Systemic Weather Risk and Crop Insurance: The Case of China

Ostap Okhrin¹ Martin Odening² Wei Xu³

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics¹ Department of Agricultural Economics² Humboldt–Universität zu Berlin SCOR SE³ Zürich http://lvb.wiwi.hu-berlin.de http://www.agrar.hu-berlin.de

Motivation

- □ High weather sensitivity of agricultural production
- ☑ Increase of extreme weather events
- Direction Problems with traditional (re)insurance
- ☑ Emergence of weather markets

Potential demand for weather derivatives in agriculture

Agricultural Insurance Systems

Country	Ins. coverage	Premi um subsidies	Catastrophe aid	Partici- pation	Reinsu- rance
Germany	hail, supp∣.ins.	n on e	only for uninsure- able risks	approx.35% hail <1% MPCI	pri ins.
France	multiple peril crop ins.	60%	government aid for natu- ral disasters (drought, earthquake, flooding)	20%	pri. ins.
Greece Italy	comprehensive ins hail, frost, drought	50% 60% for hail 80% for MPCI	n.a. only for uninsure- able risks	n.a.	n.a. pri. ins.
Luxem- bourg	comprehensive ins	up to 50%	n.a.	10%	n.a.
Austria	comprehensive ins comprehensive	50% for hail- and frost ins.	only for uninsure- able risks only for extreme	78% hail 56% MPCI approx	priv.ins. exclusively priand
Spain Canada	ins. multiple peril crop ins.	55% 50%	disasters for extreme and uninsurable disasters	42% 50%	pub.ins. pri.and pub.ins.
USA	multiple peril crop ins	35 up to 100%	only for unin- surable disasters	80%	pri and pub ins

Table 1: Agricultural Insurances Systems

Pearson Correlation Coefficients vs. Distance: normal yield years

Pearson Correlation Coefficients vs. Distance: extreme yield years

Objectives & Research Questions

- Quantification of the dependence structure of weather events at different locations
- Does the dependence of weather events fade out with increasing distance?
- □ Is spatial diversification of systemic weather risk possible?
- □ How to measure systemic weather risk correctly?

Outline

- 1. Motivation \checkmark
- 2. Model and Methods
- 3. Application
- 4. Conclusion

Flow Chart of the Computational Procedure

Buffer Fund $I_i = I_i(T_i), \ L_i = f(I_i, K_i) \cdot V, \quad \Pi_i = E(L_i),$ $NTL = \sum_{i=1}^n w_i \cdot (L_i - \Pi_i),$ $BF = VaR_{\alpha}(NTL), \ BL_n = BF/n$ $DE = nBL_n / \sum_{j=1}^n BL_j$

- BF buffer fund,
- NTL net total loss,
- 🖸 L loss,
- Π fair premium,
- 🖸 w weight,

Systemic Weather Risk -

- ⊡ I weather index,
- ⊡ K trigger level,

- \boxdot α confidence level,
- 🖸 i region.

Indices: Growing Degree Days (GDD)

$$GDD_{i,t} = \sum_{j=\tau_{B,t}}^{\tau_{E,t}} \max\left(0, T_{i,t,j} - \widehat{T}\right),$$

where $\tau_{B,t}$ is the first of March, $\tau_{E,t}$ is October 31, where \hat{T} is the triggering temperature and is 5°*C*;

□ Loss function for the risk of insufficient temperature

$$L_{GD_{i,t}} = \max\left(0, K_i^{GDD} - GDD_t\right) \cdot V,$$

 K_i^{GDD} is the strike level being equal to 50% and the 15% quantile of the index distribution.

Systemic Weather Risk —

Indices: Frost Index (FI)

$$\begin{aligned} FI_{i,t} &= \sum_{j=\tau_{N}}^{\tau_{M}} I\left(T_{i,t,j} < \widehat{T}\right), \\ L_{FI_{i,t}} &= \max\left(0, FI_{i,t} - K_{i}^{FI}\right) \cdot V, \end{aligned}$$

where τ_N and τ_M denote November 1 and March 31, $\hat{T} = 0^{\circ}C$ and K_i^{FI} is the strike level be equal to 50% and 85%.

Systemic Weather Risk -

Daily average temperature

$$T_{i,t} = \Delta_{i,t} + \Psi_{i,t},$$

$$\Delta_{i,t} = a_{1,i} + a_{2,i} \cdot t + a_{3,i} \cdot \cos\left(2\pi \frac{t - a_{4,i}}{365}\right),$$

$$\Psi_{i,t} = \sum_{j=1}^{J_i} b_{j,i} \cdot \Psi_{t-j,i} + \sigma_{i,t} \cdot \varepsilon_{i,t}$$

time-varying variance:

$$\sigma_{i,t}^{2} = d_{1,i} + d_{2,i} \cdot t + \sum_{k=1}^{K_{i}} \left[d_{3,k,i} \cdot \cos\left(2\pi k \frac{t}{365}\right) + d_{4,k,i} \cdot \sin\left(2\pi k \frac{t}{365}\right) \right]$$

Systemic Weather Risk _____

\$ 16

Correlation

2-5

- \boxdot same linear correlation coefficient (ho=0.4)
- 🖸 same marginal distributions
- 🖸 rather big difference

Systemic Weather Risk

Copula

For a distribution function F with marginals F_{X_1}, \ldots, F_{X_d} , there exists a copula $C : [0, 1]^d \to [0, 1]$, such that

$$F(x_1,\ldots,x_d)=\mathsf{C}\{F_{X_1}(x_1),\ldots,F_{X_d}(x_d)\}.$$

Recall Archimedean Copula

Multivariate Archimedean copula $C : [0,1]^d \rightarrow [0,1]$ defined as

$$C(u_1,\ldots,u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\},$$
 (1)

where $\phi: [0,\infty) \to [0,1]$ is continuous and strictly decreasing with $\phi(0) = 1$, $\phi(\infty) = 0$ and ϕ^{-1} its pseudo-inverse. Example 1

 $\begin{array}{lll} \phi_{\textit{Gumbel}}(u,\theta) &=& \exp\{-u^{1/\theta}\}, \text{ where } 1 \leq \theta < \infty \\ \phi_{\textit{Clayton}}(u,\theta) &=& (\theta u + 1)^{-1/\theta}, \text{ where } \theta \in [-1,\infty) \backslash \{0\} \end{array}$

Disadvantages: too restrictive: single parameter, exchangeable

Systemic Weather Risk -

Model and Methods

Hierarchical Archimedean Copulas

Simple AC with s=(1234) $C(u_1, u_2, u_3, u_4) = C_1(u_1, u_2, u_3, u_4)$ x₁ x₂ x₃ x₄ x₄ x₂ x₃ x₄ AC with s=((123)4) $C(u_1, u_2, u_3, u_4) = C_1 \{C_2(u_1, u_2, u_3), u_4\}$ x₁ x₂ x₃ x₄ x₁ x₂ x₃ x₄

Fully nested AC with s=(((12)3)4) $C(u_1, u_2, u_3, u_4) = C_1[C_2\{C_3(u_1, u_2), u_3\}, u_4]$ x₁ x₂ x₃ x₄ z₍₁₂₎₃ z₍₍₁₂₎₃₎₄

Systemic Weather Risk

Partially Nested AC with s=((12)(34)) $C(u_1, u_2, u_3, u_4) = C_1 \{ C_2(u_1, u_2), C_3(u_3, u_4) \}$

Estimation Issues - Margins

$$F_j(x; \hat{\alpha}_j) = F_j \left\{ x; \arg \max_{\alpha} \sum_{i=1}^n \log f_j(X_{ji}, \alpha) \right\},$$

$$\hat{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n I(X_{ji} \le x),$$

$$\tilde{F}_j(x) = \frac{1}{n+1} \sum_{i=1}^n K\left(\frac{x - X_{ji}}{h}\right)$$

for j = 1, ..., k, where $\kappa : \mathbb{R} \to \mathbb{R}$, $\int \kappa = 1$, $K(x) = \int_{-\infty}^{x} \kappa(t) dt$ and h > 0 is the bandwidth.

$$\check{F}_j(x) \in \{\hat{F}_j(x), \tilde{F}_j(x), F_j(x; \hat{\alpha}_j)\}$$

Systemic Weather Risk ——

Estimation Issues - Multistage Estimation

$$\left(\frac{\partial \mathcal{L}_1}{\partial \boldsymbol{\theta}_1^{\top}}, \dots, \frac{\partial \mathcal{L}_p}{\partial \boldsymbol{\theta}_p^{\top}}\right)^{\top} = \mathbf{0},$$

where
$$\mathcal{L}_j = \sum_{i=1}^n l_j(\mathbf{X}_i)$$

 $l_j(\mathbf{X}_i) = \log \left(c(\{\phi_\ell, \boldsymbol{\theta}_\ell\}_{\ell=1,\dots,j}; s_j) [\{\check{F}_m(x_{mi})\}_{m \in s_j}] \right)$
for $j = 1, \dots, p$.

Theorem

Under regularity conditions, estimator $\hat{oldsymbol{ heta}}$ is consistent and

$$n^{\frac{1}{2}}(\hat{\theta}-\theta) \stackrel{a}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{B}^{-1}\Sigma\mathbf{B}^{-1})$$

Systemic Weather Risk ------

Copula: Goodness-of-Fit Tests

Hypothesis

$$H_0: C_{\theta} \in C_0; \theta \in \Theta \ \textit{vs} \ H_1: C_{\theta} \not\in C_0; \theta \in \Theta,$$

Cramér von Mises

$$S = n \int_{[0,1]^d} \left[\widehat{C}(u_1,\ldots,u_d) - C(u_1,\ldots,u_d;\widehat{\theta}) \right]^2 d\widehat{C}(u-1,\ldots,u_d)$$

Kolmogorov-Smirnov

$$T = \sqrt{n} \sup_{u_1,\ldots,u_d \in [0,1]} |\widehat{C}(u_1,\ldots,u_d) - C(u_1,\ldots,u_d;\widehat{\theta})|$$

in practice p-values are calculated using the bootstrap methods described in Genest and Remillard (2008)

Systemic Weather Risk -

Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA) **Conditional inversion method:** Let $C = C(u_1, \ldots, u_k)$, $C_i = C(u_1, \ldots, u_i, 1, \ldots, 1)$ and $C_k = C(u_1, \ldots, u_k)$. Conditional distribution of U_i is given by $C_i(u_i|u_1, \ldots, u_{i-1}) = P\{U_i \le u_i|U_1 = u_1 \ldots U_{i-1} = u_{i-1}\}$ $= \frac{\partial^{i-1}C_i(u_1, \ldots, u_i)}{\partial u_1 \ldots \partial u_{i-1}} / \frac{\partial^{i-1}C_{i-1}(u_1, \ldots, u_{i-1})}{\partial u_1 \ldots \partial u_{i-1}}$

$$\begin{array}{ll} \hline & \text{Generate i.r.v. } v_1, \dots, v_k \sim U(0,1) \\ \hline & \text{Set } u_1 = v_1 \\ \hline & u_i = C_k^{-1}(v_i | u_1, \dots, u_{i-1}) \ \forall i = \overline{2,k} \end{array}$$

Systemic Weather Risk -

Systemic Weather Risk -

Location of selected weather stations

Flow Chart of the Computational Procedure

Descriptive Statistics

	st.		GDD	FI
_	1	4114.98	(198.13)	6.26 (6.07)
	2	3740.56	(148.25)	19.92 (10.29)
	3	3700.36	(146.95)	30.76 (12.23)
	4	3517.92	(186.12)	32.22 (12.32)
	5	3498.83	(144.03)	5.86 (5.18)
	6	2897.29	(140.68)	75.60 (11.64)
	7	2623.34	(172.30)	87.44 (12.07)
	14	2353.13	(141.53)	117.68 (9.24)
	15	2557.45	(103.70)	0.20 (0.64)
	16	3113.99	(156.99)	0.26 (0.60)
	17	3670.46	(105.20)	0.00 (0.00)

Table 2: Descriptives

Illustration of Dependence Cluster

BL for Different Aggregation: GDD

Aggregation: (2) (2, 3) (1-3) (1-6, 8) (1-8) (1-8, 15-17) (1-17)

BL for Different Aggregation: Fl Aggregation: (2) (2, 3) (1-3) (1-6, 8) (1-8) (1-8, 11-14)

Fair Prices, Buffer Loads and Diversification Effects I

Type of Copula	Gaussian	Gumbel	Rotated-Gumbel		
GDD Strike Level 50%					
Fair Price	58.047	58.623	58.930		
Buffer Load	85.091	94.784	100.839		
Diversification Effect	0.481	0.539	0.567		
GDD Strike Level 15%					
Fair Price	10.598	10.275	10.332		
Buffer Load	31.688	33.476	35.301		
Diversification Effect	0.430	0.466	0.488		

Fair Prices, Buffer Loads and Diversification Effects II

Type of Copula	Gaussian	Gumbel	Rotated-Gumbel		
FI Strike Level 50%					
Fair Price	3.082	3.166	3.004		
Buffer Load	7.197	7.253	7.238		
Diversification Effect	0.742	0.748	0.777		
FI Strike Level 15%					
Fair Price	0.611	0.593	0.603		
Buffer Load	2.750	2.611	2.838		
Diversification Effect	0.658	0.645	0.690		

Conclusions

- Weather risk in China has a systemic component on a state level as well as on a national level
- The possibility of regional diversification depends on the type of weather index (temperature < drought < flooding)
- Weather risks should be globally diversified or transferred to the capital market (e.g. weather bonds)
- Linear correlation may under- or overestimate systemic weather risk
- Copulas allow a flexible modeling of the dependence structure of joint weather risks
- But: risk of misspecification

Systemic Weather Risk and Crop Insurance: The Case of China

Ostap Okhrin¹ Martin Odening² Wei Xu³

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics¹ Department of Agricultural Economics² Humboldt–Universität zu Berlin SCOR SE³ Zürich http://lvb.wiwi.hu-berlin.de http://www.agrar.hu-berlin.de

