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Abstract

We consider the problem of estimating the conditional quantile of

a time series fYtg at time t given covariates Xt, where Xt can ei-

ther exogenous variables or lagged variables of Yt . The conditional

quantile is estimated by inverting a kernel estimate of the conditional

distribution function, and we prove its asymptotic normality and uni-

form strong consistency. The performance of the estimate for light

and heavy-tailed distributions of the innovations are evaluated by a

simulation study. Finally, the technique is applied to estimate VaR

of stocks in DAX, and its performance is compared with the existing

standard methods using backtesting.

Keywords: conditional quantile, kernel estimate, quantile autoregression,
time series, uniform consistency, value-at-risk

1 Introduction

We consider a stationary and �-mixing multivariate time series fVt; t 2 Zg
adapted to the sequence Ft;�1 < t < 1; of �-algebras. Partition it as
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Vt = (Yt;Xt) where the real-valued response variable Yt 2 R is Ft-measurable
and the covariate Xt 2 Rd is Ft�1-measurable. For some 0 < � < 1, we want
to estimate the conditional �-quantile of Yt given the past Ft�1 assuming that
it is completely determined by Xt, i.e. we have

Yt = ��(Xt) + Zt; (1.1)

where the conditional �-quantile of Zt given Ft�1 is 0. The quantile innova-
tions Zt are not assumed to be independent of Xt. The conditional quantile
function ��(x) may be rather arbitrary, apart from some regularity assump-
tions, and we want to estimate it nonparametrically. The model (1.1) includes
the case of a nonparametric quantile regression where (Zt;Xt);�1 < t <1;
are i.i.d., as well as the quantile autoregression (QAR) of order p

Yt = ��(Yt�1; : : : ; Yt�p) + Zt;

where Xt = (Yt�1; : : : ; Yt�p) is just part of the past of the univariate time
series Yt. If we choose Xt = (Yt�1; : : : ; Yt�p;Ut�1) where the random vector
Ut consists of observations from other time series than Yt available at time
t, then (1.1) would become a quantile autoregressive model with exogeneous
components. One main application, which we have in mind, is a 
exible
procedure for calculating the value-at-risk of a �nancial time series (com-
pare, e.g., Jorion, 2000) which allows for including other information on the
markets than just past data of the particular time series under consideration.

Considering other �nancial time series models, (1.1) can be seen, e.g., as
a generalization of AR-ARCH-models, introduced in Weiss (1984), and their
nonparametric generalizations reviewed by H�ardle et al. (1997). For instance,
consider a �nancial time series model of AR(p)-ARCH(p)-type

Yt = �(Xt) + �(Xt) et; t = 1; 2; : : : (1.2)

where Xt = (Yt�1; : : : ; Yt�p), � and � are arbitrary functions and fetg is a
sequence of iid random variables with mean 0 and variance 1. Then (1.2)
can be written in the form (1.1) with ��(Xt) = �(Xt) + �(Xt)q

e
� and Zt =

�(Xt)(et�qe�), where qe� is the �-quantile of et. The quantile innovations Zt are
independent of Xt only if fYtg has a homoscedastic error, i.e. the volatility
function �(x) is constant. For p = 1, (1.2) can be interpreted as a discrete-
time version of the di�usion process dYt = m(Yt)dt+�(Yt)dWt, where W de-
notes the standard Brownian motion, which includes the geometric Brownian
motion as a stock price model in option pricing (for �(x) = �x; �(x) = �x)
and the Vasicek model for interest rates.
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The estimation of ��(Xt) based on the model (1.2) usually involves the esti-
mation of �(Xt) and �(Xt) and the calculation of qe�, for the latter assuming
the distribution of the et to be known, using historical simulation procedures
or a combination of both. Based on the more general model (1.1), we can,
however, derive a more straightforward estimate, and, additionally, we do
not have to assume the �niteness of the variance of Yt which, for �nancial
data, seems not always to be guaranteed. We get a nonparametric estimate
of ��(x) directly by �rst estimating the conditional distribution function of
Yt given Xt and then inverting it. This type of estimate is related to local
medians as considered by Truong and Stone (1992) and Boente and Fraiman
(1995) - compare the discussion at the end of section 2. For estimating the
conditional distribution, we use a kernel estimate of Nadaraya (1964) and
Watson (1964) type. Apart from the disadvantages of not being adaptive
and having some boundary e�ects, which can be �xed anyhow (see Hall et
al., 1998), it has advantages of being a constrained estimator between 0 and
1 and a monotonically increasing function. This is an important property
when deriving quantile function estimators by the inversion of a distribution
estimator.

Our work is closely related to Cai (2002), and also the following up paper in
Cai and Wang (2008), where they propose a conditional quantile estimation
by inverting a weighted double kernel technique for serial dependent data
and applied in estimating conditional VaR. However, our approach is much
simpler than Cai (2002) and is much easier to be implemented as the cal-
culations of weights are computationally demanding. Moreover the weights
does not include our case as 1=n (only asymptotically) with an easy averag-
ing. Theoretically, we have proved a stronger uniform consistency results for
our estimation. Also the simulation performance is compared with Cai and
Wang (2008), and we have shown that our method is competitive relative to
Cai and Wang (2008).

Our paper consists of four sections, Section 2 we lay down the assumptions
and state our major theoretically results. In Section 3, we illustrate the per-
formance of the quantile function estimate with a small simulation study.
The technical results and proofs are postponed to the appendix. Section 4
we demonstrate the empirical performance of our estimator by a VaR calcu-
lation for German stocks.
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2 Asymptotic behaviour of quantile autore-

gressive kernel estimates

We consider kernel estimates of the quantile autoregressive function ��(x)
based on a sample (Yt;Xt); t = 1; : : : ; n; from the quantile autoregressive
model (1.1). In a �rst step, we have to estimate the conditional distribution
function Fx(y) = P (Yt � y jXt = x) = E[It;y jXt = x] of Yt given Xt =
x, which can be written as the conditional expectation of It;y = IfYt�yg
and, therefore, may be estimated by the standard Nadaraya-Watson kernel
estimate bFx(y) = Pn

t=1Kh(x�Xt)It;yPn
t=1Kh(x�Xt)

: (2.1)

Here, K(u) is a d-dimensional kernel andKh(u) = h�dK(u=h) is the rescaled
kernel. For sake of simplicity, we assume that the bandwidth h is the same in
all directions, but we could generalize our results in a straightforward manner
to vectors (h1; : : : ; hd)

T of bandwidths.

For any � 2 (0; 1), the quantile autoregressive function ��(x) is given by

��(x) = inffy 2 RjFx(y) � �g:

Therefore, we propose to estimate ��(x) by the following kernel estimate

b��(x) = inffy 2 Rj bFx(y) � �g � bF�1
x
(�); (2.2)

where bF�1
x
(�) denotes the usual generalized inverse of the distribution func-

tion bFx(y) which is a pure jump function of y.

For our asymptotic considerations, we have to assume that the time series
(Yt;Xt) satis�es appropriate mixing conditions. There are a number of mix-
ing conditions discussed, e.g., in the monographs of Doukhan (1994) and Bosq
(1996). Among them �- or strong mixing is a reasonably weak one known
to be ful�lled for many time series models. In particular, Masry (1995,1997)
has demonstrated that under some mild conditions, both ARCH processes
and nonlinear additive autoregressive models with exogeneous variables are
stationary and �-mixing. Thus, choosing Xt = (Yt�1; : : : ; Yt�p)

T in (1.2) and
assuming the time series Yt to be �-mixing would be an example of a quantile
autoregressive process (1.1) for which (Yt;Xt) and It;y in (2.1) are �-mixing
as well.
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The following set of assumptions are required for proving asymptotic nor-
mality of b��(x). Here and in the following, g(x) denotes the stationary
probability density of Xt.

(A1) The kernel K : Rd ! R is a nonnegative, Lipschitz continuous func-
tion, satisfying jK(u)j � K1 for all u,

R
K(u)du = 1;

R
uK(u)du = 0 andR kuk2K(u)du <1.

(A2) For all y;x satisfying 0 < Fx(y) < 1; g(x) > 0
(i) Fx(y) and g(x) are continuous and bounded in y;x,
(ii) g(x) is twice continuously di�erentiable, and, for �xed y, Fx(y) is twice
continuously di�erentiable with respect to x, where the derivatives are con-
tinuous functions of y and the second derivatives are H�older-continuous in x,
i.e. for some c; � > 0 and all x;x0; y�� @2

@xixj
Fx(y)� @2

@xixj
Fx0(y)

�� � c kx� x0k� ; i; j = 1; : : : ; d;

and analogously for g(x).
(iii) for �xed x, Fx(y) has the conditional density fx(y) which is continuous in
x and H�older-continuous in y: jfx(y)� fx(y

0)j � cjy� y0j� for some c; � > 0.
(iv) fx(��(x)) > 0 for all x.
(A3) The process f(Yt;Xt)g is stationary and �-mixing with mixing coe�-
cients satisfying �(s) = O(s�(2+�)), for some � > 0.

Theorem 2.1. Assume that (A1)-(A3) hold. As n!1, let the sequence of
bandwidths h > 0 converge to 0 such that nhd ! 1. Then, the conditional
quantile estimate is consistent, b��(x)!p ��(x), and asymptotically unbiased

Eb��(x)� ��(x) = h2B�(��(x)) + o(h2) where B�(y) = �B(y)

fx(y)
: (2.3)

If, additionally, the bandwidths are chosen such that nhd+4 is either 1 or
converges to 0, b��(x) is asymptotically normal,

p
nhd

�b��(x)� ��(x)� h2B�(��(x))
�!D N

�
0;
V 2(��(x))

f 2
x
(��(x))

�
; (2.4)

Here, B(y) and V 2(y) are de�ned in the bias and variance expansion for the
conditional distribution estimator in Lemma B.1 in the appendix.

As a step towards uniform consistency of the quantile autoregressive estimate,
we �rst need uniform consistency of the Nadaraya-Watson kernel estimate
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bFx(y) for the conditional distribution function. There are various versions of
this well-known result, e.g. Theorem 5.4.2 of Abberger (1996), depending on
the chosen set of assumptions. We impose the following conditions.

(B1) For some compact set G and some 
 > 0, g(x) � 
 for all x 2 G.
(B2) (Yt;Xt) is stationary and �-mixing with mixing coe�cients �(n); n � 1,
and there is an increasing sequence sn; n � 1, of positive integers such that
for some �nite A

n

sn
�2sn=(3n)(sn) � A; 1 � sn � n

2
for all n � 1: (2.5)

Using these assumptions in addition to (A1), (A2) and remarking that jIt;yj �
1, we immediately get the following version of the uniform consistency as a
special case of Theorem 3.3.5 of Gy�or� et al. (1989).

Theorem 2.2. Assume (A1), (A2), (B1) and (B2). If, as n!1, the band-

width h ! 0 such that eSn = nhd(sn log n)
�1 ! 1, then bFx(y) is uniformly

consistent on G in the strong sense

sup
x2G

j bFx(y)� Fx(y)j ! 0 a.s. (2.6)

We remark that from the proof of Theorem 2.3 below we also get a rate of
convergence of bFx(y). We also need uniform consistency of the Rosenblatt-
Parzen kernel estimate for the density g(x) of Xt given by

bg(x) = 1

n

nX
t=1

Kh(x�Xt): (2.7)

The following lemma, which gives the uniform rate of convergence of bg(x) on
the compact set G, follows immediately from the proof of Theorem 3.3.6 of
Gy�or� et al. (1989).

Lemma 2.1. Under the assumptions of Theorem 2.2

(i) sup
x2G jbg(x)� Ebg(x)j = O(eS� 1

2

n ) a.s.
(ii) sup

x2G jEbg(x)� g(x)j = O(h2).

To show uniform convergence of the quantile estimator b��(x), we interpret
the kernel estimate of the quantile autoregression in (2.2) in the light of
concepts of M-estimation as in Huber (1981). As we assume that Fx(y)
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is absolutely continuous, we automatically have Fx(��(x)) = �, and the
conditional quantile function ��(x);x 2 Rd, can be seen as a zero in the
argument � of the following functioneH(x; �) = Fx(�)� � = E[It;� � �jXt = x]

= E[	(Yt � �)jXt = x] (2.8)

with 	(u) = I(�1;0](u)� �. We de�ne the estimator of eH(x; �) as

eHn(x; �) = bFx(�)� � =

Pn
t=1Kh(x�Xt)(It;� � �)Pn

t=1Kh(x�Xt)

=

Pn
t=1Kh(x�Xt)	(Yt � �)Pn

t=1Kh(x�Xt)
: (2.9)

Now, b��(x) is not necessarily a zero of eHn(x; �), as the latter is a pure jump

function in �, but we have at least in good approximation eHn(x; b��(x)) � 0.

More precisely, the height of the jumps of bFx(�) and, therefore, of eHn(x; �)
are 1

n
Kh(x � Xt)=bg(x) where bg(x) is the kernel estimate of g(x) given by

(2.7). By Lemma 2.1 and assumption (B1), bg(x)! g(x) � 
 > 0 uniformly
in x 2 G, and using additionally the boundedness of the kernel K by K1,
the jumps of bFx(�) are bounded by c
=(nhd) with c
 = 2K1=
 uniformly for
x 2 G for large enough n. The de�nition (2.2) of b��(x) immediately implies

0 � eHn(x; b��(x)) � c

nhd

uniformly in x 2 G: (2.10)

In addition to the assumptions (A2) on the conditional density, we need the
following set of conditions for proving uniform convergence of b��(x).
(C1) The conditional density fx(�) is uniformly bounded in x and � by,
say, cf .
(C2) For the compact set G of (B1) and some compact neighborhood �0 of
0, the set � = f� = ��(x) + �; x 2 G; � 2 �0g is compact too, and for some
constant c0 > 0, fx(�) � c0 for all x 2 G; � 2 �.

Theorem 2.3. Assume (A1), (A2), (B1), (B2), (C1) and (C2). Suppose

h ! 0 is a sequence of bandwidths such that eSn = nhd(sn log n)
�1 ! 1 for

some sn !1. Let Sn = h2 + eS� 1

2

n . Then we have

sup
x2G

jb��(x)� ��(x)j = O(Sn) +O(
1

nhd
) a.s. (2.11)
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Usually, Sn will be much larger than (nhd)�1, and the rate of (2.11) will be
O(Sn). This is the case, e.g., if bias and variance are balanced and the mean-
square error is asymptotically minimized which, by Theorem 2.1, requires
(nhd)�1 to be of the order of h4. We remark that Abberger (1996 - Corollary
5.4.2) has shown the pointwise consistency b��(x) ! ��(x) a.s. for given x,

assuming that bFx(b��(x)) = � which, however, rarely happens to be satis�ed
in the light of the discussion leading to (2.10).

We have shown asymptotic normality and uniform consistency of the non-
parametric quantile function estimate where, up to the usually neglible term
O((nhd)�1)-term in (2.11), the rates are the same as for the Nadaraya-Watson
estimate of the corresponding conditional distribution function. Related re-
sults have been derived by Truong and Stone (1992) and Boente and Fraiman
(1995) who consider local medians. These estimates correspond to the spe-
cial choice K(u) = Ifjjujj�1g as the rectangular kernel and � = 1

2
. Under

assumptions, which are similar to ours, Truong and Stone show pointwise
and uniform consistency of this conditional median estimate. Their rates of
convergence of jb�1=2(x)� �1=2(x)j are di�erent, e.g. for d = 1 and pointwise
convergence, they have an optimal rate n�1=3 whereas we have n�2=5. The
reason for that di�erence is the discontinuity of the rectangular kernel which
does not satisfy our condition (A1). Boente and Fraiman consider the local
median as a robust estimate of the conditional mean r(x) = EfYtjXt = xg
and prove asymptotic normality of b�1=2(x)� r(x)

The uniform convergence of the nonparametric quantile function estimate
allows for a detailed investigation of the quantile innovations Zt of the model
(1.1) based on the sample residuals bZt = Yt � b��(Xt) which is not restricted
to the iid case. Koenker (1999) has, e.g., considered a �rst order quantile au-
toregression model for daily temperatures with non-iid innovations, and the
well-known conditional heteroscedasticity of �nancial time series also sug-
gests that there is some scope for such general models.

In particular in heavy-tailed situations, scale provides a more natural con-
cepts of dispersion than variance, compare Bickel (1978) or the recent re-
sults of Hall and Yao (2002) about the conventional quasi-maximum likeli-
hood estimator. We remark that the nonparametric quantile estimate can
be also used directly as scale function estimate in purely heteroscedastic
models like ARCH and their derivatives. In general models of the form
Yt = ��(Xt) + s�(Xt)et with iid innovations et the residuals bZt from (1.1)
may be used to estimate the scale function s�(x) by a similar type of es-
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timate as ��(x), just as in common nonparametric AR-ARCH-models like
(1.2) where the estimate of the conditional variance is closely related to the
estimate of the conditional mean. Such nonparametric scale function estima-
tors will be investigated in a subsequent paper (compare also Mwita, 2003).

For sake of simplicity, we have restricted ourselves to kernel estimates of
the conditional distribution function as the basis for the quantile function
estimates. Our results may be modi�ed in a straightforward manner to cover
also the more general local polynomial estimates (Fan and Gijbels, 1995).
Another approach for estimating ��(x) would be a nonparametric version
of the quantile regression estimate of Koenker and Bassett (1978) which we
shall consider in a subsequent paper.

3 Monte Carlo study

We illustrate the performance of kernel estimates for the quantile autore-
gressive function with a Monte Carlo study. For that purpose, we generate
a sample Yt; t = 1; : : : ; n of size n = 1000; of the nonlinear AR(1)-ARCH(1)-
process (1.2) with

�(x) = a+ bx+
1p
2�dx

exp
�(x� c)2

d2
�
; �2(x) = ! + �x2

where a = 0:4; b = 0:3; c = 1:657; d = 0:1175; ! = 0:007; � = 0:2, and
where the innovations e(t) have a standardized normal, exponential, t4- and
t2-distribution resp. We estimate the conditional quantile ��(x) of Yt given
Yt�1 = x by the kernel estimate of (2.2) for � = 0:90. Of course, in that
particular case, ��(x) = �(x)+�(x)qe� where q

e
� denotes the �-quantile of the

distribution of the innovations e(t).

Figure 1 shows for each of the four innovation distributions a typical sample
with the true conditional quantile function ��(x) (black line) together with
the estimate b��(x) (grey line) and observations on the left-hand side and
the same picture without observations the right-hand side. For the kernel
estimate, we used the bisquare kernel K(u) = cmax(1 � u2; 0)2 with nor-
malization constant c = 15=16. The estimate performs quite well for light-
and heavy-tailed innovations apart from the areas at the extreme right and
left of the support of the sample where data are scarce. Here, the perfor-
mance could have been improved a bit by adapting the bandwidth to the
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Distribution AAE AAE(Cai)
N 0:1104(0:0036) 0:1107(0:0036)
exp 0:1254(0:0092) 0:1260(0:0092)
t4 0:1660(0:0066) 0:1710(0:0069)
t2 0:3200(0:0139) 0:3070(0:0139)

Table 1: Averaged absolute error (standard deviation), calculated from 1000
independent samples of the simulated process, with p = 0:95.

local density of the observations, but for sake of simplicity we have chosen
�xed bandwidths independent of x for the simulation by a data driven cross
validation approach.

Figure 2 illustrates the sampling variability of the estimates b��(x). It shows
for each of the four innovation distributions the function ��(x) together with
a pointwise 95%-con�dence interval. As expected, the estimates are in par-
ticular reliable where the stationary density of the data is large. It comes
as a positive surprise that the performance of the conditional quantile esti-
mate does not depend strongly on the innovation distributions and is quite
reasonable for asymmetric (exponential), heavy-tailed (t4) and even in�nite
variance (t2) innovations.

To demonstrate the �nite sample performance of the proposed nonparametric
estimator, we evaluate it in terms of Average absolute error (AAE). We
generated 1000 random samples of size n = 1000 and for each independent
sample we calculated AAEs, based on the di�erence between the estimation
and the true conditional 0:95-quantile. In Table 1 we can see that for all
four distributions the AAE value is small, which indicates that the proposed
estimator has a small bias. It also suggests that our method is competitive
compared to Cai (2002).

As already mentioned, it can be seen that the performance of the conditional
quantile estimate does not depend strongly on the innovation distributions
and it performs reasonably well for asymmetric (exponential), heavy-tailed
(t4) and in�nite variance (t2) innovations.
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Figure 1: Simulated sample (left panel) with the true ��(Xt) (black line) and
�̂�(Xt) (grey line) (right panel) with di�erent noise distributions, normal (N),
exponential (exp) , t2, t4. (From up to below)
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Figure 2: �̂�(Xt) (grey line) and its con�dence intervals 95% (dark grey line)
with di�erent noise distributions
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Stock Mean Std. Dev. Skewness Kurtosis Min Max

IBM �0:0004 0:0149 �0:0375 5:5040 �0:1090 0:0866

HSBC 0:0002 0:0209 1:6152 37:1312 �0:1823 0:2764

Ford �0:0001 0:0357 0:0975 12:1477 �0:2553 0:2897

Table 2: Summary statistics for daily returns. The period is from March 11,
2005 to February 10, 2011. The number of observations is 1512

4 Application

To see how the proposed nonparametric estimate for conditional quantiles of
time series performs on a real data set, we will estimate the VaR of three
di�erent stocks and compare it with the CAViaR model (Engle and Man-
ganelli, 2004) and the parametric linear quantile regression (Koenker and
Basset, 1978). We examine the VaR forecasting performance for a portfo-
lio that is short on IBM, HSBC and Ford. In this case, the holder of the
portfolio su�ers a loss when the value of the asset increases.

4.1 Data description

As an illustration, we have chosen three historical time series of returns for
three stocks. The data set consists of 1512 daily adjusted closing prices from
Yahoo Finance for the following stocks: IBM Corporation (component of
S&P 500), HSBC Holding (component of FTSE 100 Index) and Ford Motor
Company (component of S&P 500). The covered period is from March 1,
2005 to March 1, 2011. We computed the daily returns as the di�erence of
the log of prices

Rt = ln(Pt)� ln(Pt�1) (4.1)

Table 2 presents some relevant summary statistics for the calculated log re-
turns of the chosen �nancial assets. It can be seen that IBM has negative
skewness, while HSBC and Ford show positive skewness and across all three
samples an excess kurtosis can be observed. Figure 3 shows the log returns
of IBM. Therefore, the returns exhibit the typical behavior of �nancial time
series: asymmetry in the data, violation of normality, which motivates non-
parametric estimation of VaR.
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Figure 3: IBM log returns. The period is from March 1, 2005 to March 1,
2011. The number of observations is 1512

4.2 VaR estimation

In this section, we compare the performance of our method with other alter-
natives by applying all of them to VaR estimation. Three methods are used
for estimating conditional quantiles, they have been implemented for each

of the stock: 1, The estimation by our method ([V aRIBM); 2, The CaViaR

model proposed by Engle and Manganelli (2004) ( \CAV iaRIBM); 3, The lin-
ear quantile regression technique proposed by Koenker and Basset (1978)

( \RQ V aRIBM). We use a moving window of N = 252 (corresponding to
approximately two years of trading data), which allows us to get an update
for the estimator for each moving window with an increment of one trading
day.

Figure 4 shows the forecasted 5% VaR sequence, estimated with the three
techniques for IBM, HSBC and Ford. It can be seen that compared to
CAViaR and linear quantile regression, the nonparametric VaR is much
smoother, even for extreme values.

To check the accuracy of our estimator, we also constructed the 95% con�-
dence interval. For all three stoks, the estimator lies inside the con�dence
interval.

Table 3 shows the summary statistics of the 5% VaR estimates. Among three
sequence of estimators, Ford has the highest mean and highest standard de-
viation, while IBM has the lowest mean and standard deviation, the CaViaR
estimates have the highest maximum value, while the parametric quantile
regression have the lowest minimum value, as compared to the other two
implemented models.
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(a) IBM
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(c) Ford

Figure 4: The stars are daily returns, the blue line is the linear quantile

regression, the black line is the \CAV iaR and the red line shows the nonpara-

metric estimate for conditional quantile[V aR, with h=0.5 The violet dashed
line is the 95% con�dence interval. VaRInvq
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Measure Bandwidth Mean Std.Dev. Min Max
[V aRIBM h=0.5 2.36 1.10 1.18 4.72
\CAV iaRIBM 2.16 0.91 1.23 6.86
\RQ V aRIBM 2.35 1.10 0.36 5.30
[V aRHSBC h=0.4 2.60 1.49 0.77 5.84
\CAV iaRHSBC 2.38 2.10 0.74 14.70
\RQ V aRHSBC 2.70 1.58 0.01 8.99
[V aRFord h=0.3 4.83 1.83 2.53 14.17
\CAV iaRFord 5.03 2.77 2.11 25.96
\RQ V aRFord 4.94 2.07 0.77 11.55

Table 3: VaR 5% summary statistics. The period is from March 1, 2005 to
March 1, 2011. The numbers in the table are scaled up by 102

4.3 Forecast performance evaluated with backtesting

To evaluate the forecast performance of the proposed nonparametric estima-
tor for conditional quantiles, we use an backesting procedure, namely, the
CAViaR test in B.1 .

We calculate the violation sequence (as de�ned in Section B.1) for each stock.
The estimated values of the VaR are compared with the actual returns, a vi-
olation occuring for each observation larger than the VaR estimate. Because
we are interested in evaluating the forecast performance, each time we com-
pare the ex post return to the VaR estimate. The violations are calculated
using moving windows, with a window size of 252 days.

The upper panel of Figure 5 shows the timings of the violations t : Ît = 1 of
[V aRIBM (80 violations), \CAV iaRIBM (81 violations) and \RQ V aRIBM (77

violations). The middle panel of Figure 5 shows the violations of[V aRHSBC

(89 violations), \CAV iaRHSBC (78 violations) and \RQ V aRHSBC (84 viola-

tions). The lowest panel of Figure 5 depicts the violations of[V aRFord (77

violations), \CAV iaRFord (81 violations) and \RQ V aRFord (78 violations).

The backtesting procedure is performed separately for each sequence of Ît.
The null hypothesis is that ideally each sequence Ît forms a series of mar-
tingale di�erence. The out of sample CAViaR test has been applied. The
results of the test are shown in Table 4. The highest p-values have been

obtained by[V aRIBM ,[V aRHSBC and[V aRFord. The best result is obtained
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Figure 5: The timings of violations. The top circles are for[V aR , the middle

ones are for \CAV iaR and the bottom ones are for \RQ V aR. VaRInvq
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for[V aRIBM . The \CAV iaRFord and \RQ V aRFord are rejected at 5% and 1%
signi�cance level, respectively, by the CAViaR test. This indicates that over-
all, the nonparametric VaR performs better than CAViaR and parametric
quantile regression.

Measure Bandwidth CAViaR test
[V aRIBM h = 0:5 0:2147
\CAV iaRIBM 0:1139
\RQ V aRIBM 0:1529
[V aRHSBC h = 0:4 0:1572
\CAV iaRHSBC 0:0865
\RQ V aRHSBC 0:0511
[V aRFord h = 0:3 0:0770
\CAV iaRFord 0:0234�
\RQ V aRFord 0:0010 � �

*, ** denotes signi�cance at 5 and 1 percent level, respectively

Table 4: VaR, CAViaR and quantile regression estimates backtesting �-
values, obtained with CAViaR test

B Appendix

B.1 Backtesting

An backtesting procedure is used for assessing the accuracy and forecast
performance of the VaR models, so that risk managers of �nancial institutions
can use it in the decision-making process. More precisely, the quality of the
forecast estimator is evaluated by comparing the actual observations to those
estimated with the VaR model.

We follow the framework proposed by Berkowitz et al. (2009), which is
designed for evaluating the accuracy of out-of-sample interval forecasts. The
proposed procedure evaluates the VaR forecast by viewing them as one-sided
interval forecasts. Each time the ex post return is lower than the VaR, a
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violation occurs. Formally, the violation time series can be de�ned as

It+1
def
=

(
1 if Rt+1 <\V aR�

t ;

0 otherwise.
(B.1)

Berkowitz et al. (2009) note that if the VaR is estimated correctly, the
probability that the VaR will be exceeded should be unpredictable, after
using all past information.

The tests proposed by Berkowitz et al (2009) consider that the sequence of
violations form a martingale di�erence, which means that the expectation of
the violation at t + 1, given the information set up to time t is zero. This
property implies that the current violation is uncorrelated with any past
variables. One of the ways they propose for testing the uncorrelatedness is
by considering the CaViaR test of Engle and Manganelli (2004):

It = � + �1It�1 + �2V aRt + ut (B.2)

Here, the error term ut follows a Logistic distribution. Estimating the logit
model, the coe�cients (b�1; b�2)Tare obtained. For testing the null hypothesisb�1 = b�2 = 0 the Wald's test is used.

Besides assesing the quality of the estimator, according to Lopez (1999), the
backtesting technique can serve in establishing the required level of capital
for market risk by including a multiplier based on the unconditional number
of VaR violations.

B.2 Proof of Theorems

The following lemma gives the asymptotic bias and variance for bFx(y) which
is a Nadaraya-Watson kernel estimate for the conditional expectation Fx(y)
of It;y given Xt = x. Therefore, we omit the proof of the lemma which follows
standard lines of arguments. Details can be found in Mwita (2003). Under
slightly di�erent conditions, Abberger (1996) has also derived such a result.

Lemma B.1. Suppose (A1)-(A3) hold. Then

E[ bFx(y)� Fx(y)] = h2B(y) + o(h2) (B.3)

var[ bFx(y)] = (nhd)�1V 2(y) + o((nhd)�1) (B.4)
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where

B(y) =
1

g(x)
rFx(y)T

Z
urg(x)TuK(u)du+

1

2

Z
uTr2Fx(y)uK(u)du

V 2(y) =
1

g(x)
(Fx(y)� F 2

x
(y))

Z
K2(u)du:

The following lemma follows immediately from Lemma B.1, using the smooth-
ness assumptions on Fx(y), and a Taylor expansion of Fx(y) around y.

Lemma B.2. Suppose (A1)-(A3) hold. Then, for any �n ! 0, we havebFx(y + �n)� bFx(y) = �nfx(y) + op(�n) + op(h
2) + op((nh

d)�1=2) (B.5)

Proof of Theorem 2.1 :
First we prove consistency. By Lemma B.1, bFx(y) ! Fx(y) in mean-square
and, hence, in probability for all x 2 Rd and y. The Glivenko-Cantelli
theorem in Krishnaiah (1990) for strongly mixing sequences implies

sup
y2R

j bFx(y)� Fx(y)j ! 0 in probability: (B.6)

By the uniqueness assumption (A2 iv) on ��(x), for any �xed x 2 Rd, there
exists an � > 0 such that

� = �(�) = minf� � Fx(��(x)� �); Fx(��(x) + �)� �g > 0:

This implies, using the monotonicity of Fx, that

Pfjb��(x)� ��(x)j > �g � PfjFx(b��(x))� Fx(��(x))j > �g
� PfjFx(b��(x))� bFx(b��(x))j > � � c


nhd
g

� Pfsup
y
j bFx(y)� Fx(y)j > �0g (B.7)

for arbitrary �0 < � and n large enough. Here, we have used Fx(��(x)) = �

and � � bFx(b��(x)) � � + c
=(nh
d) which follows from (2.10). Now, (B.7)

tends to zero by (B.6). Hence the consistency follows.

To prove (2.4), let b = �B(��(x))f�1x (��(x)) and v = V (��(x))f
�1
x
(��(x)).

Let

qn(z) = P (
p
nhd

b��(x)� ��(x)� h2b

v
� z)

= P (b��(x) � ��(x) + h2b+ (nhd)�1=2vz)
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As bFx(y) is increasing, but not necessarily strictly, we have

P
� bFx(b��(x)) < bFx(��(x) + h2b+ (nhd)�1=2vz)

�
� qn(z)

� P
� bFx(b��(x)) � bFx(��(x) + h2b+ (nhd)�1=2vz)

�
By the same argument as in (B.7), we may replace bFx(b��(x)) by Fx(��(x))
up to an error of (nhd)�1 at most, and we get, neglecting the (nhd)�1-term
which is asymptotically negligible anyhow,

qn(z) � P (Fx(��(x)) � bFx(��(x) + h2b+ (nhd)�1=2vz)

� P (��nfx(��(x)) � bFx(��(x))� Fx(��(x))) (B.8)

with �n = h2b+ (nhd)�1=2vz. Here, we have used Lemma B.2 and neglected
the terms of order o(�n), o(h

2) and o((nhd)�1=2) which are small compared to
�n. Horvath and Yandell (1988) have shown that the conditional distribution

estimator bFx(y) is asymptotically normal with asymptotic bias and variance
given by Lemma B.1. This follows also under similar conditions from a
functional central limit theorem for bFx(y) of Abberger (1996 - Corollary
5.4.1 and Lemma 5.4.1). Therefore, with y� = ��(x), we get

qn(z) � P
�p

nhd
bFx(y�)� Fx(y�)� h2B(y�)

V (y�)
�
p
nhd

�fx(y�)�n � h2B(y�)

V (y�)

�
� �

�p
nhd

fx(y�):(h
2b+ (nhd)�1=2vz) + h2B(y�)

V (y�)

�
= �(z)

by our choice of b and v and our condition on the rate of h. This proves the
theorem. �

The proof of Theorem 2.3 is close in lines with the proof in Collomb and
H�ardle (1986) and Gy�or� et al. (1989) chapter III. Note that it is di�cult to

deal with eHn(x; �) directly, so we decompose the di�erence in the following
manner. Let

Hn(x; �) =
1

n

nX
t=1

Kh(x�Xt)	(Yt � �) (B.9)

and let H(x; �) = eH(x; �)g(x). Then the di�erence eHn� eH can be expressed
as eHn � eH =

Hn �Hbg +
H(g � bg)

gbg
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where, as before, bg(x) denotes the kernel density estimate of g(x). Observe
that

sup
x2G

sup
�2�

j eHn � eHj � sup
x2G

sup
�2�

jHn �Hjbg + sup
x2G

sup
�2�

jHj
gbg jbg � gj

� sup
x2G

sup
�2�

jHn �Hjbg +
�



sup
x2G

jbg � gjbg ; (B.10)

as j eHj � 1, g is bounded by, say, �, and g � 
 > 0 on G. Now, if sup
x2G jbg�

gj � �, we have

1bg =
1

g + (bg � g)
� 1

g � jbg � gj �
1


 � �

on G. Therefore, to prove that eHn ! eH uniformly in x 2 G; � 2 �, it su�ces
to show that Hn ! H and bg ! g uniformly in x 2 G; � 2 �, and the rate
of convergence will be given by the slower of the two rates of convergence of
sup

x2G sup�2� jHn�Hj and sup
x2G jbg� gj. We know the latter already from

combining (i) and (ii) of Lemma 2.1. Therefore, we only have to investigate
the convergence of Hn(x; �).

Lemma B.3. Under assumptions (A1), (A2), (B1), (B2) and (C1) we have
for the compact set G � Rd of (B1) and for any compact � � R,

sup
x2G

sup
�2�

jHn(x; �)� EHn(x; �)j = O(eS� 1

2

n ) a.s:

with eSn = nhd(sn log n)
�1 !1; sn !1.

Proof : We follow essentially the proof of Theorem 5.2.6 of Gy�or� et al.
(1989) which gives a rate for the Glivenko-Cantelli theorem in the case of
�-mixing random variables. Denote

�t =
1

n

�
Kh(x�Xt)	(Yt � �)� E[Kh(x�Xt)	(Yt � �)]

�
;

then Hn(x; �) � EHn(x; �) =
Pn

t=1�t and E�t = 0. As j	j is bounded by
1 and K is bounded by K1, we have

j�tj � (nhd)�12K1 <1:

We also have, using additionally the boundedness of g(x) by � and the fact
that K integrates to 1,

E[�2
t ] � 2n�2E[K2

h(x�Xt)	
2
x
(Yt � �)]

� 2

n2hd
E
� 1
hd
K2(

x�Xt

h
)
� � 2(n2hd)�1�K1 <1: (B.11)
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Therefore, we may apply the Bernstein inequality for strongly mixing time
series of Carbon (1983) as in the proof of lemma 3.3.3 in Gy�or� et al. (1989)
with the particular choice of � = c2nh

ds�1n and C� = �sn(nh
d)�1K1 > e

4
,

and we get for any sequence (�n)n2N,

P (j
nX
t=1

�tj > �n) � c1 expf�c2nhd�2ns�1n g; (B.12)

uniformly in x 2 Rd and � 2 R with some constants c1; c2 > 0.

Next, using the compactness of �, we cover it with M intervals Im;m =
1; : : : ;M; of length CM :

� � [M
m=1Im; Im = [�m�1; �m]; j�m � �m�1j = CM ; m = 1; : : : ;M:

Mark that for all m = 1; : : : ;M , we have by monotonicity of 	(Yt � �) and,
therefore, of Hn(x; �) as functions of �

Hn(x; �m�1) � sup
�2Im

Hn(x; �) = Hn(x; �m);

EHn(x; �m�1) � sup
�2Im

EHn(x; �) = EHn(x; �m):

Therefore, we have for any � 2 Im

Hn(x; �)� EHn(x; �) � Hn(x; �m)� EHn(x; �m) + EHn(x; �m)� EHn(x; �)

� Hn(x; �m)� EHn(x; �m) + EHn(x; �m)� EHn(x; �m�1):

and, similarly,

EHn(x; �)�Hn(x; �) � EHn(x; �m)�EHn(x; �m�1)+EHn(x; �m�1)�Hn(x; �m�1):

Recall that Ef	(Yt � �) jXt = xg = Fx(�) � �, and that, by assumptions
(A2 iii) and (C1), Fx(�) is Lipschitz continuous with constant cf . Therefore,

EHn(x; �m)� EHn(x; �m�1) � cf j�m � �m�1j 1
n
E[

nX
t=1

Kh(x�Xt)]

= cfCME[ĝ(x)]:

Combining the last three equations, we get for all � 2 Im,

jHn(x; �)� EHn(x; �)j
� max

�jHn(x; �m�1)� EHn(x; �m�1)j; jHn(x; �m)� EHn(x; �m)j
	
+ cfCMEĝ(x);
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and, therefore,

sup
�2�

jHn(x; �)�EHn(x; �)j � max
m=0;:::;M

jHn(x; �m)�EHn(x; �m)j+cfCMEbg(x)
(B.13)

We �rst consider the �rst term on the right-hand side and get, using (B.12),

P ( max
m=0;:::;M

jHn(x; �m)� EHn(x; �m)j > �n)

�
MX

m=0

P (jHn(x; �m)� EHn(x; �m)j > �n)

� (M + 1)c1 expf�c2nhd�2ns�1n g:

We choose CM = c3n
�1 for some c3 > 0 and, therefore, M + 1 � c4n. Using

the de�nition of eSn, we have
P ( max

m=0;:::;M
jHn(x; �m)� EHn(x; �m)j > �n) � c1c4n expf�c2�2n eSn log ng

= c1c4n
1�c2 eSn�2n

= c1c4n
1�c2�2a2n

� c5n
�r

for arbitrary r > 0 and some constant c5 if n is large enough. Here, we have

chosen �n = �eS� 1

2

n an for some arbitrary sequence an ! 1 with n ! 1.
Choosing, e.g r = 2, we get

1X
n=1

P (
eS 1

2

n

an
max

m=0;:::;M
jHn(x; �m)� EHn(x; �m)j > �) <1

which, by the Borel-Cantelli lemma, implies

eS 1

2

n

an
max

m=0;:::;M
jHn(x; �m)� EHn(x; �m)j ! 0 a.s.

As an !1 arbitrarily slowly, this implies that

eS 1

2

n max
m=0;:::;M

jHn(x; �m)� EHn(x; �m)j is bounded a.s. (B.14)

Now, we consider the second term on the right-hand side of (B.13). As

h ! 0; sn ! 1, we have eS 1

2

nCM = eS 1

2

n c3n
�1 ! 0 for n ! 1. By Lemma

2.1, Ebg(x) converges a.s. to g(x) uniformly in x 2 G, and therefore, it is
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bounded. This implies eS 1

2

n cfCMEbg(x) ! 0 uniformly in x 2 G. Combining
(B.13) with (B.14) we �nally get

sup
�2�

jHn(x; �)� EHn(x; �)j = O(eS� 1

2

n ) a.s. uniformly in x 2 G: (B.15)

�

Lemma B.4. In addition to the assumptions of Lemma B.3 assume (C2).
Then,

sup
x2G

sup
�2�0

jHn(x; ��(x) + �)� EHn(x; ��(x) + �)j = O(eS� 1

2

n ) a.s.

Proof : Let � be the compact set of (C2). Then,

sup
x2G

sup
�2�0

jHn(x; ��(x)+�)�EHn(x; ��(x)+�)j � sup
x2G

sup
�2�

jHn(x; �)�EHn(x; �)j;

and the assertion follows from Lemma B.3. �

Lemma B.5. Under the assumptions of Theorem 2.3, we have

sup
x2G

sup
�2�0

jEHn(x; ��(x) + �)�H(x; ��(x) + �)j = O(h2)

Proof : As

EHn(x; ��(x) + �) = E
�
Kh(x�Xt)	(Yt � ��(x)� �)

�
= E

�
Kh(x�Xt)FXt(��(x) + �)

�
;

the bias term does not depend on the dependence structure of the time se-
ries, and it can be treated exactly as in the well-known case of independent
fYt;Xt)gnt=1. Therefore, the result follows from standard arguments based
on a Taylor expansion of Fx(y) up to order 2 with respect to x, using in
particular (A2 i-ii). �

Proof of Theorem 2.3 :
Combining Lemma B.3 and Lemma B.4, we have

sup
x2G

sup
�2�0

jHn(x; ��(x) + �)�H(x; ��(x) + �)j = O(eS� 1

2

n ) +O(h2) = O(Sn)
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a.s. as n ! 1. By Lemma 2.1, we have the same rate of convergence for
sup

x2G jbg � gj. Hence, by the remarks following (B.10),

sup
x2G

sup
�2�0

j eHn(x; ��(x) + �)� eH(x; ��(x) + �)j = O(Sn)! 0 (B.16)

a.s as n ! 1. Using a similar technique as in Collomb and H�ardle (1986),

�x � > 0. By the de�nition (2.8) of eH, we have eH(x; ��(x)) = 0, and

by assumptions (A2 iii-iv), (C2) we get from a Taylor expansion of eH(x; :)
around ��(x)

eH(x; ��(x)� �) � �c0� < 0 < c0� � eH(x; ��(x) + �)

for all x 2 G. The convergence in (B.16) and (2.10) imply that for any
0 < � < c0� and all su�ciently large n we also have a.s. for all x 2 G

eHn(x; ��(x)� �) � � � c0� < eHn(x; ��(x)) < c0�� � � eHn(x; ��(x) + �):

The monotonicity of eHn in � implies ��(x)� � < b��(x) < ��(x) + � a.s. for
all x 2 G, i.e. we have

sup
x2G

j�̂�(x)� ��(x)j ! 0 a.s. as n!1: (B.17)

Again using eH(x; ��(x)) = 0 and (2.10), we have

eHn(x; b��(x))� eH(x; b��(x)) = eH(x; ��(x))� eH(x; b��(x)) +O(
1

nhd
)

= �(b��(x)� ��(x))fx(e��(x)) +O(
1

nhd
);(B.18)

by a Taylor expansion of eH(x; :) = Fx(:) � �, where e��(x) is between ��(x)
and b��(x). By (B.17), b��(x)� ��(x) 2 �0 and, therefore, e��(x) 2 � a.s. for
all x 2 G and n large enough, and we get from (C2), (B.18) and (B.16)

jb��(x)���(x)j � 1

c0
j eHn(x; b��(x))� eH(x; b��(x))�O( 1

nhd
)j = O(Sn)+O(

1

nhd
)

a.s. uniformly in x 2 G. �
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