Realized Copula

Matthias R. Fengler Ostap Okhrin

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Chair of Financial Econometrics Universität St. Gallen

Realized Variance of Google-IBM-Oracle

Trades

RV: Exploiting intra-day information

Literature of the past 10yrs on high-frequency data shows:

- daily realized (co)variance (RV, RCov) computed from intra-day data serves as an accurate measures of conditional (co)variance of daily returns;
- ☑ no specific model is needed (like GARCH);
- can treat an inherently latent variable like an observed one;
- □ shows excellent forecasting performance.

Heavily discussed in *derivatives pricing*, *portfolio optimization*, *risk-management*, *and volatility forecasting*.

Dependency

- 1.19.10.1987
 - Black Monday
- 2. 16.10.1989 Berlin Wall
- 3. 19.08.1991 Kremlin
- 4. 17.03.2008, 19.09.2008,
 - $10.10.2008,\ .10.2008,$
 - 15.10.2008, 29.10.2008

Crisis

Copulae is a convenient tool to capture nonlinear dependence.

Copulae is a convenient tool to capture nonlinear dependence.

Copulae is a convenient tool to capture nonlinear dependence.

Multivariate RCov models have an underlying Gaussian structure.

How can we suitably combine intra-day RCov information into a *non-Gaussian* model framework?

Copulae is a convenient tool to capture nonlinear dependence.

Multivariate RCov models have an underlying Gaussian structure.

How can we suitably combine intra-day RCov information into a *non-Gaussian* model framework?

realized copula (RCop)

Outline

- 1. Motivation \checkmark
- 2. Copula and realized copula
- 3. Benchmark models
- 4. Empirical Part
- 5. References

A **copula** is a multivariate distribution with all univariate margins being U(0, 1).

Theorem (Sklar, 1959)

Let X_1, \ldots, X_d be random variables with marginal distribution functions F_1, \ldots, F_d and joint distribution function F. Then there exists a d-dimensional copula $C : [0,1]^d \to [0,1]$ such that $\forall x_1, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$

$$F(x_1,\ldots,x_d)=C\{F_1(x_1),\ldots,F_d(x_d)\}$$

Realized Copula -

Archimedean copula $C: [0,1]^d \rightarrow [0,1]$ defined as

$$C(u_1,\ldots,u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\},$$
 (1)

where $\phi : [0, \infty) \to [0, 1]$ is strictly decreasing with $\phi(0) = 1$, $\phi(\infty) = 0$ and ϕ^{-1} its (pseudo)inverse.

Example

$$\begin{array}{lll} \phi_{\textit{Gumbel}}(u,\theta) &=& \exp\{-u^{1/\theta}\}, \text{ where } 1 \leq \theta < \infty \\ \phi_{\textit{Clayton}}(u,\theta) &=& (\theta u + 1)^{-1/\theta}, \text{ where } \theta \in [-1,\infty) \backslash \{0\} \end{array}$$

Rotated copula as an example of a non-Archimedean copula:

$$C_{rot}(u_1, u_2) = C(1 - u_1, 1 - u_2) + u_1 + u_2 - 1,$$

which in term of copula density is given through $c_{rot}(u_1, \ldots, u_d) = c(1 - u_1, \ldots, 1 - u_d)$

1-14

Realized Copula

Realized Copula, I

Lemma (Hoeffding)

Suppose there are two random variables X_i and X_j with marginal distributions F_i and F_j and joint distribution F_{ij} and finite second moments

$$\sigma_{ij}(\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ F_{i,j}(x_i, x_j, \theta) - F_i(x_i) F_j(x_j) \right\} dx_i dx_j$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[C_{\theta} \{ F_i(x_i), F_j(x_j) \} - F_i(x_i) F_j(x_j) \right] dx_i dx_j .$$

Realized Copula, II

For the notion of *realized copula*, we define θ implicitly through

$$\begin{aligned} h_{ij,t} &= f_{ij}(\theta_t) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[C_{\theta_t} \{ F_{i,t}(x_i), F_{j,t}(x_j) \} - F_{i,t}(x_i) F_{j,t}(x_j) \right] dx_i dx_j \end{aligned}$$

where $h_{ij,t}$ denotes an element of the RCov matrix measured at day t.

This moment condition, together with the assumptions on the copula and the marginal distributions, identifies the ex-post daily distribution as materialized in RCov.

Method-of-moments estimator, I

Let d = 2, with one off-diagonal element $h_{12,t}$ in the RCov. An estimate of θ_t is given by

 $\widehat{\theta}_t^{\mathsf{MM}} = \mathbf{f}_{12}^{-1}(h_{12,t}).$

Similar to method-of-moments approaches where the copula parameter of an Archimedean copula is estimated from Kendall's tau (Genest and Rivest, 1993).

Method-of-moments estimator, II

For d > 2, define $g_{ij}(\theta) = h_{ij,t} - f_{ij}(\theta)$, where i < j and i, j = 1, ..., d. Stacking all g_{ij} into a vector **g** of size d(d - 1)/2, we define the estimator as $\widehat{\theta}_t^{MM} = \arg\min_{\theta} \mathbf{g}^{T}(\theta) \mathbf{\Omega} \mathbf{g}(\theta)$,

with Ω denoting a d(d-1)/2-dimensional pd weight matrix. A conventional choice would be the unit matrix $I_{d(d-1)/2}$.

Realized Copula

Ad hoc estimator

Under Gaussianity, Kendall's τ is $\tau_{ij,t}^{g} = \frac{2}{\pi} \arcsin \rho_{ij,t}$, and generally, for general Archimedean copulae (Genest and Rivest, 1993):

$$au \equiv {
m f}_{ au}(heta) = 4 \int_0^1 \phi_{ heta}{}^{-1}(heta)/(\phi_{ heta}{}^{-1})'(heta)\,d heta+1 \;.$$

family	$\phi_{ heta}$	f_{τ}
Gumbel	$\exp\{-x^{1/ heta}\}$	1-1/ heta
Clayton	$(\theta x + 1)^{-1/\theta}$	$\theta/(2+\theta)$

We define an ad-hoc estimator by

$$\widehat{ heta}^{\mathtt{ad hoc}}_t = rac{2}{d(d-1)} \sum_{i < j} \mathrm{f}_{ au}^{-1}(\widehat{ au}^{\mathtt{G}}_{ij,t}) \; .$$

Realized Copula -

Forecasting framework for RCop

Let $P_t = (P_{1t}, \dots, P_{dt})^{\top}$ and $r_t = P_t - P_{t-1}, t = 1, \dots, T$ be daily log-prices and their log-returns with

$$r_{t+1} \sim F_{r_{t+1}|\mathcal{F}_t}(\widehat{H}_{t+1|t})$$

where $\widehat{H}_{t+1|t}$ is an \mathcal{F}_t -measurable forecast of the RC matrix of r_t and

$$F_{r_{t+1}|\mathcal{F}_t}(\widehat{H}_{t+1|t}) = C_{\widehat{\theta}_{t+1|t}}\{F_{1,t}(\widehat{h}_{1,t+1|t}), \dots, F_{d,t}(\widehat{h}_{d,t+1|t})\}$$

As reported in Andersen et al. (2001) returns standardized by ex post RV are close to standard normal, we thus assume that

$$F_{j,t}(\widehat{h}_{j,t+1|t}) = N(0,\widehat{h}_{j,t+1|t})$$

0 0

Realized Copula -

Forecasting framework

Consider the following multivariate forecasting rule:

$$\begin{pmatrix} \log \hat{h}_{1,t+1|t} \\ \vdots \\ \log \hat{h}_{d,t+1|t} \\ \hat{\theta}_{t+1|t} \end{pmatrix} = \mathbf{E}_t \begin{pmatrix} \log h_{1,t+1} \\ \vdots \\ \log h_{d,t+1} \\ \theta_{t+1} \end{pmatrix} = \begin{pmatrix} \beta_0^1 + \beta_D^1 \log h_t^D + \beta_W^1 \log h_t^W + \beta_M^1 \log h_t^M \\ \vdots \\ \beta_0^d + \beta_D^d \log h_t^D + \beta_W^d \log h_t^W + \beta_M^d \log h_t^M \\ \alpha_0 + \alpha_D \theta_t^D + \alpha_W \theta_t^W + \alpha_M \theta_t^M \end{pmatrix},$$
where $x_t^D = x_t$ are daily, $x_t^W = \frac{1}{5} \sum_{i=0}^4 x_{t-i}$ weekly, and $x_t^M = \frac{1}{21} \sum_{i=0}^{20} x_{t-i}$ monthly averages of past realizations of x_t .

Borrowed from the heterogenous autoregressive model (HAR) of Corsi (2009); extended here to the copula parameter.

Empirical application

Compare one day ahead VaR forecasting performance of RCop against a number of standard benchmark models:

models based on daily data

- naive rolling window
- local adaptive estimation
- models based on intra-day data (RV models)
 - Logm-model
 - Cholesky factorization

Rolling window and adaptive estimation

Naive approach:

🖸 estimate copula parameter on a fixed rolling window

LCP:

- adaptively estimate largest interval where homogeneity hypothesis is accepted
- Local Change Point detection (LCP): sequentially test whether θ_t is constant (i.e. $\theta_t = \theta$) within some interval *I* (local parametric assumption).

Local Change Point Detection

1. define the family of nested intervals $l_0 \subset l_1 \subset l_2 \subset \ldots \subset l_K = l_{K+1}$ with length m_k as $l_k = [t_0 - m_k, t_0]$ 2. define $\mathfrak{T}_k = [t_0 - m_k, t_0 - m_{k-1}]$

Data used in this study

⊡ *d* = 3

- daily (Yahoo Finance) and tick trades (LOBSTER) prices for the two portfolios
 - IBM, Google, Oracle;
 - IBM, Pfizer, Exxon
- timespan = [02.01.2009 till 31.12.2010] (n = 470 days) for tick data and n = 800 days for daily data
- cleaning high-frequency data as in BNHLS (2008): 9:45-16:00, one stock exchange, multiple quotes or trades with same time stamp, negative spread, etc.
- Rotated Gumbel and Clayton copulae.

Basis

Let
$$Y = (Y_1, \dots, Y_d)^ op$$
 be a d -dim efficient (log) price process $dY_t = \mu_t dt + \sigma_t dW_t$

The market microstructure effect is modeled through an additive component

$$\begin{array}{lll} P_{jt} &=& Y_{jt} + U_{jt}, \mbox{ with } I\!\!E(U_{jt}) = 0 \\ \sum_{h} |h\Omega_{h}| &<& \infty, \mbox{ where } \Omega_{jh} = Cov(U_{jt}, U_{j,t-h}). \end{array}$$

Usual aim: Estimate the quadratic variation of Y, i.e. $[Y] = \int_0^1 \Sigma_u du$, with $\Sigma = \sigma \sigma^\top$.

Naive Estimator (realized co/variance)

Synchronization – *last traded*: for time t, the log-price for asset j is given by P_{j,t^*} with $t^* = \max\{t_{j,i} | t_{j,i} \le t, \forall i = 1, ..., N_j\}$. M = M(m) number of subintervals of length m (in seconds)

$$\begin{aligned} \mathsf{RC}_{t_1,m,j_1,j_2}(P) &= \sum_{i=1}^{M} (P_{j_1,t_i} - P_{j_1,t_{i-1}})(P_{j_2,t_i} - P_{j_2,t_{i-1}}) \\ \mathsf{RC}_{t_1,m}(P) &= \{\mathsf{RC}_{m,j_1,j_2}\}_{j_1,j_2}, \text{ for } j_1, j_2 = 1, \dots, d \end{aligned}$$

Realized Copula -

Realized Kernels, BNHLS (2011, JoE)

Synchronization - refresh time sampling

$$\begin{array}{lll} \tau_1 & = & \max\{t_{1,1}, \dots, t_{d,1}\} \\ \tau_{i+1} & = & \arg\min\{t_{j,k_j} | t_{j,k_j} > \tau_i, \ \forall j \in 1 \dots d\} \end{array}$$

Leads to new high-frequency vector of returns $p_i = P_{\tau_i} - P_{\tau_{i-1}}$, where i = 1, ..., n and n is the of refresh time observations.

Realized Variance of Google-IBM-Oracle

Trades

Realized Covariance of Google-IBM-Oracle

Trades

Realized Correlation of Google-IBM-Oracle

Realized Correlations

Realized Correlation of IBM-Pfizer-Exxon

Realized Correlations

Descriptive Statistics

		11			
	min.	median	mean	max.	std.
RV(Google)	2.277e-5	1.714e-4	2.503e-4	0.003	0.269e-3
RV(IBM)	1.431e-5	1.048e-4	1.704e-4	0.001	0.180e-3
RV(Oracle)	5.220e-5	2.208e-4	3.082e-4	0.002	0.253e-3
RC(Google,IBM)	1.978e-6	5.758e-5	9.112e-5	0.001	0.110e-3
RC(Google,Oracle)	5.359e-6	7.628e-5	1.112e-4	0.001	0.128e-3
RC(IBM, Oracle)	2.106e-6	6.749e-5	1.015e-4	0.001	0.113e-3
RV(IBM)	1.474e-5	1.014e-4	1.704e-4	0.194e-4	1.820e-4
RV(Pfizer)	2.819e-5	2.067e-4	2.837e-4	0.311e-4	2.467e-4
RV(Exxon)	2.455e-5	1.281e-4	1.810e-4	0.229e-4	1.786e-4
RC(IBM,Pfizer)	-1.550e-6	4.069e-5	6.553e-5	0.161e-4	9.599e-5
RC(IBM, Exxon)	4.231e-8	5.198e-5	8.442e-5	0.111e-4	1.010e-4
RC(Pfizer,Exxon)	-3.858e-6	4.691e-5	7.187e-5	0.112e-4	8.744e-5

Table 1: Descriptive statistics of the realized kernels (Var and Cov).

LCP for Google-IBM-Oracle

LCP for IBM-Pfizer-Exxon

Gaussian models

Recent suggestions in the multivariate RV literature: the matrix-log model (Bauer and Vorkink, 2010) and the Cholesky factorization (Chiriac and Voev, 2011).

For the logm-model, apply the logm to the RV matrix

$$A_t = \log m(H_t)$$

and apply the vech-operator

$$a_t = \operatorname{vech}(A_t)$$

which yields a d(d+1)/2 vector a_t .

Empirical study -

To this vector the same HAR-forecasting rule is applied. Predictions $\hat{a}_{t+1|t}$ are converted to positive-definite predicted covariance matrices by applying the reverse vech-operator and the matrix exponential:

$$\widehat{\mathcal{H}}_{t+1|t} = \exp(\widehat{A}_{t+1|t})$$
.

Likewise, for the Cholesky decomposition, find a matrix A such that

$$H = AA^{\top}$$
.

For predicitons, use a HAR model on the vector obtained from the vech-operation, and convert predicted Cholesky factors back:

$$\widehat{H}_{t+1|t} = \widehat{A}_{t+1|t} \widehat{A}_{t+1|t}^{\top} .$$

Overview on models

- \Box daily models: LCP ($m_0 = 40$) and rolling window (w = 250)
- ☑ 2 methods of copula estimation (MM, ad hoc)
- ☑ 2 copula functions (rotated Gumbel, Clayton)
- 2 RV Gaussian Models (Chiriac and Voev (2011); Bauer and Vorkink (2010))

Value at Risk (VaR), I

Let $a = \{a_1, \ldots, a_d\}, a_i \in \mathbb{Z}$ be the portfolio. The value V_t of a is given by

$$V_t = \sum_{j=1}^d a_j S_{j,t}$$

and the profit and loss (P&L) function of the portfolio

$$L_{t+1} = (V_{t+1} - V_t) = \sum_{j=1}^d a_j S_{j,t} \{ \exp(X_{j,t+1}) - 1 \},$$

where $w_j = a_{j,t}S_{j,t} / \sum_{i=1}^d (a_{i,t}S_{i,t})$ and $w_i = 1/d, \ 1, \ldots, d$.

0 0

Realized Copula -

4-6

VaR, II

The distribution function of L is given by

$$F_L(x) = P(L \le x).$$

The Value-at-Risk at level α from w is defined as the α -quantile from F_L :

$$\mathsf{VaR}(\alpha) = \mathsf{F}_{\mathsf{L}}^{-1}(\alpha).$$

Backtesting: estimated values of the VaR are compared with the true $\{l_t\}$ of the function L_t , an *exceedance* occurring for each l_t smaller than $\widehat{VaR}_t(\alpha)$. The *exceedances ratio* $\widehat{\alpha}$ is given by:

$$\widehat{\alpha} = \frac{1}{T} \sum_{t=r}^{T} \mathsf{I}\{I_t < \widehat{\mathsf{VaR}}_t(\alpha)\}.$$

rGumbel, LCP

rGumbel, MM

rGumbel, ad hoc

VaR Performance for Google-IBM-Oracle

$mode \setminus \alpha$	0.01	0.05	0.1
LCP $m_0 = 40$ (rGumbel)	0.0258 (0.028)	0.0369 (0.300)	0.0775 (0.200)
ROL $w = 250$ (rGumbel)	0.0221 (0.083)	0.0332 (0.177)	0.0664 (0.051)
MM (rGumbel)	0.0148 (0.462)	0.0590 (0.506)	0.0996 (0.983)
ad hoc (rGumbel)	0 0148 (0 462)	0 0590 (0 506)	0.0996 (0.983)
LCP $m_0 = 40$ (Clayton)	0 0258 (0 028)	0 0517 (0 900)	0.0849 (0.395)
ROL $w = 250$ (Clayton)	0.0221 (0.083)	0.0443 (0.659)	0.0738 (0.133)
MM (Clayton)	0.0148 (0.462)	0.0554 (0.690)	0.0959 (0.822)
ad hoc (Clayton)	0 0148 (0 462)	0.0554 (0.690)	0 0886 (0 522)
Gauss (Bauer and Vorkink; 2010)	0.0406 (1e-04)	0.0738 (0.092)	0.1218 (0.246)
Gauss (Chiriac and Voev; 2011)	0.0369 (6e-04)	0.0812 (0.030)	0.1255 (0.177)

Table 2: VaR performance $(\hat{\alpha})$ for the Google-IBM-Oracle portfolio. *p*-values of the Kupiec test in brackets.

VaR Performance for IBM-Pfizer-Exxon

$mode \setminus \alpha$	0.01	0.05	0.1
LCP $m_0 = 40$ (rGumbel)	0 0111 (0 861)	0.0443 (0.659)	0.0701 (0.084)
ROL $w = 250$ (rGumbel)	0 0111 (0.861)	0.0332 (0.177)	0.0517 (0.003)
MM (rGumbel)	0.0074 (0.649)	0.0554 (0.691)	0 1033 (0.856)
ad hoc (rGumbel)	0.0074 (0.649)	0 0517 (0 900)	0 1033 (0 856)
LCP $m_0 = 40$ (Clayton)	0.0185 (0.211)	0.0554 (0.690)	0.0923 (0.667)
ROL $w = 250$ (Clayton)	0.0111 (0.861)	0.0369 (0.300)	0.0590 (0.015)
MM (Clayton)	0.0074 (0.649)	0.0554 (0.690)	0 1033 (0.856)
ad hoc (Clayton)	0.0074 (0.649)	0.0554 (0.690)	0 1033 (0 856)
Gauss (Bauer and Vorkink; 2010)	0.0369 (0.000)	0.0738 (0.092)	0.1107 (0.563)
Gauss (Chiriac and Voev; 2011)	0.0406 (0.000)	0.0738 (0.092)	0.1144 (0.439)

Table 3: VaR performance ($\hat{\alpha}$) for the IBM-Pfizer-Exxon portfolio. *p*-values of the Kupiec test in brackets.

Conclusions

- ☑ We introduce the notion of realized copula.
- We suggest a forecasting framework for RCop and thus extend the literature on multivariate RCov models.
- Empirically, we find that model relying on daily data are too inert for good forecasts.
- Standard RCov model are more adaptive, but are dominated by copula models.
- RCop unites both advantages and shows nice forecasting performance.

References

🔈 H. Joe

Multivariate Models and Concept Dependence *Chapman & Hall*, 1997

🍉 V. Spokoiny

Local Parametric Methods in Nonparametric Estimation *Springer Verlag*, 2009

- E. Giacomini, W. Härdle and V. Spokoiny Inhomogeneous Dependence Modeling with Time-Varying Copulae Journal of Business and Economic Statistics, 27(2), 2009
- O. Okhrin and Y. Okhrin and W. Schmid
 On the Structure and Estimation of Hierarchical Archimedean
 Copulas
 under revision in Journal of Econometrics, 2009

Appendix

- Realized kernels
- ML estimation
- Details on LCP
- ⊡ Kupiec (1995) test

Basis

Let
$$Y = (Y_1, \dots, Y_d)^ op$$
 be a d -dim efficient (log) price process $dY_t = \mu_t dt + \sigma_t dW_t$

The market microstructure effect is modeled through an additive component

$$\begin{array}{lll} P_{jt} &=& Y_{jt} + U_{jt}, \mbox{ with } I\!\!E(U_{jt}) = 0 \\ \sum_{h} |h\Omega_{h}| &<& \infty, \mbox{ where } \Omega_{jh} = Cov(U_{jt}, U_{j,t-h}). \end{array}$$

Usual aim: Estimate the quadratic variation of Y, i.e. $[Y] = \int_0^1 \Sigma_u du$, with $\Sigma = \sigma \sigma^\top$.

Realized Copula -

Naive Estimator (realized co/variance)

Synchronization – *last traded*: for time t, the log-price for asset j is given by P_{j,t^*} with $t^* = \max\{t_{j,i} | t_{j,i} \le t, \forall i = 1, ..., N_j\}$. M = M(m) number of subintervals of length m (in seconds)

$$\begin{aligned} \mathsf{RC}_{t_1,m,j_1,j_2}(P) &= \sum_{i=1}^{M} (P_{j_1,t_i} - P_{j_1,t_{i-1}})(P_{j_2,t_i} - P_{j_2,t_{i-1}}) \\ \mathsf{RC}_{t_1,m}(P) &= \{\mathsf{RC}_{m,j_1,j_2}\}_{j_1,j_2}, \text{ for } j_1, j_2 = 1, \dots, d \end{aligned}$$

Realized Copula

Realized Kernels, BNHLS (2011, JoE)

Synchronization - refresh time sampling

$$\begin{aligned} \tau_1 &= \max\{t_{1,1}, \dots, t_{d,1}\} \\ \tau_{i+1} &= \arg\min\{t_{j,k_j} | t_{j,k_j} > \tau_i, \ \forall j \in 1 \dots d\} \end{aligned}$$

Leads to new high-frequency vector of returns $p_i = P_{\tau_i} - P_{\tau_{i-1}}$, where i = 1, ..., n and n is the of refresh time observations.

Realized Kernels

The multivariate realized kernel is defined as

$$\mathcal{K}(P) = \sum_{h=-H}^{H} k\left(\frac{|h|}{H+1}\right) \Gamma_h,$$

with Γ_h being a matrix of autocovariances given by

$$\Gamma_{h} = \begin{cases} \sum_{j=|h|+1}^{n} p_{j} p_{j-h}^{\top}, \ h \ge 0\\ \sum_{j=|h|+1}^{n} p_{j-h} p_{j}^{\top}, \ h < 0 \end{cases},$$

and k(x) being a weight function of the *Parzen kernel*, defined through

$$k(x) = \begin{cases} 1 - 6x^2 + 6x^3 & 0 \le x \le 1/2 \\ 2(1 - x)^3 & 1/2 \le x \le 1 \\ 0 & x > 1 \end{cases}$$

Realized Copula -

Realized Kernels

The multivariate bandwidth parameter

$$H = \left[d^{-1} \sum_{j=1}^d H_j \right]$$

where $H_j, \ j=1,\ldots,d$ is chosen by mean squared error criteria as

$$H_j = c^* \xi_j^{4/5} n^{3/5}$$

with $c^* = \left\{ k''(0)^2 / \int_0^1 k(x)^2 dx \right\}^{1/5}$, which is equal to $c^* = 3.511678$ for Parzen kernel. $\xi^2 = \omega / \sqrt{IQ}$ denotes the *noise-to-signal ratio*, where ω^2 is the

measure of microstructural noise variance and IQ is the integrated quarticity as defined in Barndorff-Nielsen and Shephard (2002).

Realized Copula

ML estimation of copula parameters

For a sample of observations $\{x_t\}'_{t=1}$ and $\vartheta = (\delta_1, \dots, \delta_d; \theta) \in \mathbb{R}^{d+1}$ the likelihood function is

$$L(\vartheta; x_1, \ldots, x_T) = \prod_{t=1}^T f(x_{1,t}, \ldots, x_{d,t}; \delta_1, \ldots, \delta_d; \theta)$$

and the corresponding log-likelihood function

$$\ell(\vartheta; x_1, \dots, x_T) = \sum_{t=1}^T \log c \{ F_{X_1}(x_{1,t}, \delta_1), \dots, F_{X_d}(x_{d,t}, \delta_d); \theta \}$$

+
$$\sum_{t=1}^T \sum_{j=1}^d \log f_j(x_{j,t}, \delta_j)$$

"Oracle" choice: largest interval $I = [t_0 - m_{k^*}, t_0]$ where the small modelling bias condition (SMB)

$$\triangle_{I}(\theta) = \sum_{t \in I} \mathcal{K}\{\mathcal{C}(\cdot; \theta_{t}), \mathcal{C}(\cdot; \theta)\} \leq \triangle.$$

holds for some $\triangle \ge 0$. m_{k^*} is the ideal scale, θ is ideally estimated from $I = [t_0 - m_{k^*}, t_0]$ and $\mathcal{K}(\cdot, \cdot)$ is the *Kullback-Leibler* divergence

$$\mathcal{K}\{C(\cdot;\theta_t), C(\cdot;\theta)\} = \boldsymbol{E}_{\theta_t} \log \frac{c(\cdot;\theta_t)}{c(\cdot;\theta)}$$

Under the SMB condition on I_{k^*} and assuming that $\max_{k \leq k^*} \mathbb{E}_{\theta_t} | \mathcal{L}(\widetilde{\theta}_k) - \mathcal{L}(\theta) |^r \leq \mathcal{R}_r(\theta_t)$, we obtain

$$egin{split} m{E}_{ heta_t} \log \left\{ 1 + rac{|\mathcal{L}(\widetilde{ heta}_{\widehat{k}}) - \mathcal{L}(heta)|^r}{\mathcal{R}_r(heta)}
ight\} &\leq 1 + riangle, \ m{E}_{ heta_t} \log \left\{ 1 + rac{|\mathcal{L}(\widetilde{ heta}_{\widehat{k}}) - \mathcal{L}(\widehat{ heta}_{\widehat{k}})|^r}{\mathcal{R}_r(heta)}
ight\} &\leq 1 + riangle, \end{split}$$

where \hat{a}_I is an adaptive estimator on I and \tilde{a}_I is any other parametric estimator on I.

Test of homogeneity

Interval $I = [t_0 - m, t_0], \mathfrak{T} \subset I$ $H_0 : \forall \tau \in \mathfrak{T}, \ \theta_t = \theta, \forall t \in J = [\tau, t_0], \forall t \in J^c = I \setminus J$ $H_1 : \exists \tau \in \mathfrak{T}, \ \theta_t = \theta_1; \ \forall t \in J, \ \theta_t = \theta_2 \neq \theta_1; \ \forall t \in J^c$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$T_{I,\tau} = \max_{\theta_1,\theta_2} \{ L_J(\theta_1) + L_{J^c}(\theta_2) \} - \max_{\theta} L_I(\theta)$$

= $ML_J + ML_{J^c} - ML_I$

Test statistic for unknown change point location:

$$T_I = \max_{\tau \in \mathfrak{T}_I} T_{I,\tau}$$

Reject H_0 if for a critical value ζ_I

$$T_I > \zeta_I$$

Selection of I_k and ζ_k

- : set of numbers m_k defining the length of I_k and \mathfrak{T}_k are in the form of a geometric grid
- $\ \, \boxdot \ \, m_k = [m_0 c^k] \ \, \text{for} \ \, k = 1, 2, \ldots, K, \ \, m_0 \in \{20, \ 40\}, \ \, c = 1.25 \\ \text{and} \ \, K = 10, \ \, \text{where} \ \, [x] \ \, \text{means the integer part of} \ \, x$

□
$$I_k = [t_0 - m_k, t_0]$$
 and $\mathfrak{T}_k = [t_0 - m_k, t_0 - m_{k-1}]$ for $k = 1, 2, ..., K$

(Mystery Parameters)

Realized Copula

Sequential choice of ζ_k

- after k steps there are two cases: change point at some step $\ell \leq k$ or no change points.
- \boxdot let \mathcal{B}_ℓ be the event meaning the rejection at step ℓ

$$\mathcal{B}_{\ell} = \{ T_1 \leq \zeta_1, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell} > \zeta_{\ell} \},\$$

and
$$(\widehat{ heta}_k)=(\widetilde{ heta}_{\ell-1})$$
 on \mathcal{B}_ℓ for $\ell=1,\ldots,k.$

 \boxdot we find sequentially such a minimal value of ζ_ℓ that ensures the inequality

$$\max_{k=l,...,K} \boldsymbol{E}_{\theta^*}[|\mathcal{L}(\widetilde{\theta}_k) - \mathcal{L}(\widetilde{\theta}_{\ell-1})|^r \boldsymbol{\mathsf{I}}(\mathcal{B}_\ell)] \leq \rho \mathcal{R}_r(\theta^*) k / (K-1)$$

return to LCP

Realized Copula -

Kupiec (1995) test

LR test based on the binomial model. $H_0: \hat{\alpha} = \alpha$ with test statistic

$$LR_{uc} = 2\log \frac{\widehat{\alpha}^{N}(1-\widehat{\alpha})^{T-N}}{\alpha^{N}(1-\alpha)^{T-N}}$$

