2-2

Conditional quantile and copula

[] Thanks to Sklar (1959) F(Xk,Xg) = C{Fk(Xk), Fg(Xg)}.
[ Conditional copula

CUk\Ul/ZU;/(uk): P(Uk < Uk‘Uf = Ug).

[J C-quantiles, c.f. Bouyé and Salmon (2009, EJoF), o € (0,1),

Q= (@) = Q{0 ()} = QU= ()

Conditional quantile does not depend on the law of Xj.
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Contagion and Systemic Risk 2-3

Partial effects

[J With density fj(x;) = Fj(x;) and quantile density
gj(@) = Qi(a), j = k, £, see Parzen (1979, JASA),
0 0 qk{CUk|UI/ “l/( )} 0
8 Xk‘X;/—X;/( q@(ué) a Uk‘Ul/*UI/( )

Partial derivative depends on law of X; as

1
M) = Frada)y
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Contagion and Systemic Risk 2-4

Contagion

[] Contagion to k from ¢ as normalized partial effect

g def Qz(ue)qk{CJkl‘Uk:uk(a)} o .

el LI
T () Q{Cy (@) Due ViV

(a).

[ At level a € (0,1), 8¢, = S, ¥

U[/:Oé'
(] Import interpretation of elasticities from economics, see
Sydseeter and Hammond (1995).
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Contagion and Systemic Risk 2-5

Contagion

[-] Contagion to k from ¢ as normalized partial effect

0
SU;,(def x 0 )
. Qx| =, (@) Ox¢ Qx| xy=xy, (-

[1 At level « € (0,1), =S

uy=cx
[ Import interpretation of elasticities from economics, see
Sydsater and Hammond (1995).
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Contagion and Systemic Risk 2-6

Interpretation

I |Siyl & 00, Qx|up=a (@) is sensitive wrt to changes in x;.
CIf , QX,JU,,:a(OZ) behaves proportional .. ..
LISl = 0, Qxjuy=ale) is robust ...

Asymmetric matrix {Sg,}¢ ,_,. If S, and Sf, ...

(1 ... have a positive sign, risks are substitutes.
(1 ... have a negative sign, risks are complements.
[J ... have a different sign, no statement can be made.
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Contagion and Systemic Risk 2-7

Studying tail areas

(J Conditional tail independence, c.f. Bernard and Czado (2015,
JMVA)
» X, and X; are called conditionally independent in the right tail
if im0 Qx, [xy=x, (@) = g(a), @ € (0,1), with g(-)
independent of xp.
[0 Tail-monotonicity, c.f. Parzen (1979, JASA)
» If f(x) is tail-monotone density, then g(u) ~ (1 — u)~7 as
u — 1, with tail exponent v > 0.

Systemic Risk and Copulae =4 “odb




Contagion and Systemic Risk 2-8

Proposition
Let Xy and X; have tail-monotone densities fi(xx) and f;(x;) with
tail exponents ;. and .

(a) If Xk and X; are conditionally positive dependent, with v, > 1
and ;> 1, then S) — :Y/’;j as up — 1.

(b) If Xx and X, are conditionally positive dependent, with -y, > 1
and v, =1, then S;) — 00 as ug — 1.

(c) If Xx and X, are conditionally independent, with ~, > 1 and
v > 1, then S/ — 0 as up — 1.
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Contagion and Systemic Risk 2-9

Heterogenous margins

Example

[J Assume X ~ N(0,3) and Xy ~ t3, so that |Qx(u)| < |Qe(u)]
for small u

tJ

Systemic Risk and Copulae S0




Contagion and Systemic Risk 2-10
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Figure 1: Quantile functions Qx(u) (solid N(0,3)) and Q,(uv) (dashed t3).
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Contagion and Systemic Risk 2-11

Heterogenous margins

Example

[J Assume X, ~ N(0,3) and Xy ~ t3, so that |Qx(u)| < |Qe(u)]
and qx(u) < qe(u) for small u.

tJ
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Contagion and Systemic Risk
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Figure 2: Quantile and quantile density functions Qx(u), gx(u) (solid

N(0,3)) and Q¢(u), g¢(u) (dashed t3).
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Contagion and Systemic Risk 2-13

Heterogenous margins

Example

[J Assume X, ~ N(0,3) and Xy ~ t3, so that |Qx(u)| < |Qe(u)]
and qx(u) < qe(u) for small u.

O Let {Fr(Xk), Fg(Xg)}T ~ C(ug, ug; 0), where C(ug, ug; 0)
refers to the Clayton copula, 6 = 2.
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Contagion and Systemic Risk 2-14
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Figure 3: Quantile and quantile density functions Qx(u), gk(u) (solid
N(0,3)), Qe(u), q¢(u) (dashed t3) and contagion measures Sy, (solid)
and S, (dashed).
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Contagion and Systemic Risk 2-15
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Figure 4: Quantile and quantile density functions Qk(v), gx(u) (solid
N(0,3)), Qe(u), q¢(u) (dashed t3) and contagion measures Sy, (solid)
and S, (dashed).
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Contagion and Systemic Risk 2-16

Interpretation

If financial markets k and /¢ with risk factors X, and X, are under
distress,
[J low-risk market is unaffected by increased distress in high-risk
market.

(] changes in low-risk market imply significant changes in
high-risk market, which amplifies a crisis.
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Contagion and Systemic Risk 2-17

Moving to higher dimensions

(1 Given Xi,..., Xy the conditional quantile of Xj
_ 1 H

where {Xj = xy} refers to event {X; = x1,..., X1 = X1,
Xit1 = Xk41y---» Xd = Xd }+
(] For normalization
> Q) ={Qi(a), ..., Q-1(a), Quya(@), ..., Qa(a)} T

. def :
» Define ||v|| = ¢/ ;-7:1 v, where q is # of components of v.
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Contagion and Systemic Risk 2-18

Contagion to sub-portfolio

[J Contagion to Ky = {1,...,d} \ ¢ from ¢ measured by

go  def Ekel@z QXk\U;,«:a(O‘)Sfe
Kot =
o Zkel@ QX,(\U,/:a(O‘)

[J “Diversification” is taken into account.

[J AB (2011) interpretation: Pollution of the financial system by
institution ¢ given Xy = Qu(a).
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Contagion and Systemic Risk 2-19

Contagion from sub-portfolio

[] Contagion from £, ={1,...,d} \ k to k measured by

def
Sk Skv
e ||Py\|||Qk Toe TG 2=

where py = (p1,.. ., Pk—1, Pk+1:---,Pd) , pe=1for L € Ly.
[J AB (2011) interpretation: Extent institution Xj is affected in
case of systemic events.

[ Similar to joint shock in factor models.
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Contagion and Systemic Risk 2-20

Systemic risk

[ Aggregated effect of “leave-one-out” portfolios.
B Qa) = {Qi(), ..., Qu(a)} "
[ pis d-dimensional vector of 1's, so that || p|| = d'/7.

[] Systemic risk is measured by

d
adef 1 Zkl:l QXHU;/Z&((X)SI?K

S TR (d - 1) Yo Oxuyala)
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Penalized HAC 3-1

Copula families

(] Gaussian copula
» No tail dependence and correlation matrix.
(] t-copula
» One parameter for all tail areas plus correlation matrix.
[J Factor copula, Oh and Patton (2014)
» Flexible, but no density/conditional quantile.
[J Vines, Kurowicka and Joe (2011)
> Flexible, but need d(d — 1)/2 parameters.
[ HAC, Okhrin et al. (2013, SRM)

» Modelling bias, but few parameters and “flexible” tail
dependence.
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Penalized HAC 3-2

Archimedean copula

Definition (Multivariate Archimedean copula)
A d-dimensional Archimedean copula C : [0,1]¢ — [0,1] is defined as

C(ul,...,ud):¢{¢_1(ul)+--~+¢_1(ud)},

where ¢ : [0,00) — [0, 1] is a completely monotone Archimedean copula
generator with ¢ (0) =1, ¢ (c0) = 0.

Example 1
Family ¢ (u,0) Parameter range Independence
Gumbel  exp (u'/?) 0 € [1,00) =1

Clayton  (u+41)""* 6 € (0,00) -

Gumbel, Emil Julius on BBI:
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Penalized HAC 3-3

Hierarchical Archimedean copula

Example 2
C (1, 2,33 0) = Bopu | Dity, © Pona {032 (1) + 672 (1)} + 072, (u3)

AN

U(61) Us

/\

Figure 5: Structure of 3-dim fully nested HAC.
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Penalized HAC 3-4
Example 3

C(ur,. .., us0) = d12)(34) [¢(_112)(34) o ¢12 {¢15 (11) + ¢ (12)}
+ By (aa) © D38 {934 (13) + 03 (wa)}]

U(Oko))

-

U(by,) U(0y,)

/\ /\

Figure 6: Structure of 4-dim partially nested HAC.
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Penalized HAC

Estimation of HAC
VA AN N NN

Usg
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Penalized HAC 3-6
Estimation of HAC
u1/ \uz u1/ \U3 Ul/ \U4 Uz/ \U3 ”2/ \ “3/ \”4

max{0i2, 013, 014,023,004, 034} = 013 =

Systemic Risk and Copulae ) T




Penalized HAC 3-7
Estimation of HAC
ui2 u13 Uia uz3 Uz4 Uzg
AN AN N NN
1 uz uy u3 uy Uy up us up ug u3 us

max{12, 013, 014, 023,024,034} = 15 =

U(3)2 U(13)4

u13/ \ u13/ U
/ \U3 up ul/ \Ll3 ug LI2/ \u4

uy

Systemic Risk and Copulae 0ot




Penalized HAC
Estimation of HAC
ll1/ \UZ U1/ \U3 u1/ \U4 Uz/ \U3 llz/ \ U3/ \U4

max{12, 013, 014, 023,024,034} = 15 =

/”(13)2 /U(13)4
u13 \ u13 uq
u1/ \U3 up u1/ \Ll3 Uy uz/ \U4
max{§(13)2, é(13)4, 924} = é(13)4 =
Systemic Risk and Copulae QL




Penalized HAC 3-9
Estimation of HAC
ui2 u13 Uia uz3 Uz4 Uzg
VA NN NN NN
1 uz uy u3 uy Uy up us up ug u3 us

max{12, 013, 014, 023,024,034} = 15 =

U(13)2 U(13)4

u13/ \ u13/ g
u1/ \U3 u u1/ \Ll3 ug uz/ \U4
max{O13y2, O1syar 02} = Ouzpe =
u((13)4)2
U3)a
u3
u1/ \U3 Uy up
Systemic Risk and Copulae ",.,:'_:..'.



Penalized HAC 3-10

Estimation of HAC
u1/ \uz u1/ \U3 u1/ \U4 uz/ \U3 uz/ \ Ll3/ \U4

max{12, 013, 014, 023,024,034} = 15 =

/”(13)2 /U(13)4
u13 \ u13 uq
u1/ \U3 up u1/ \Ll3 Uy uz/ \U4
max{§(13)2,§(13)4,§24} = é(13)4 =
U((13)4)2
U(13)a o ~
0(13) =~ 0(13)a =
ui3
u1/ \U3 ug uz
Systemic Risk and Copulae QL




Penalized HAC 3-11

Estimation of HAC
u1/ \uz u1/ \U3 u1/ \U4 uz/ \U3 uz/ \ Ll3/ \U4

max{12, 013, 014, 023,024,034} = 15 =

/”(13)2 /U(13)4

u13 \ u13 uq

u1/ \U3 u u1/ \Ll3 ug uz/ \ ug
max{f13)2, O13ya Ooa} = O30 =
/U((13)4)2 /U(134)2
sy - N 34
/ O13) = O13)a =
uf3
u1/ \U3 (277 u uy uz (277
Systemic Risk and Copulae QL




Penalized HAC 3-12
Penalized estimation of HAC
ui2 u13 Uia uz3 Uz4 Uzg
AN AN N NN
i 73 uy uz Uy uy U2 uz U uy U3 ug

max{12, 013, 014, 023,024,034} = 15 =

/"(13)2 /“(13)4
u13 \ u13 uq
u1/ \U3 u u1/ \U3 ug uz/ \u,;
max{f(13)2. 0132, D24} = B(13)a,
Systemic Risk and Copulae ",.,:'_..'.




Penalized HAC 3-13
Penalized estimation of HAC
ui2 u13 Uia uz3 Uz4 Uzg
AN AN N NN
i 73 uy uz Uy uy U2 uz U uy U3 ug

max{12, 013, 014, 023,024,034} = 15 =

/"(13)2 /“(13)4
ui3 \ u13 U4
u1/ \ uz u u1/ \U3 ug uz/ \u,;
max{f13)2. 0130, O2a} = Bazpa,  iF 13— Opzpa < e =
Systemic Risk and Copulae ",.,:'_..'.




Penalized HAC 3-14

Penalized estimation of HAC
ui2 u13 Uia uz3 Uz4 Uzg
AN N AN AN AN AN
1 wn U uz U Uy U u3 i ug U3 uy
max{12, 013, 014, 023,024,034} = 15 =

U132 U(13)4

U13/ \ Ll13/ Uzg
D VR YR

uy

max{f13)2. 0130, O2a} = Bazpa,  iF 13— Opzpa < e =
U134

AN

uy u3 ug

Systemic Risk and Copulae 0ot




Penalized HAC 3-15

Penalized estimation of HAC
ll1/ \UZ U1/ \U3 u1/ \U4 Uz/ \U3 llz/ \UA U3/ \U4

max{12, 013, 014, 023,024,034} = 15 =

/”(13)2 /U(13)4
ui3 \ ui3 U4
u1/ \U3 up u1/ \U3 Ug uz/ \u,;
max{f13)2. 0130, O2a} = Bazpa,  iF 13— Opzpa < e =
U(134)2
U134 /
U134
=
u u3 Uy
i us uy
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Penalized HAC 3-16
Ok(e)

NENY
N

(] Build E,-(OW)) = |og{c( Jly ey Uidk; Hk(p))}
[ Penalized log-likelihood

dk

Q(be, Oxe) 25 (Ok(ey) — 1P, (00 — Ok(e),
i=1

c.f. Cai and Wang (2014, JASA), Fan and Li (2001, JASA),
Tibshirani et al. (2005, JRSSB).

[ Let 92&) be the maximizer of Q(ég,@k(@).
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Penalized HAC 3-17

Sparsity and oracle property

Proposition
Under Assumptions 1-3, if n*/2\, — oo as n — oo, then

lim P(0,7, = 0,0)= 1.

n—00 (0)

Proposition
Under Assumptions 1-3, if A\, — 0 as n — oo, then

' {Z(Okry0) + PR, (06 )} (G5 — Oucey.0)
% _\- 1 £
—{Z(Ok(r)0) + P10} 'ph, (8 )] = N{O,Z(0(e)0)}

where 90_ = 05’0 — 0;((@)70.

Systemic Risk and Copulae



Penalized HAC 3-18

ML representation

[ Let dy() and O, be the MLE of Okhrin et al. (2013, JoE).

[J Linear approximation of penalty function, Zou and Li (2008,
Ann.).

Proposition
Under Assumptions 1-3, 92&) = Ok(r) + €n, with

def =/A — A A
en = €(Ans an)=Z(Ok(e)) " PA, (B — O(oy)-
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Penalized HAC 3-19

Practical issues

[J Attain sparsity from
Okey =00, i 00— Oie) < en

[] Wang et al. (2007, Biometrica), determine (\,a)" by

T f— . H J—
(An,an) ' =arg (TE)XT 2 ;E, {9,((5) + €( A, a)} qx log(n).

[J gk parameters in HAC up to level k.
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Simulation 4-1

Setup

[ Until m = 1000 structures correctly specified.

(] Sample size n = 250.

) Let 7 : ©(g) — [0,1] transform the parameter 6 ) into
Kendall's correlation coefficient.

A

0y Us Us
/TN
U U Us

L] 6y = T_1(0.7) and Hk(g) = 7'_1(0.3).

Systemic Risk and Copulae @




Simulation 4-2

Family | s(0) =s(60) 7(01) (sd)  7(02) (sd) | #{0}
Clayton 0.82 0.70 (0.01) 0.30 (0.02) | 3.04
Frank 0.85 0.70 (0.01) 0.30 (0.02) | 3.03
Gumbel 0.85 0.70 (0.01) 0.30 (0.02) | 3.02
Joe 0.88 0.70 (0.01) 0.30 (0.02) | 3.04

Table 1: s(f) = s(6o) reports the fraction of correctly specified structures,
(i) (sd), k = 1,2, refers to the sample average of Kendall's 7(-) eval-
uated at the estimates and sd to the sample standard deviation thereof.
If the structure is misspecified, #{A} gives the number of parameters on
average included in the misspecified HAC.
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Application 5-1

Estimation strategy

(] log-returns of ten stock indices are modeled by

Xe = pi (Xe1,...) +oe (Xe—1, .. 2) €es
e¢|Fr1 ~ C{Fey(Xe1), - - -, Fey(Xed); Ot}

[ Series {X;;}/[_;,j=1,...,d, are modeled by ARMA-APARCH
with skew-t marginal distributions F,(-; x;, ).
[ Clayton-based HAC C(; 6;) depending on {6,}]_;.

[] Rolling window for a fixed structure: Jan 01st, 2007 — Apr
30th, 2014.

Systemic Risk and Copulae @




Application
Index X v Qis(e;) @is(e?) AD GoF
DJA 085 622 085 0.76 0.08
HSI 092 824 026 0.32 0.28
KOSPI 0.87 7.28 0.49 0.17 0.44
N225 0.89 1055 0.77 0.03 0.23
SSEC 091 455 0.10 0.16 0.21
STI 090 12.89 0.16 0.03 0.83
SX5E 091 7.94 0.85 0.20 0.66
TAIEX 086 567 0.02 0.58 0.15
XAO 084 16.88 0.86 0.96 0.69

5-2

Table 2: The skewness x and shape v parameter of the margins, p-values of

the Ljung-Box tests, Qy5(+), for 15 lags and the Anderson-Darling goodness

of fit test (AD GoF).

Systemic Risk and Copulae
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Application 5-3

Figure 7: Sparsely estimated HAC for the entire data. ML estimation is
implemented in R-package HAC, see Okhrin and Ristig (2014, JSS).
Systemic Risk and Copulae




Application
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Figure 8: Upper panel shows estimates of éz’t and lower panel the risk
transmitted from DJIA to SX5E S&se, pja for @ € {0.1,0.01,0.0001}.
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Application

6
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Figure 9: Upper panel shows estimates of éz’t and lower panel the risk
transmitted from SX5E to DJIA S5 a,sxse for @ € {0.1,0.01,0.0001}.
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Application 5-6

6
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Figure 10: Upper panel shows estimates of éz’t and lower panel systemic risk
S within the sub-portfolio SX5E and DJIA for oo € {0.1,0.01,0.0001}.
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Application 5-7

I1Q(a) Il
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Figure 11: Upper panel shows || Q(a)l|2, Q(a) = {Qpua(a), Qsxse(a)} T,
and lower panel systemic risk S* within the sub-portfolio SX5E and DJIA

for e € {0.1,0.01,0.0001}

) ) N
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Application 5-8
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Figure 12: Upper panel shows ||Q(«)||2 and lower panel systemic risk S*
for the sub-portfolio HSI, KOSPI, N225, SSEC, STI, TAIEX and XAO,
a € {0.1,0.01,0.0001}
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Summary 6-1

Conclusion

[-] Unified contagion and systemic measures based on conditional
quantiles.

[] Accuracy of the sparse HAC estimation is illustrated in a
simulation study.

[-] Sparse estimation of HAC.

(] Application reveals systemic risk due to contagion in tail area.
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Tail-monotonicity

Parzen (1979, JASA) calls a density function h(x) with cdf H(x)
and tail exponent v > 0 tail-monotone, if

[] it is non-decreasing on an interval to the right of
a = sup{x : H(x) = 0} and non-increasing on an interval to
the left of b = inf{x : H(x) = 1}, with —oo < a < b < o;
[J h(x) > 0on x € (a,b) and
SUPxe(ab) HO){L — HO)HH (%) /h(x)? < 7.
[J Tail exponent v = lim,_1(v — 1) [log {f{Q(v)}}]
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Assumptions

Define £;(0) = log c(Ui1, . . ., Uig,; 0):

(1) Model is identifiable and 6 () o is an interior point of the
compact parameter space © ;). We assume that
Eoy e 14 (Ok(ry)} = 0 and information equality holds,

def
Z(Oke) = Eoy 10i(0k(0))*} = — Bopy 167 (0(0) }

fori=1,...,n.
(2) Fisher information Z(0y(y)) is finite and strictly positive at
Ok (0),0-
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(3) There exists an open subset Q of ©,(;) containing the true
parameter 0 () o such that for almost all U;, i =1,...,n, the
density c(Uj1, - - -, Uid,; Ox(r)) admits all third derivatives
" (- Ok(py) for all Oy (py € Q. Furthermore, there exist functions
M() such that }giﬂ(ek(f))‘ < M(U,'), for all Gk(@ € Q, with
E {M( U,')} < 00.
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Figure 13: CJkl‘U[:uz(a) for Clayton copula. Alternating lines (solid and
dashed) refer to a € {0.0001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.9999} —

bottom-up ordered. Left panel illustrates # = 9 and right panel 6 = 6.

Systemic Risk and Copulae @




Appendix 7-13

o o
— — - -
[ee] [ee)
S ] S
© ©
S o | =
N—’
- < <
O S S
N N
S ] S
o | o |
© T T T T T T © T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
U U

Figure 14: CJkl‘UFUe(a) for Clayton copula. Alternating lines (solid and
dashed) refer to a € {0.0001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.9999} —

bottom-up ordered. Left panel illustrates 8 = 3 and right panel § = 0.5.
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