Inflation Co-movement in Multi-maturity Term Structure: An Arbitrage-Free Approach

Shi Chen Wolfgang K. Härdle Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

Motivation

Measure of Inflation

Break-even inflation rate (BEIR) with maturity τ ,

$$BEIR_t(\tau) = y_t^N(\tau) - y_t^R(\tau)$$

- $y_t^N(\tau)$ nominal yield $y_t^R(\tau)$ real yield
- Decompose BEIR,

$$BEIR_t(\tau) = \pi_t^e(\tau) + else$$

 \blacktriangleright $\pi_t^e(\tau)$ is expected inflation

Motivation ______ 1-2

BEIR of European Countries

Figure 1: Observed BEI rates (percent) of UK, France, Italy, Sweden and Germany. Q MTS BEIR

Motivation — 1-3

Model Approach

$$y(\tau) = \beta_0 + \beta_1 \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_2 \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)$$

□ Diebold and Li (2006): Dynamic NS (DNS) model

$$y_t(\tau) = L_t + S_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + C_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)$$

- Diebold, Li and Yue (2008): Global DNS model
- □ Christensen et.al (2011): Arbitrage-free DNS (AFNS) model

Motivation — 1-4

AFNS model

$$y_t(\tau) = L_t + S_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + C_t \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right) - \frac{A(\tau)}{\tau}$$

- state variable $X_t^{\top} = (L_t, S_t, C_t)$
- Derived from affine AF model of Duffie & Kan (2002), the real-world P dynamics,

$$dX_t = K^P(\theta^P - X_t)dt + \Sigma dW_t^P$$

- \triangleright K^P and θ^P correspond to dynamics and drifts terms.
- \triangleright Σ is diagonal.

Motivation — 1-5

Challenge

- Joint yield curve modeling across multiple maturities
- BEIR decomposition
- Panel model of inflation expectations
- New estimation and forecast of inflation expectation within Europe

Outline

- 1. Motivation ✓
- 2. Multiple Yield Curve Modeling
- 3. BEIR decomposition
- 4. Dynamics of Inflation Expectation
- 5. Empirical Results
- 6. Conclusion

Joint AFNS model

 The separate AFNS models of nominal and inflation-indexed type for a specific country i,

$$y_{it}^{N}(\tau) = L_{it}^{N} + S_{it}^{N} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + C_{it}^{N} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right) - \frac{A_{i}^{N}(\tau)}{\tau}$$
$$y_{it}^{R}(\tau) = L_{it}^{R} + S_{it}^{R} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + C_{it}^{R} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right) - \frac{A_{i}^{R}(\tau)}{\tau}$$

We assume,

$$S_{it}^{R} = \alpha_{i}^{S} S_{it}^{N}$$
$$C_{it}^{R} = \alpha_{i}^{C} C_{it}^{N}$$

Joint AFNS model

 $\ \ \$ The joint AFNS yield curve for country i with maturity au is

$$\begin{pmatrix} y_{it}^{N}(\tau) \\ y_{it}^{N}(\tau) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1 - e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} & \frac{1 - e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} - e^{-\lambda_{i}\tau} & 0 \\ 0 & \alpha_{i}^{S} \frac{1 - e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} & \alpha_{i}^{C} (\frac{1 - e^{-\lambda_{i}\tau}}{\lambda_{i}\tau} - e^{-\lambda_{i}\tau}) & 1 \end{pmatrix}$$
$$\begin{pmatrix} L_{it}^{N} \\ S_{it}^{N} \\ C_{it}^{N} \\ L_{it}^{R} \end{pmatrix} + \begin{pmatrix} \varepsilon_{it}^{N}(\tau) \\ \varepsilon_{it}^{R}(\tau) \end{pmatrix} - \begin{pmatrix} \frac{A_{i}^{N}(\tau)}{\tau} \\ \frac{A_{i}^{R}(\tau)}{\tau} \end{pmatrix}$$

- lacktriangledown state variable $X_{it}^ op = \left(L_{it}^N, S_{it}^N, C_{it}^N, L_{it}^R\right)$ Dynamics of state variable
- $ightharpoonup rac{A_i(au)}{ au}$ is an unavoidable yield-adjustment term

Multiple Yield Curve Modeling

$$\begin{pmatrix} y_{it}^{N}(\tau_{1}) \\ y_{it}^{R}(\tau_{1}) \\ \vdots \\ y_{it}^{R}(\tau_{n}) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1-e^{-\lambda_{i}\tau_{1}}}{\lambda_{i}\tau_{1}} & \frac{1-e^{-\lambda_{i}\tau_{1}}}{\lambda_{i}\tau_{1}} - e^{-\lambda_{i}\tau_{1}} & 0 \\ 0 & \alpha_{i}^{S} \frac{1-e^{-\lambda_{i}\tau_{1}}}{\lambda_{i}\tau_{1}} & \alpha_{i}^{C} (\frac{1-e^{-\lambda_{i}\tau_{1}}}{\lambda_{i}\tau_{1}} - e^{-\lambda_{i}\tau_{1}}) & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \alpha_{i}^{S} \frac{1-e^{-\lambda_{i}\tau_{n}}}{\lambda_{i}\tau_{n}} & \alpha_{i}^{C} (\frac{1-e^{-\lambda_{i}\tau_{n}}}{\lambda_{i}\tau_{n}} - e^{-\lambda_{i}\tau_{n}}) & 1 \end{pmatrix}$$
$$\begin{pmatrix} L_{it}^{N} \\ S_{it} \\ C_{it} \\ L_{it}^{R} \end{pmatrix} + \begin{pmatrix} \varepsilon_{it}^{N}(\tau_{1}) \\ \varepsilon_{it}^{R}(\tau_{1}) \\ \vdots \\ \varepsilon_{it}^{R}(\tau_{n}) \end{pmatrix} - \begin{pmatrix} \frac{A_{i}^{N}(\tau_{1})}{\tau_{1}} \\ \vdots \\ \frac{A_{i}^{R}(\tau_{n})}{\tau_{n}} \end{pmatrix}$$

BEIR decomposition

 \odot Cochrane (2005), the price of the zero-coupon bond that pay one unit of consumption basket at time t,

$$P_t^N(\tau) = \mathsf{E}_t \left(M_{t+1}^N M_{t+2}^N \cdots M_{t+\tau}^N \right)$$

$$P_t^R(\tau) = \mathsf{E}_t \left(M_{t+1}^R M_{t+2}^R \cdots M_{t+\tau}^R \right)$$

- $ightharpoonup M_t^N$ and M_t^R are SDFs.
- Under assumption of no arbitrage,

$$\frac{M_t^N}{M_t^R} = \frac{Q_{t-1}}{Q_t}$$

 $ightharpoonup Q_t$ is the overall price level of consumption basket.

BEIR decomposition

Converting equations,

$$y_t(\tau) = -\frac{1}{\tau} \log P_t(\tau)$$
$$\pi_{t+1} = \log \frac{Q_{t+1}}{Q_t}$$

The BEIR can be defined as follows,

$$\begin{aligned} y_t^N(\tau) - y_t^R(\tau) &= & \frac{1}{\tau} \mathsf{E}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R} \right) - \frac{1}{2\tau} \mathsf{Var}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R} \right) \\ &+ & \frac{1}{\tau} \mathsf{Cov}_t \left(\log \frac{M_{t+1}^N}{M_{t+1}^R} \cdots \frac{M_{t+\tau}^N}{M_{t+\tau}^R}, \log M_{t+1}^R \cdots M_{t+\tau}^R \right) \end{aligned}$$

BEIR decomposition

$$BEIR_t(\tau) = y_t^N(\tau) - y_t^R(\tau) = \pi_t^e(\tau) + \eta_t(\tau) + \phi_t(\tau)$$

- $\qquad \eta_t(\tau)$ is convexity effect
- $ightharpoonup \phi_t(\tau)$ is IRP

$$\pi_t^e(au) = -rac{1}{ au}\log \mathsf{E}_t^P \left[\exp \left\{-\int_t^{t+ au} (r_s^N - r_s^R) ds
ight\}
ight]$$

- $ightharpoonup r_{it}$ is the instantaneous risk-free rate
- real type: $r_{it}^R = L_{it}^R + \alpha_i^S S_{it}^N$, nominal type: $r_{it}^N = L_{it}^N + S_{it}^N$

Inflation Expectation Estimates

Figure 2: Model-implied inflation expectation for different countries - UK, France, Italy, Sweden and Germany.

MTS expinf

Inflation Expectation(IE) Dynamics

 \Box The five-diminional idiosyncratic factors to load on a common time-varying latent factor Π_t ,

$$\hat{\pi}_{it}^e = m_i + n_i \Pi_t + \mu_{it}$$

$$\Pi_t = p + q\Pi_{t-1} + \nu_t$$

- \triangleright where m, n, p and q are unknown parameters
- \blacktriangleright the errors μ_{it} and ν_{it} are both i.i.d white noises

IE Dynamics with Macroeconomic Factor

$$\hat{\pi}_{it}^e = m_i + n_i \Pi_t + l_i d_t + \mu_{it}$$

The dynamics of common factor,

$$\Pi_t = p + q\Pi_{t-1} + \nu_t$$

- \triangleright where m, n, p and q are unknown parameters
- lacktriangle the errors μ_{it} and ν_{it} are both i.i.d white noises
- $ightharpoonup d_t$ is the default proxy varying over time

Data

- ☐ Bloomberg: monthly zero-coupon government bond yield.

Data	Span	Maturity	
UK	30.06.2006-31.12.2014	3,4,5 years	
France	30.06.2006-31.12.2014	3,5,10 years	
Italy	29.06.2007-31.12.2014	3,5,10 years	
Sweden	30.04.2007-29.08.2014	3,5,10 years	
Germany	30.06.2009-31.12.2014	5,7,10 years	

Model Residuals

Empirical Results — 5-3

Estimated IE

MTS_expinf

3-year IE forecast

Figure 3: Model-implied inflation expectation for different countries - UK, France, Italy, Sweden and Germany.

MTS_expinf

Common Effect

Figure 4: Common inflation factor - predicted Π_t , filtered Π_t .

MTS_comexpinf

Residuals of common effect

Estimated Parameters

Country-specific equations		
UK	$\pi^e_{1t}(au) =$	$0.166 + 0.576\Pi_t$
France	$\pi^{e}_{2t}(au) =$	$-0.022 + 0.665\Pi_t$
Italy	$\pi^e_{3t}(au) =$	$-0.347 + 0.822\Pi_t$
Sweden	$\pi^e_{4t}(au) =$	$-0.057 + 0.665\Pi_t$
Germany	$\pi^e_{5t}(au) =$	$0.008 + 0.644\Pi_t$
Common Effect equation		
	$\Pi_t =$	$0.588 + 0.651\Pi_{t-1}$

Table 1: Estimates for the dynamics of IE.

Common effect with d_t

Figure 6: Common inflation factor - predicted Π_t , filtered Π_t .

MTS_comexpinf_cds

Residuals of common effect

Figure 7: Model residual for IE dynamics without macroeconomic factor - UK, France, Italy, Sweden and Germany.

MTS_comexpinf_cds

Estimates with d_t

Country-specific equations		
UK	$\pi_{1t}^e(au) =$	$-0.358d_t + 0.798\Pi_t$
France	$\pi^e_{2t}(au) =$	$0.085d_t + 0.714\Pi_t$
Italy	$\pi^e_{3t}(\tau) =$	$1.078d_t + 0.531\Pi_t$
Sweden	$\pi^e_{4t}(\tau) =$	$-0.621d_t + 0.805\Pi_t$
Germany	$\pi^e_{5t}(au) =$	$0.045d_t + 0.700\Pi_t$
Common Effect equation		
	$\Pi_t =$	$0.382 + 0.976\Pi_{t-1}$
		<u> </u>

Table 2: Estimates for the dynamics of IE.

Variance decomposition

- o According to the joint model of IE dynamics, decompose the variation of IE $\hat{\pi}_{it}^e$ into parts driven by,
 - common effect variation
 - country-specific variation
 - default-proxy variation

$$\operatorname{Var}(\hat{\pi}_{it}^{e}) = n_i^2 \operatorname{Var}(\Pi_t) + l_i^2 \operatorname{Var}(d_t) + \operatorname{Var}(\mu_{it})$$

Joint IE dynamics without d_t

	U.K.	France	Italy	Sweden	Germany
Common effect	24.91	30.66	40.32	30.65	29.32
Country-specific effect	69.34	50.69	69.35	58.50	70.68

Table 3: Variations explained in percentage

Joint IE dynamics with d_t

	U.K.	France	Italy	Sweden	Germany
Common effect	36.08	33.59	11.54	31.87	32.84
Country-specific effect	56.66	65.88	40.92	49.17	67.02
Default risk effect	7.26	0.53	47.55	18.96	0.14

Table 4: Variations explained in percentage

Forecast

Figure 8: The forecast of common inflation factor derived from the joint model of IE dynamics with default proxy. Joint modeling of inflation expectation

Comparison

Figure 9: Comparison of model-implied level, the observed inflation level, 1-year SPF forecast and 2-year SPF forecast of inflation.

Conclusion

- \Box Common inflation factor Π_t is an important drivers of country-specific inflation expectations.
- The model proposed will lead to a better forecast in benchmark level of inflation and give good implications in financial market.

References

References

Nelson, C.R., Siegel, A.F.

Parsimonious modeling of yield curves.

Journal of Bussiness, 60:473-489, 1987.

Francis X Diebold and Li. C.

Forecasting the term structure of government bond yields.

Journal of Econometrics, 130: 337-364, 2006.

Cochrane, J.H.

Asset Pricing.

Princeton university press, 2005.

References — 6-2

References

Jens HE Christensen, Francis X Diebold and Glenn D Rudebusch

The affine arbitrage-free class of Nelson-Siegel term structure models.

Journal of Econometrics, 164(1):4-20, 2011.

Francis X Diebold, Canlin Li and Vivian Z Yue Global yield curve dynamics and interactions: a dynamic Nelson-Siegel approach.

Journal of Econometrics, 146(2):351-363, 2008.

References — 6-3

References

Francis X Diebold, Glenn D Rudebusch and S Boragan Aruoba The macroeconomy and the yield curve: a dynamic latent factor approach.

Journal of Econometrics, 115(1):32-39, 2012.

Jens H.E. Christensen, Jose A. Lopez and Glenn D. Rudebusch Inflation expectations and risk premiums in an Arbitrage-Free model of nominal and real bond yields.

Journal of Money, Credit and Banking, 11:143-178, 2010.

Appendix — 7-1

Dynamics of state variable

 Derived from affine AF model of Duffie&Kan(2002), the real world P-dynamics is

$$dX_{it} = K_i^P(t)[\theta_i^P(t) - X_{it}] + \Sigma_i(t)dW_{it}^P$$

- \triangleright $K_i^P(t)$, $\theta_i^P(t)$ can vary freely.
- $ightharpoonup \Sigma_i(t)$ is diagonal volatility matrix.
- Transition equation,

$$X_{it} = \Phi^0_{i,\Delta t} + \Phi^1_{i,\Delta t} X_{i,t-1} + \eta_{it}$$

with

$$\Phi^0_{i,\Delta t} = I - \exp(-K_i^P \Delta t) \theta_i^P$$

$$\Phi^1_{i,\Delta t} = \exp(-K_i^P \Delta t)$$
• Return

