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R.  Aderjan und Y. Härdlo 
(Institut lYlr Rechtamedizin der UnlvbrsiUlt Haldelberg) 

Uber Digitallsvergif tungen wird relativ häuf lg berichtet, ' 
zuletzt in elner umfassenden Studie von Flasch und Flasch 
(19811, (1). Tödlich verlaufende Falle finden sich in 

der Literatur n x  selten und' in weniger als 10 Arbeiten 
sind Blut- und Gewebekonzentrationsdaten gmUcend be- 
schrieben. (1,2,4 - 6, 8, 9, ll, 12). Xomoen unterschied- 

liche r@;)methodlk, niedrige Dosierung und Körperkonzen- 

tratlonen sowie geringe therapeutische Breite zusanmen, 

wie bei Digoxln, so ist der forensische Toxikologe von 

jeher vor gronte Probleme gestellt, wenn es einen Ver- 
giftungsverdacht zu klären gilt. 

Welcher Stellenwert ist Xonzentrationsmessungcn von 
Digoxin in Blvt und Geweben zuzuueisen? Abb. 1 zeigt 
eine Zusammenfassung von klinischen Serunspfeg,-- -*?-estim- 

muncec nach Xietbrock (1978, 10) aus der zu ersehen ist, 
Ca0 sich die Digoxin-Konzentrationsbereiche, die bei 
therapeutischen- und toxischen Wirkungen festzustellen 

slnd,'weitgehond Uberschneiden. Bereits die So-Xige 

ffb~rschreitun~ des mehr willkiirlich angenomene.? Xiximal- 
wertes von 2 ng Digoxln pro Milliliter Serum, Jer die 

Obergrenze des therapeutischen Bereiches darstellen soll, 
fDhrt zu einer Intoxikationshäufigkeit von 93 X. SereltC" 

bei 2 nS pro b!illiliter verden in 16 X Cer Fälle Intoxi- 

kationen beobachtet. Leider ist die zugrun&liegonde 
Anzahl der Fälle nicht so deutlich ersichtlich, wie in 

der Studie von Storstein (1977, 131, die die Verteilung ' 
der HeOverte und die anteilige prozentuale Häafitjkeit 
Intoxlkierter Patienten In Abhängigkeit tür Serumkon- 
zentration Uberslchtlich darstellt. ( ~ b b .  2) 
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T r b c l l e  nr. * 
V e r g l e i c h  der  M i t t e l w t r t r  de r  O igox tn -Konren t r r t to -e*  1. 
Herz. M ie re  und Leber b e i  P r t l e n t t n  u n t e r  t h r r r c e u t l r c h r n  
O O S ~ ~ .  b e i  S u l c i d e n  und b e l  den V e r g ~ f t u n g s f l l l e n  Ces 
Kronkenhiuser  Rhe fn fe lden  i i t t e l s  C-Test (be f  der  f r m l t t l u n g  
d e r  Irrtunswahrsckeinlfchkeit im t -Tes t  wurde b e r ü c k s i c h t i g t .  
da8 dtr V r r i r n t e n  d e r  St fchproben n i c h t  g l e l c h  s i n d )  nach 
l o g a r i t h m i s c h e r  T r r n s f o r m r t i o n ,  

I I .  I i r r t u m s -  

P a t f  e n t e n  172 i 1 .3 0.4001 
Herz S u i c l d e  327 2 2.4 0.0001 

V e r g i f t u n g e n  439 1.4 0.5588 

Patienten I 4 4  ? 1.6 0.0002 
N i e r e  S u l c l d e  740 1.6 0.0001 

0.6922 

I P a t f e n t e n  0.0001 
Leber S u l c i d r  3.0001 

~ e r u o : ~ o n r e n t r a  t i o n ;  
o3ere 0ar i :e l l un  : Oigox in  (n. Rf 
% t ; i e r e  U .  unte!e Dsrst 'e l lung:  
b l g \ t a x i n - S e r u m k o n z c n t r a t i o n  von 
Dosen b e f i n d l i c h e r  P a t i e n t e n  und 
G l y ~ o s i d w i r t u n g c n  i n  den v e r s c h i *  
(nach S t o r s t e i n  U. nitrrß.  1977). 

e t b r o c k  1978) 

649 u n t e r  t h e r c  
H Y u f i g k e i t  t o x f  
denen K o n t r n t r r  
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Be:iehu~p zwischen B:.;t- unc? CS?wc:-k?r.xt?.t:!r :Y e- r - 2 .  

so qilt für den Stellecw8rt gencrsencr CL;rrx:%Z-:t- 

kon:entrationen bei Yergtftungsverdacht etenso, C a 2  b.+f 

Grund von BerelchsUbersrhneldur.jcn eine t:nderiti;e Z r  

ordnung eines Konzentcat1onswe:tes zu %herapeutis=~r-7 
oder toxischen Glykosldulr~~n~tn nur m6~15ch 1st. wc-S 

toxische klirkungen objektiviert sind. 

Die Blut- und Gevebekonzentrationen von 45 therapc~tisch 

mit Oigoxin oder Beta-Methyldigoxin *handelten Patien- 
ten, die wir 1978 und 1979 untersuchtui, (1) dienen als 

Vergleichskollektiv, uezn man sle den Daten von 13 Ver- 
giftungsfällen des eisenen üntenichungsgutes se~engber- 

stellt (1). Bel € suicldalon- und 7 als honicidal ZU 

betrachtenden Vergiftsngen zeigt der l4ittelwertvorg~eich 

der Konzentrationen in Herzmuskulatur, L+ber rcd tlieren- 

gewebe nach logarithmischer TiansforrnaLion (sm syrmetri- 

sche Verteilungen zu erzielen und nach RUcktransforma- 
tion des lopMittelwertes), da0 sich die Xollektive hier 
signifikant unterscheiden. FUr Ske1ettouskeZkonzen:rationen 
und Gehirnkonzentrationen trifft dies nicht zu (Tab. 1) (1). 

Wie klar lm Grenzbereich der beiden Kollektive eine Zu- 
ordnung eines Organ-Menwertes zu treffe~ ist, hYn?t davon 
ab, wie sehr sich die Konzentratlonsberel'hc Cterschnoi5en. 
Ele Abb. 3 51s 5 zeigen dLe geselnsamc VerteiP~ng der 
Disoxin-Konzentrationen der teiden Kollektive 5 3  Rerz, 
Leber ucd Niere. In logarithmischem MaJarab auf:etragen, 
ist die zwcigipfllge Form zu erkenhen. 

Stellt man die Verteilu~gen efitsprecheni Cen ."(lttel~e=?an 

und der StanCarCaSweichu.ig cormlert dar, so ct'jfbt si=S 
f U r  die Herznuskulatrir, da3 bei 257 ng pro Orr-3 
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rechten Ventrikel sowie 289 ng pro C-ralm im 1 L i i ' t m  

7entttkel es mlt 4.05 :: bzu. 2.56 % gleich wahrschein- 

llch ist, da9 ein beobachteter Menuett einem der beiden 

Xollektfve "toxiscii" oder utherapeutischu zuzuordnen 1st. 

Bel der auf Grund unserer Beokachtungen (1) abcelefteten 
Grec:kon:entr~tionen für den Beginn der toxischen Konren- 
trationsbetoiches von 400 ng Clgoxin pro Grsrrm Gevobe 

für den Hixzmuskel ist die Wahrscheinlichkeit, daR nach 
therapeutischer Cosierung ein noch höherer XoAuert be- 

obachtet wird nur noch 0.55 X bzw. 0.09 X (AbS. 61. 
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zeichneten) Grenzlinie. hrelts die 2-dkenslor..le Fata- 
meteckombln.tlon Leber und S c h e n L e l v t n c n v o ~ ~ ~ ~ ~  (als 
Beispiel i bringt, neben der rlchtlqen C l ~ o r d X ~ p  : edeS 
einzelnen Vergiftungsfalles fUr sich als nec genon-en, 

--CR- eine 100 Xige Klassifikation literaturbexannter i(o..- 

trakion$datan. (Obwohl derCn untersch1eCliche Unter- 

s~chüngsmethodik einen direkten Vergleich der Xe3uerte 
sicher nicht erlaubt). 

Erhöht nun die Parameterzahl auf 4, z .  3. liaker %e:Z- 

veatritel, Le?xr, Niarc mJ Schnnkel-!c?!cnSl.::, S J  Lst 
die 3iskzirninatLon eicht mehr sra?iiisch tarstellLir, 
da sie Uber das 3-dimensionale hinausgeht. Die Unter- 
scheldungskrsft wird jedoch so hoch, daß auch der fall 

einer nur um knapp 1 Stunde überlebten Beta-Methyldigoxin- 

vergiftung (Rietbrock 1978, 9 )  richtig zugeordnet wird. 
Ohne BerUcksichtigung der Blutkonrentratlon von 75 ng/ml 
würde er fehlklassifiziert, da die Organkonzentrationen 

auf Grund der geringen Vertrilungszeit noch nicht in e b e n  

einwandfrei als lvtoxischw ukennbaren iionzentrationszu- 
stand gekommen waren. 

Ich fasse zusammen: 

Dle Anwendung statistischer Methoden, insbesondere der 
Diskrirninanzanalyse erlaubt eine Zuordnung von Digoxin- 

Blut- und Yewebekonzentrationen zu einem therapeutischen 

Vergleichskollektiv oder zu einem Kollektiv von VerSif- 

tungsfällen. Die Unterschei&~ngskraft wird um so hthar, 
je mehr Organparameter in das Verfahren einbezogen warden. 
Die Diskriminanzanalyaa stellt den toxikologischen öe- 

urteilungskriterien eine statistische Sicherur.; gegen- 
Uber, dle um so besser ist, je größer die beobachteten 

Kollektive sind. Sollen die Ergebnisse verschiedener 

Laboratorien verwandet werden, so sind nur qua1itatsicor.- 
trolliarte Meßwerte zweckdienlich. 

Proceedings "Entwicklung und Fortschritte der forensischen Chemie"

Aderjan, R. and Härdle, W. (1982) Die Beurteilung von Vergiftungsfällen mittels Diskriminanzanalyse am Modellbeispiel Digoxin



Cer forensische Toxikologe steht bei seltenen Ver- 

giftgngen vor dem Problem, die quantitativen Analysen- 

befunde seiner postmortalen Untersuchung an nur wenigen Vergif- 
tunjsfällen messen =ü können. Die Grundlage für eine 
Be'~rtei:un~ ~ - J R  ohne entsprechende statistische Ab- 
sic3rung bleiben, solange nicht genügend 9atenma- 

teria1.gesamarlt werden konnte. 

Bei Verglftungen durch Arzneimittel kann ein geeicneter 
Weg dacurch ein~eschlagen werden, daR die Blut- und Ge- 

webekonzentrationen nach therapeutischer Soslerunc denen 

nachccwiesener Vergiftungsfälle gegenübergestellt werden 

um so jeden neu vorkommenden Fall einer der bciden Ein- 

schätzmpen "toxisch" oder *nicht toxischw mit der ent- 
sprechenden Vahrscheinllchkeit zuordnen zu köcnrn. 

1s Falle des kllnisch hPufig verord?eten Har:3lykosids 

Digoxln und seiner Derivate werden derartig9 Ulcssifi- 
katlonen vorgenommen, indem von einem Kollektiv von 

4 5  7cCienten unter therapeutischen Sosen sowie von 
13 Cigoxfn-ToCesfäLlen die Konzentratimen in sektlons- 
technisch regelsßig ve:fügbaren Körperflüssi$keiten 
und Cr;s!en un:er Anwendung statistLscher Hrthoden, 

ins>esondere der 9iskriminantanalyst, miteinander 

verglichen verden. 
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A robust estimator of the regression function is proposed combining kernel 
methods as introduced for density estimation and robust location estimation 
techniques. Weak and strong consistency and asymptotic normality are shown 
under mild conditions on the kernel sequence. The asymptotic variance is a product 
from a factor depending only on the kernel and a factor similar to the asymptotic 
variance in robust estimation of location. The estimation is minimax robust in the 
sense of Huber (1964). Robust estimation of a location Parameter. Ann. Math. 
Statist. 33 73-101. 

Let (X,, Y,), (X,, Y,), ..., (Xn, Y,) be i.i.d. bivariate random variables with 
joint distribution function F(x, y) and joint density f (X, y). Let g(x) = 
J" f (X, y) dy be the marginal density of X and m(x) = J" yf (X, y) dy/g(x) = 
E(Y I X = X) be the regression function of Y on X. Nadaraya [10] and 
Watson [20] independently proposed nonparametric estimators of m(x) 
based on kernel methods as introduced by Rosenblatt 1141 and Parzen [12] 
for density estimation. Specifically the estimates have the form 

where K(.) is a kernel function and {h,} is a sequence of positive numbers 
("bandwidths") tending to Zero as n tends to infinity. 

A more general estimate as defined in (1) is given by 
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(A2) Let f (y  1 X) = f (X, y)/g(x) the conditional probability density 
function of Y given X be symmetric and having bounded partial derivative 
(a2/ax2) f (y  I X), X E I. From g(x), the marginal density of X, assume that 
inf„,g(x)>c, > 0 and (a2/ax2)g(x), X E  I,  exists. The Set I here is 
supposed to be a compact interval of the real line. 

(A3) Let a n  = J" 6i(u) du < m for each n and let an /n  -t 0 as n + m,  
{6,(.)} denoting a positive " .  DFS. 

In all Statements that follow, X is assumed to be in the interval I. The 
robust estimator, defined by Eq. (3) for functions satisfying (Al)  will be 
denoted by m,(x). Various choices of W functions may be used in defining 
m,(x), such as Huber's yl function [7] 

or an arctan-like curve. Many more examples may be found in Andrews et 
al. [ I ]  or Hampel [6]. 

Assumption (Al)  excludes for the moment those I,Y functions which bend 
down to Zero again as [ U [ +  m ,  such as, ~ ( u )  E u/(l + U'). It will be shown 
in the results below that nonmonotone I,Y functions will also produce 
consistent estimators, provided some additional requirements are fulfilled. In 
the next section the consistency and the asymptotic normality of mn(x) is 
shown. A short discussion of the asymptotic variance of mn(x) under 
minimax optimality considerations is carried out in Section 3. 

The use of delta function sequences in regression function estimation goes 
back to Watson and Leadbetter [21-231, also the following lemmas are due 
to Watson [20]. 

LEMMA 2.1. Let {6,(-)} be a DFS, such that, an(p)  = J" 1 6,(u)lP du < m 
for all n. Then an(p)  -+ m und 

{6n,p(u)} = { I  d n ( ~ ) I ~ / a n ( ~ ) l ,  

is again a DFS. 

LEMMA 2.2. Suppose that h(u) is integrable und continuous a t  u = 0, 
und let {an(.)} be a DFS, then h(.) an(-)  is integrable und 
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LEMMA 2.3. Suppose that h(u)  is an integrable function, continuous nt X 

and X ' ,  where X # X ' ,  then 6,(x - .) 6,(x1 - .) h( . )  is integrable and 

Define H,(x, s) = n - ' dn(x - X i )  y (Y ,  - s )  and H(x,  s )  = 
E ( y ( Y  - s )  I X = X )  . g(x). We first show that H,(x, s )  converges to H(x,  s )  
in probability and almost surely. The weak and strong consistency of mn(x)  
will then follow by Huber's technique [7] ,  using the monotony of the y 
function. 

LEMMA 2.4. Suppose that assumptions ( A l )  to ( A 3 )  hold, then 

H,(x, s )  -% H(x, s )  for euch X E I and s E IR. 

If in addition 

then Hn(x,  s )  + H(x,  s )  a.s. 

ProoJ: Using Chebyshev's inequality and the boundedness of y it follows 
that 

C denoting a constant depending on E and the upper bound of y. Since 
EH,(x, s )  = E6,(x - X )  y (Y  - s )  = J 6,(x - U )  E ( y ( Y  - s )  lX = U )  g(u) du, it 
follows from Lemma 2.2 and the smoothness assumption ( A 2 )  that 
EH,(x, s )  -+ H(x, s )  as n -+ W. So the first assertion of the lemma is shown. 

To show the strong convergence of H,(x, s )  to H(x,  s), define 

U :  = 16:(x  - U )  E ( ~ ~ ( Y  - S )  1 X = U )  g(u)  du, 

e,  = 6,(x - U )  E ( y ( Y  - s )  I X = U )  g(u) du = E[6,(x - X )  v ( Y  - s ) ] ,  

and 

I 
Zi„  = 6,(x - X i )  y(Yi  - s )  - e,. 

The { Z , , , }  are a mean Zero i.i.d. triangular sequence, so if we use 
EZ;,,  = U :  - e i  an . C (Lemmas 2.1, 2.2, ( A 3 ) )  it is clear from the 
assumption of the lemma that the SLLN applies (Serfling [18, p. 271). As 
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already shown e, + H(x, s), hence also the second assertion of the lemma is 
shown. 

Since Eq. (3) may have several solutions we will take the estimate m,(x) 
as one member of the Set of solutions. By assumption (A3), the positivity of 
the DFS, Lemma 1 of Huber [7] applies and we have 

LEMMA 2.5. The set of solutions of (3), denoted by {m,(x)} is nonempty 
and compact and convex. 

Using the Same proof as for Lemma 3 in Huber [7] we get the consistency 
of m,(x), noting that g(x) is always positive. 

THEOREM 2.1. Suppose that (Al)  to (A3) hold, then m,(x) is weakly 
consistent, i.e., m,(x)+* m(x). If, in addition, CF==, a,/n2 is finite, then 
m,(x) Is strongly consistent, i.e., m,(x) + m(x) a.s. 

For nonmonotone V-functions, i.e., I,Y functions which are monotone 
around u = 0 but return back to Zero as I u I + co, Huber's original proof does 
not work. Those rebending functions have strong robustness properties 
since they really cut off bad observations, for instance, Hampel's "three Part 
redescendor" 161, 

It is desirable to obtain consistency for those robust smoothers also. This is 
done by coupling the solutions of (3) for nonmonotone t,v functions, {6,(x)}, 
together with m,(x), the robust estimator for monotone V. That is, define 
&(X) as that Solution of (3) which is nearest to m,(x), i.e., 

Im,(x) - 6,(x)l = inf{(t - m,(x)l: H,@, t) = 0, V/ 

not necessarily monotone}. (4) 

By Standard arguments $,(X) will also be strongly (weakly) consistent and 
we have 

COROLLARY 2.1. Suppose that the assumptions of Theorem 2.1 hold, then 
&(X), defined in (4), is strongly (weakly) consistent. 
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For delta function sequences of kernel type we have an = h;', the inverse 
of the bandwidth. Assumption (A3) is for DFS of kernel type now, nh, + co 
as n -+ co. Note that in (4), defining & ( X ) ,  another consistent candidate is 
provided by m$(x) ,  the Nadaraya-Watson estimate. (Noda [ l l ] ,  Johnston 
[8]). Coupling fi,(x) to mR(x) would give us an estimator with similar 
properties as the so-called "M15" (Andrews et al. [ I ] ) .  To formulate the 
result of the asymptotic normality let us define 

where a2(x )  = E(iyZ(Y - m(x))  I X = X ) ,  c l ( x )  = E(iyl(y  - m(x ) )  I X = X ) ,  
B,(x) = EH,(x), and H,(x) = Hn(x, m(x)).  

THEOREM 2.2. Let {6,(.)) be a DFS with the properties 

( 1 )  y , = f  / 6 , ( ~ ) 1 ~ + ~ d u <  co forsome ~ > 0 ,  

( 2 )  yn = ~ ( n ~ / ~ a ~ + ~ / ~ )  as n -+ CO. 

Further let X ,  ,..., X ,  be p distinct design points, then the random vector 

converges in distribution to a normally distributed random vector with Zero 
mean und identity covariance matrix. 

The proof will be clear from an expansion of H,(x, m,(x)) around m(x),  
because by the mean value theorem we have 

where D,(x) = n-I C;='=, G,(x - Xi)  @(Yi  - m(x )  + wi(m,(x) - m(x))) ,  
W ,  E (0, 1 ) .  From the WLLN, Theorem 2.1, and the boundedness of yl' it is 
clear that D,(x) +P E(iyt(y  - m(x ) )  I X = X) . g(x)  = c l ( x )  . g(x). We 
therefore only have to prove that (W,(x,), ..., Wn(xp)) ' ,  where 

is asymptotically normally distributed with mean Zero and identity 
covariance matrix. 

PROPOSITION 2.1. Suppose that the assumptions of Theorem 2.2 hold, 
then 

W = (W,(x,),..., W,(x,))', 
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when Wn(x) as defined in (6), converges in distribution to a standard normal 
vector. 

ProoJ The random vector W is asymptotically normally distributed if 
and only if each linear combination of its coordinate random variables is 
(one dimensional) asymptotically normally distributed. (Cramer-Wold 
device, Billingsley [2]). So if we show that 

for each set of real numbers tl ,..., tp, the proposition follows. 

By definition (6) this is equivalent to showing 

From Lemmas 2.1 and 2.2 it is clear that 

And that for j + k, 

So, defining E?,(x) = Hn(x) -B&), it remains to show that 

P P I/' 

zn = 2 t k  var 2 t k n x )  41 N(O, 1). 
k =  1 I( k = l  

Interchanging the sums in this expression gives 

where Zn, ,  = n-1/2s;1 tk[Jn(xk -Xi) y(Yi - m(xk)) - Bn(xk)] and 
s i  = var(C$,, tkJn(xk -X) ty(Y - m(xk))). Since the random variables Zn,i  
are independent identically distributed it remains to show for an application 
of the Lindebergh-Feller CLT that for some > 0, 
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Using Loeve's C, inequality (Loeve [9]) we obtain 

Since s i  = n var(C$, , tkHn(xk)) - an C f = ,  t ia2(xk)  g(xk) by the asymp- 
totic relations (7), (8) it suffices to  consider the numerator of R,,,. 

since I,U is bounded and 6:(.) is again a DFS by Lemma 2.1. So finally 

and by assumption (2) of the theorem R,,, -t 0 as n -+ co. This completes the 
proof. 

In practical applications, if we are interested in constructing confidence 
bans, Theorem 2.2 does not help us since we neither know the bias Bn(x) nor 
f ( y  I X). In order to drop the bias term Bn(x) when constructing asymptotic 
confidence intervals we have to ensure that (n/an)112 Bn(x) vanishes as 
n -+ oo. For this purpose the following condition on a DFS{S,(.)} will be 
convenient. Let 

(B') J [6,(x - U) l(u) - l(x)] du = ~((a , /n) -"~) ,  

for each twice differentiable function I ( . )  with bounded second derivative. 
Let us note that this condition reduces to J" u26,(u) du = ~ ( ( a , / n ) - ' / ~ ) ,  if we 
use a symmetric DFS, i.e., 6,(u) = J,(-U). 

Reading through the proof of Proposition 2.1 it will be clear that the term 
Bn(x) may be dropped under assumption (B'). The asymptotic relation (7) 
changes now to 

(nla,) E(H;(X)) -+ a2(x) g(x) as n -+ co. (9 

Let Vn(x) = c1(x)(mn(x) - m(x))/[("n/n) a2(x) g(x)-'1 'I2, we then obtain 
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the following corollary, which states the asymptotic normality of Vn(x) 
without the bias term Bn(x). 

COROLLARY 2.2. Suppose that in addition to the assumption of 
Theorem 2.1 condition' (B ' ) holds, then ( Vn(xl), ..., Vn(xp)) is asymptotically 
normally distributed with Zero mean und identity covariance matrix. 

In the case that DFS of kernel type are used, assumption (B') is easily 
translated into expressions involving only the sample size n and the 
bandwidth h,. Assume that the kernel satisfies 

(K) K is a continuous function with compact support [ -A,  Al, 

Under this assumption it follows by Taylor expansion of 1(.) that (B') is 
equivalent to nh i+  0 for DFS of kernel type. This condition is evidently 
necessary for the asymptotic negligence of the bias Bn(x). By Taylor 
expansion one obtains from (K) that Bn(x) = ~ ( h i )  (Stützle and Mittal 
[19]), so we have to assume that (nhn)'/2 hi  -P 0 which is equivalent to the 
above-mentioned condition. This condition. also occurs in the work of 
Schuster [17] and Johnston [8]. Intuitively, it would seem that the bias 
becomes important if the regression curve has a large second derivative 
mrl(x). But as ~tützle  and Mittal [19] show, the bias is h i  . mu(x) . c,(x), 
i.e., the bias and the rate of convergence are the same as one would obtain 
with mxx).  Summarizing we obtain the following theorem involving DFS of 
kernel type. 

THEOREM 2.3. Suppose that the following conditions hold: 

then (Vn(xl), ..., Vn(xp)) converges in distribution to a multivariate normal 
random vector with Zero mean und identity covariance matrix, where 

The proof is clear by the previous remarks and the equality 
a n  = ( lKZ(u)  du) hn l  for DFS of kernel type. The asymptotic variance 
V,(y, f )  admits an intuitive interpretation of what robust smoothing is doing. 
The asymptotic variance is 
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where 

is due to the robustness of the estimate m,(x) and J" K2(u) du/g(x) is due to 
the smoothing property of m,(x). (see Schuster [17], Nadaraya [10], and 
Collomb [4]). As far as the Nadaraya-Watson estimate mn(x) is concerned, 
the optimization of the asymptotic variance of mn(x) was concentrated on 
the "smoothing part" of the asymptotic variance J" K2(u)  du. From Table 1 in 
Rosenblatt [16] it is evident that the use of optimal kernels does not gain 
very much in relative efficiency. For instance, the ratio of the asymptotic 
variance of the optimal kerne1 K(u) = 0.75(1 - u2)  (Epanechnikov [5])  to 
the asymptotic variance obtained from the simple uniform window 

is 1.077. It becomes more important to optimize Rl(x) in the asymptotic 
variance, since this factor may dominate the "smoothing part" J" K2(u) du in 
the case of heavy-tailed conditional distributions. It is clear from Table 1 in 
Huber [7] that in the case of extreme outlier contamination Rl(x)  may be 
the half of var(Y / X = X) which is the corresponding factor to Rl(x) if mn(x) 
is used. The optimization and minimax consideration R,(x) with respect to a 
contamination model is the topic of the next section. 

The contamination model (for fixed X) is formalized as 

which is exactly the same contamination model that is used in robust 
estimation of location, except that here the contamination rate &(X) depends 
on X and a marginal density g(x) is involved. Noting that the asymptotic 
variance V,(y, f )  splits up into the factors Rl(x)  and J" K2(u) du/g(x) where 
the latter is independent of and f, we obtain from Huber's theory the 
following result. 
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THEOREM 3.1. Let d ( x )  be the dass of distributions as defined in (1 I ) ,  
with a fixed marginal density g(x). Then the asymptotic variance has a 
saddlepoint. There is an fo(x,  y )  und a yo  such that 

Let to (x )  < t l ( x )  be the endpoints of the interval where 

and K ( X )  is related to & ( X )  by 

Then fo(x,  y )  can be computed as 

und y o ( y ,  X )  = -(afo(x, y)/ay)/fo(x, y) ,  which is monotone und bounded. 
The proof of the theorem is the same as in Huber [7] .  We only have to 

cope with the dependence on X. The same minimax calculus may also be 
carried out with other contamination models (Portnoy [ 1 3 ] ,  Collins 131) 
leading to asymmetric or nonmonotone y functions. For given X ,  m,(x) is in 
fact a robust "location" estimate, therefore after the computation of the 
asymptotic variance the theory on robust estimation of location applies. 
Instead of minimizing V x ( y ,  f )  one might also use a weighted uniform loss 
such as 

but this functional can be optimized in the same way as in Theorem 3.1, 
provided the dependence of V x ( y ,  f )  on X is smooth. 
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Contribulion to the Discussion of the 
Paper by Silverman, October 1984 

Wolfgang Hirdle 
Johann Wolfgang Goethe - Universitat 

D-6000 Prar~kfurt a m  Main 

* 
Professor Silverman's article on the spline smoothing approach to curve fitting is an 

excellent contribution to the understanding of data smoothing. .He points out the various 
attractive features and shows in a variety of examples the wide applicability of s ~ h c  
smoothing. I found the clear and elegant discussion of Section 3, pointing out the 
relationzhips arnong spline smoothing and kernel regression, very stimulating. 

My cornrnents will address (a) the generalized cross- validation method (Section 4) and 
(b) ttlc proposal of a n  automatic choice of the smoothing parameter in the case of robust 
spli:ic moothing (Section 8.1) . 

The generalized cross-.validstion method can be considered as  a member of the 
smoothing pararr~cter selection procedures : 

"Choose a to rninimize the score 

Sn(P;a) = RSS(a) ~ ( n - I  tr A(a)) .' 

Here 2 denotes a 'Selection penalty" with expansion Z(u) = 1 + 2u + B"[#)u~ . The 

generalized cros-validation score GXVSC(a )  has penalty Z(u) = (1-u)-* . A -FPE-Type 
pcna!ty S[u) = (ltu)/(l-u) ( h a z k e ,  1970) or Shtbata's (1981) S(u) = (1+2u) are also 
possi blc. 

Note that 

n 
So as;;yrn~to~icall~ rninin~~rirtg S J E ; ~ )  is the same w to minimize n" I: (&~i)-g(tJ)~ . 

i=1 
I I. 1 r~is expansion aiso cup;gctr; that all possible selectors S,(Z;a) are asymptotically 
c.qr~iv:rlcnt,. I-lowvw, a L with a largr?.second derivative in s neighborhood of zero could be 
pr~fcrrcd in ordcr to pendiae more for undermoothing. 

S 
Which ot tho po::s~hle penalties 3 should be applied in practice 
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On Robust Kernel Estimation of Derivatives of 
Regression Functions 

WOLFGANG IlARDLE 

Frank/lirr 

TIIEO GASSER 

.Mannherrn 

ABSTRACT. W'hen e+timilting derivatives of regres,ion functions from noisy data. a number of 
additional prohlems wise compared with the estimation of the regrescion function itcelf. [.incar 
methods. such a. kernel repression or +mcwthin): spline>. UIII he quite wn+itiveouthing ohwrva- 
tions: this holds in particular for the e5timation of derivatives where difirences of  consecutive 
data points are involved. In this paper, a rohuct kernel estimate Tor derhatives of regre$sion 
functions is introduced and some of its asymptotic properties are investigated. 

1. Introduction 

Let Y,"'=tn(("')+Z;"'. r =  I .  2 .  , t i .  be ,I wquc.nce of ~ndcpendent oh\rr\,itions ~ ~ t h  
regres~ion funcr~ons MI) .  0<t< 1 .  rccorded at ( ) < I , <  <I,< 1 and \\lth error5 (Z:"'):., 
being   den tic all! d~htributed u ~ t h  mean rero. The pr~ctical Importance of obta~nlng a non- 
parametric esrlnliite of t r l ( t )  hds led to wveral e\tlm,ttors for IH(I). among them the \o-c;tlIed 
kernel cstlmators (Prie>tIe! S: Chao. 1971; Gaswr R Lluller. 1979). The presence of a small 
portion ot outliers ma!. ho\rever, render diff~cult an ~nterpretation of the estimated regression 
function. Kohu\t dlternatites to the kernel method. the I,ltter operating I~nearl! on the data. 
have been proposcd b! Hdrdle rY: G,~sser (1YSJ) 'ind rn ,I r'tndom design n~odei by Hardle 
(1984a) and Tsybakov (1983). Robust spline smoothing wac consdercd by Huber (1979) and 
by Cox ( 1983). 

The estimation of dernatives from noisy data 1s of Importance in many dreas of engineering 
and physics, and also in biomedicine (compare. e . g .  Largo et al. (197s) for applications to 
longitudinal growth using smoothing splines and Bahill S: Stark (1979) for applications to 
saccadic eye movements using heuristic methods-in enslneerlng tradition). \\'hen using an 
estimator which acts as a linear operation on the data. such as the kernel estimators studied by 
Gasser & Miiller (1984) and Gasser er ol. (1985). sinsle outliers might mimic peaks and 
troughs, corresponding to unexpected zeros in the rs t~mated derivatwe of the regression 
function. The occurrence of  outliers would, therefore. lead in these cases to qualitatively 
wrong conclusions. 

The object of this paper is to introduce a robust kernel estimator of m'(t). the derivative of 
m(t). Robust estimators of  higher derivatives will also he defined. although not discussed in 

= full detail, since their statistical analysis appears to he stra~ghtforward, gtven the analysis of 
--- estimators for ml(t). The proposed method is der~vcd  from .rf estimatron (Huber. 1981. Ch. 

3.2) and it  will be seen that the robust kernel e-;timate ot the first dernstive is an ordinary 
(linear) kernel estimated operating on suitable transtormcd residuals. 

As for the ordinary kernel estmate.  the smoothing parameter of the kernel weights has to 
be selected in an application to real data. In this paper. the choice of the smoothing parameter 
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1s not discussed. [ I l l \  t o p ~ c  w~ll he ~n \e \ r~ga lcd  In ,I forthcom~ny piper For the c\r~tn.itlon of 
r r l ( t ) .  3 c r o \ ~ - \ ; ~ I ~ d , ~ r o r )  i lc i~cz h,~\  heen propo\c(l h) I{.~rtlle ( It)Slb) 

In theorem 1 cori\ljtcnc.\ ot the roht~\t Lcrncl c.\r~rti,lr~)r I\ \ ~ O U  11. but r.Itc\ of ioll\crsc!lCc 
are not con\dcrcd A I ~ o c ; ~ r r r ~ t ~ o n  .~rpunlcnt .I\ 111 thcorcm 1 rctc,il\ th.~t rhc propo\cd 
cstlmator ;lchlc.vc\ the op t ln l~ l  r;lte In the \cn\c of S ~ O ~ C  ( itISIl). \rhcn rcqurrlng ,~di l~t~on;r l  

\moothncs\ J\\urnprtorl\ on t t ~  

2. Notation and forrnul;ition of the e h n a t o r  

15 defined through the *eight\ 

-,,"' 
(I)  =h J ...\ K,' { ( I - 1 1 ) )  11) llli ( 2  3) 

where 

{s:"'):~~. ty"s.pst:::. 1 =  1. . . . . n - 1 .  

O<sr'~$''. j':'~sl,"'< 1 ~ n d  k=h(  11) IS the so-called b a ~ ~ d w d t h .  
The following usumption on the as!mptotlc hpaangof the des~gn \ a r u b l c ~  { r : " ' } : , ,  i k 1 1 1  be 

convenient: 

sup js',")-s:?, sC, n- I  
l<r<n 

with a generic constant CI>O. Gasser & Muller (1984) introduced the followmg estimate of 
ml(r): 

n 

m: (I) = a!!/ (I) cn', O<I< 1 (2.4) 
I =  l 

where the weights (a!"/ are to be computed from a kernel K, satisfy~ng moment condi- 

tions up to order k ( k 2 3  and odd). 

syl 
.- ., a ( I )  Kl {(r-u)/h) du (2.5a) 

..- 5): 

. ---- -- 
- - 

Kl(u) I) du=O. 1 = 0 . 2 . .  . . 

= - 1, I =  1 ( 3 b )  

=PFO. j = k .  
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by the WLLN. 

provided m(r) is Holder continuous. which follows from (C) below: 

n 

(iii) {m([) -m,,  @(I)} 2 a!$(l) ~ t ' ( ~ ~ n l ) ~ U ,  
1 = 1  

by consistency of r n ,  ,,(t) and the boundedness of yl". This altogether yields that D,(r)+=Ef 

* ' (Z ) .  

Ignoring the effect of randomness of D,(I). the estimator m, ,(I) can therefore be interpreted 
as an ordinary (linear) kernel estimate of the first derivative of a regression function applied to 
the non-linearly transformed res~dual yl{ C n ' - t n ,  ,,(r))/q. A heur~stic justificatton of tn, ,(t) is 
delayed to section 4 where we also cons~der the rstirnat~on of higher derivatives. I t  is well 
known from the theory of robust estlrnation (Huber. IYSI) that the boundednos of y 
guarantees the bounded influence of trt, ,,(I) i f  an obsertmon IS moved to infinity. I t  is 
therefore lnterestmg to note that settlng ~ ( u ) = l r  leads to the estimator (2.4).  For notational 
convenience we will omit the superscript n from now on. 
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3. Results 

( 2 )  \\e habe E f  rl'(Z)=O and therefore 

The RHS is of order O(n-I /I") ac I \  shown in the appendix of Gasser ff Muller (1984). and 
therefore TI,L0. In  Hardle & Gasser (1984) ~t IS shown that under the asurnption of this 
theorem: m, , , ( I ) - t n ( r ) = O , (  I ) .  Now. since 

it follows that T2,Q. 
Gasser & Muller ( 1984 formula (6)) have shown that 
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Since tl,(r)=c{( I 41); ( I ) )  ~e h ~ t c  the dccornp)\ition 

Erut?tpk When tinalvz~ng longitudin~il grcn~th d'ita. the estimation of derwatives I \  more 
important than e\tlmatlng the growth curve itself (Gasser er d.. IYXJ). In order to check the 
efficac! o f  estimating der i \ a t~ \es  rohu5tl> by the kernel method. the herght data of 3 girl u r r e  
analywd A n  out l~er  was art~ticiallv produced by d~splacing the measurement ;it seven >r;irs 
(measurement+ icere ;~vailahle !c.,irly ,ind during puhert: hnlf~e:irl>. from four weeh.\ ro 70 
years). Fig I show\ ,I comp;irl\on ot the \clocity. oht.iinrd either linearly or robustly For 

YEARS 

Fig. I. Velociry of height of a glrl (crn/year). Robust kernel esttmate (dotted Ime) and linear kernel 
estimate (solid line). 

\ 
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both. :I b;rndu~Jth of 1.7 !ear\ N'I\ uwd. folloulng pre\Iour e\pcrtencc For the rohu\t p.trt 
f{uher'\ yl-tunct~on ua\cho\en , ~ n d  the optlrn.11 Lerricl ot ortier ( I 3 )  f ( ; .~ \ \ c . r  c8rol. IOS5) .The 
outlier procluccs ;I Ii~rpc oscllldtlon for the ie loc~ty c u n e  of the ortl~n;lr) kernel e\t~m;lte. '1 
pattern wh~ch I \  often of tnterest In pract~cal .rppl~cat~orl\. rhe rohu\t cstlm,tte. on the other 
hand, supprestes the mfluence of  the outlter to a large eutcnr (a  rede5ccndlng yf-funct~on 
m ~ g h t  be even more succe\\ful In dotng to )  For further e w n p l e \  of vrh)c~t! of he~ght grourh 
see Gaswr B Muller ( 1 Y X J )  or G a s w  er (11 ( 1984). f ly  vl\ual lu i lpnent .  tcloctrv I \  . ~ f f e c ~ e d  
much morc b y  the outltcr compared to the he~ght curie  ~trelt  &hen u w g  the ortl~riar\ kernel 
c\tlrnatc (the hc~ght  curve\ Lire not d~\pl ,~)ctf .  unce the! .Ire of nilnor ~rltcrc*\t tor the prc\c.rit 
topic) 

4. Estimation of higher drritatite\ 

gives the l~near  estlmate r t l :  , ( I ) .  Differentiating relation (4  I )  once more gttes 

= N m ( f ) - h  l(f)Rle-mw >(I)  D q ( t k { m n  1(f)}2R2,,. (4.21 

Here a!!&) denote the kernel weights when estimating second derivatives and tn ,  : ( I )  IS the 
(formal) derivative of m, ,(I). 

Assume now that lyWexists. then by the same arguments that we used in the proofof theorem 
1 with T,Y" in the place of it follows that R:,=0,(1). provided EI r/lM(Z)=O. This conditton can be 
easily met. for instance. by symmetry arguments. If yl is antisymmetric. as was assumed. and F 
is symmetric. then EF v(Z)=O and so is E, vn(Z). Expand~ng Rl, in a Taylor series as ~n (3.1) 
shows that the leading term is 

n 

C a!"I'(O *' {Zl"'} 
t=  I 

which has mean zero and variance 
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tlence, R,.=O,( I )  and equation ( 4  2 )  can now be rewrlttcn as 

w ~ t h  (;:")I) the wrtghts tor ;I I twr l r  Lernel e\tlrnate of t h r p t h  der~va t~vc  tdPi(rl o f tn( l ) .  WIN he a 

reasonable estlrnator for tpr'f I )  b'r ulll not pursue the analysts o f   PI, ,(I) slnce the technical 
details are s ~ r ~ ~ g h t f o r u , ~ r d  i ren the ,irgurncnt\ for tn. and nr, :. 

Thrs r rwarch  \+a\  p,irt~.$*I? supported by the IIeut\cht. For\chung\geme~nschatt. SF13 123 
"Stochasttschc .M~therrt,~rlschr Llodelle". We would also like to thank an Assoc~ate Editor 

and an irnonyrnous retcrre for helpful \uggectlons ;lnd IrnproLrrnent ot the pr txntat ion.  
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A LAW OF THE ITERATED LOGARITHM FOR 
NONPARAMETRIC REGRESSION FUNCTION ESTIMATORS1 

Universitat Heidelberg 

We study the estimation of a regression function by two classes of 
estimators, the Nadaraya-Watson Kernel type estimators and the orthogonal 
polynomial estimators. We obtain sharp pointwise rates of strong consistency 
by establishing laws of the iterated logarithm for the two classes of estimators. 
These results parallel those of Hall (1981) on density estimation and extend 
those of Noda (1976) on strong consistency of kernel regression estimators. 

1. Introduction and background. Let (X, Y ) ,  (Xi, Yi), i = 1, 2, . . . be 
i.i.d. bivariate random variables with common joint distribution F(x, y )  and 
joint density f(x, y) .  Let fx(x) be the marginal density of X and let m(x) = 
E ( Y  I X = x) = J yf (x, y )  dy/fx(x) be the regression of Y on X. In the present 
paper we obtain sharp pointwise rates of strong consistency for the following 
type of regression estimator 

where (K,: r E I) denotes a sequence of "delta functions" (or kernel sequence). 
Many nonparametric estimators of m(x) have this form, for instance, the 

Nadaraya-Watson kernel estimator (more generally estimators based on delta 
function sequences, as introduced by Watson and Leadbetter, 1964) or orthogonal 
polynomial estimators. 

Nadaraya (1964) and Watson (1964) independently introduced a kernel type 
variant of (1.1) and demonstrated weak pointwise consistency. Rosenblatt (1969) 
obtained the bias, variance and asymptotic distribution of kernel type regression 
estimators. Schuster (1972) and Johnston (1979) demonstrated the multivariate 
normality a t  a finite number of distinct points. The strong pointwise consistency 
(without rates) of the Nadaraya-Watson estimator was shown by Noda (1976). 
For this particular kernel type estimator Collomb (1979) gave necessary and 
sufficient conditions on the sequence {Kr(,)] for strong consistency of m,. Stone 
(1977) gave general conditions on the weights K,(x; Xi) for mn(x) to be consistent 
in Lr, i.e. for E I mn(X) - m(X) I r  + 0. From his conditions, however, it  is not 
clear when the Nadaraya-Watson kernel sequence is consistent (Stone, 1977, 
page 607). 

Recently, Schuster and Yakowitz (1979) derived uniform consistency on a 
finite interval for a kernel type estimator. Wand1 (1980) and Johnston (1982) 
studied the global deviation and Revesz (1979) obtained analogous results includ- 
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ing nearest neighbor regression estimators. In addition, Wand1 (1980) obtained 
rates of uniform consistency, but under the rather restrictive assumption that 
the marginal distribution of Y has bounded support. The assumptions in Mack 
and Silverman (1982), who show weak and strong uniform consistency on a 
bounded interval of the Nadaraya-Watson kernel estimator, are less restrictive 
than in Wand1 (1980); the difficulties with an unbounded support of Y are 
overcome by a truncation argument. A similar technique, together with strong 
approximations of the two dimensional empirical process, will be used in the 
present paper. Different criteria measuring the closeness of m, to m, including 
the L,-distance, for kernel type estimators were considered by Devroye (1978, 
1981) and by Devroye and Wagner (1980a, b). 

The method of orthogonal polynomial estimation was originally introduced by 
Cencov (1962) for density estimation. Rutkowski (1982a, b) defined a regression 
estimator based on orthogonal polynomials in the case of fixed design variables 
X. He also presented conditions for (weak) consistency and discussed the appli- 
cations of such estimators to a broad class of system identification problems. For 
more work and related problems concerning both kernel type and orthogonal 
polynomial type estimators, we refer to the review article of Collomb (1981). 

In the present paper we show a law of the iterated logarithm for the centered 
estimate 

This result thus gives the exact order of convergence of m,(x) - Em,(x). For 
statistical interpretations it is desirable to have exact pointwise strong conver- 
gence rates for m,(x) - m(x), but since the bias is purely analytically handled, 
it suffices to consider (1.2). The handling with the bias terms using different 
smoothness assumptions on m and Kr is delayed to the sections where we apply 
the general result of Section 2. In Section 4 we show a law of the iterated 
logarithm for the Nadaraya-Watson kernel type estimator and for a related 
estimator that is useful if we know the marginal density f x  of X. In Section 5 we 
derive an analogous result for estimators based on orthogonal polynomials. 

As a footnote, we would like to mention some related works on density 
estimation. These include among others Wegman and Davies (1979), Hall (1981), 
Stute (1982). 

2. A law of the iterated logarithm for a special triangular array. Let 
(XI, Y, ), (Xz, Yz), . . . be a sequence of independent and identically distributed 
random variables with probability density function f (x, y)  and cumulative distri- 
bution function F(x,  y)  and EY2 < m. As in (1.1), let (KT: r E I) be a sequence of 
real valued functions each of bounded variation and define 

Sn(r)  = CZI {Kr(Xi)Yi - E[Kr(Xi)YilJ. 

Note that this sum is a multiple of (1.2), and that we omitted the dependence on 
the design point x for convenience. Define also 

a(r, s) = cov{Kr(X)Y, Ks(X)Y) and a2(r)  = a(r, r). 

We will now establish conditions under which S, ( r )  = n [m, (x) - Em, (x)] follows 
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the law of the iterated logarithm. We demonstrate that 

where $(n) = (2nu2(r)log log n)"! An application of this result to the two clasaes 
of nonparametric regression function estimators, to be defined below, provides 
thus a precise description of the order of strong consistency ~f nl,(x). 

The set (Sn(r), n r 1) is a triangqlar sequence and in this section it is seen 
that S, p a y  be strongly approximated by a Gaussian sequenoe with the same 

" covariahce structure. The law of the iterated logarithm will then be shown usihg 
parallel results on density estimation by Hall (1981) and Csorgii and Hall (1982). 
We shall also make use of the Rosenblatt transformation (Rosenblatt, 1952) 

T(x, Y)  = ( J 'YIx ,  Fx)(x, Y), 

transforming the original data points {(X,, Yl))r=l into a sequence of mutually 
independent uniformly distributed over [0, 11 random variables ((X: , Y: 
This transformation was also employed hy Johnston (1982) as an intermediate 
tool; also by Mack and Silverman (1982) to obtain (strong) uniform consistency 
of the Nadaraya-Watson kernel type regression function estimates. It will be 
convenient to define 

f 

with a sequence of constants (u,), 0 < u, a w. 

THEOREM 1. Suppose that the sequence of kernels Kr(,) and (u,] satisfy 

(2.1) a,v, (u,) = o (n'/2u(r)(log log n )  'I2/(log n )  2), 

where (a,) is a sequence of positive constants tending to infinity. I n  addition, 
assume that the following holds. 

(2.2b) Cz=3 E ( K ? ( X ) I ( J  X I I un)Y21( I Y I > an))/(u2(r)log log n )  < m. 

Then on a rich enough probability space there exists a Gaussian sequence (T,) with 
zero means and the same covariance structure as (Sn(r)) ,  such that 

S,(r) - T, = ~ ( n ' / ~ u ( r ) ( l o ~  log n)'l2) a.s, 

The device that is used in the proof is the strong uniform approximation of 
the empirical process by a Brownian bridge. Hall (1981) employs for density 
estimation in the one dimensional case the results of Komlbs, Major and Tusnady 
(1975). As in Mack and Silverman (1982), we will make use of an analogous 
result by Tusnady (1977) for the two dimensional case, Note that although the 
two dimensional case is considered here, the technique can be extended to higher 
dimensional design variables X = (x'", . . . , x ' ~ ) ) ,  d r 2. The assumption, however, 
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will not be compatible with the case considered here since it is still unknown 
whether the strong approximation of the multivariate empirical process by a 
multivariate Brownian bridge has a compatible rate as in the one- or two- 
dimensional case. 

The fundamental connection between S n ( r )  and its strong approximation by 
a Gaussian sequence is established by the following lemma. The proof will be 
clear from Tusnhdy (1977) and the fact that n"2[Fn(T-'(x, y ')) - F(TP'(x', y '))I, 
(x', y ') E [O, 11 is the empirical process of ((Xi, Y,)] :,, (Rosenblatt, 1952). 

LEMMA 1. On a rich enough probability space there is a version of a Brownian 
bridge B (x', y '), (x', y ') E [O, 11 such that 

where C1, C2, C3 are absolute constants and 

In the following theorem it is now seen that under regularity conditions on 
the covariances u(r, s )  a law of the iterated logarithm (LIL) holds for mn(x) as 
defined in (1.1) 

THEOREM 2. Suppose that (2.1) and (2.2a, b) hold and that 

where rn,,= (m: I m - n ( 5 en]. Then 

3. Proofs. To establish Theorem 1 we set 

B (x', y ') being the Brownian Bridge of Lemma 1, and show that the difference 

satisfies 

(3.1) R, = ~ ( n - ' ~ u ( r ) ( l o g  log n)lr') a s .  

Note first that T,  has the covariance structure ascribed to it in Theorem 1. This 
follows from the fact that the Jacobian J(x,  y )  of T(x, y )  is J (x ,  y )  = f(x, y) ,  the 
joint density of (X, Y )  (Rosenblatt, 1952) and the following lemma, stated 
without proof. 
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 LEMMA^. LetG, (x ,y )  = Kr(x)y .  Then  

has a biuariate normal distribution with zero means and couariances 

To demonstrate (3.1), we split up the integration regions and obtain 
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From Lemma 1 we deduce that n-'sup,,l en(x, y) I = O(n-'(log n )2 )  as . ,  and 
so by condition (2.1) we conclude that 

(3.2) R1,, = ~ ( n - ' / ~ a ( r ) ( l o g  log n )  a s .  

Next observe that (R::] 1 5 i 5 n are independent and identically distributed 
random variables. We then have by Markov's inequality that for any E > 0 

So with the assumption EY2 < and condition (2.2 a) it follows with the Borel- 
Cantelli Lemma that 

(3.3) R2,, = ~ ( n - ' / ~ a ( r ) ( l o g  log n)'/2)' a s .  

The terms R3,n, R4,n may be estimated in the same way using Markov's inequality 
and condition (2.2b) and we therefore have 

R3,n = o (n-'/2a(r)(log log n)'I2) a s .  
(3.4) 

R4,,, = ~ ( n - l / ~ a ( r ) ( l o g  log n )  'I2) a s .  

The remaining terms, R5,,,, Re," and R7,,, are all Gaussian with mean zero and 
standard deviations 

respectively. Therefore, R5,,,, for instance, can be computed by 

P(R5,, > ~ n - ' / ~ a ( r ) ( l o g  log n )  'I2) 

= 2[1 - (ca(r)(log log n )  1/2/[E (RrtA)2]1/2)], 

where denotes the cdf of the standard normal distribution. A similar equality 
holds for R6,n and R7,,,; therefore, we conclude in view of condition (2.2a, b) and 
the usual approximations to the tails of the normal distribution that  

R5,n = ~ ( n - ' / ~ u ( r ) ( l o g  log n)'/2) a s .  

(3.5) R6,,, = ~ ( n - ' / ~ a ( r ) ( l o g  log n)'I2) a s .  

R7,,, = ~ ( n - ' / ~ a ( r ) ( l o g  log n )  'I2) a s .  

Theorem 1 follows now by putting together statements (3.2)-(3.5) respectively. 
The proof of Theorem 2 follows in the same way as the proof of Theorem 1 in 

Hall (1981, page 49). We only have to note that  Lemma 1 in Hall (1981, page 49) 
has to be replaced by (2.3). 

4. Kernel estimators. Two types of kernel estimates of the regression 
function m(x) will be considered here. The first is due to Nadaraya (1964) and 
Watson (1964): 

We may think of applications where the marginal density f x  of X is known to 
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the statistician. It  is then appropriate to replace the density estimator in the 
denominator of m,T by the known density fx. This leads to the following estimate: 

m,(x) = (nh)-' C:=, K((x - Xi)lh)Y,lfx(x) 

considered by Johnston (1979, 1982). 
Let us define S2(x)  = E ( Y 7  X = x), V2(x) = S2(x) - m2(x), and assume that 

fx(x), m(x) are twice differentiable and S2(x) is continuous. We assume further 
that the kernel K ( . )  is continuous, has compact support (-1, 1) and that 
J L ,  uK(u) du = 0. This implies that v,(u,) as defined in (2.1) is constant for 
large u,, . We will make use of the following assumptions: 

(4.1) nhylog log n -+ 0 as n +- w 

(4.2) C% (hllog log n)E[Y21(I Y I 2 a,)] < w 

where {a,, ) is as in (2.1), (2.2 a, b) such that 

We then have the following theorem for m,(x). 

THEOREM 3. Under the assumptions above 

lim sup,,, f [m,(x) - m(x)](nh/2 log log n) 'P 
f' 

The Nadaraya-Watson estimate follows also a LIL. 

THEOREM 4. Under the assumptions above and Ct=l n - W '  < w 

lim sup,,, f [m,T (x) - m (x)](nh/2 log log n )  ' p  

Note that the only difference between Theorem 3 and Theorem 4 is the different 
scaling factor. As was shown by Johnston (1979), m,(x) has asymptotic variance 
proportional to S2(x) ,  whereas m:(x) has asymptotic variance -V2(x). Since in 
general S2(x)  r V2(x), we expect therefore closer asymptotic confidence intervals 
for m: (x) than for m,(x). 

PROOF OF THEOREM 3. We first show that  we could center m,(x) around 
Em,, (x).  This follows from 

n 

using the smoothness of m ( . ) and fx( . ) and the assumptions on the kernel K (  . ) 
(Parzen, 1962; Rosenblatt, 1971). 
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From assumption (4.1) it thus follows that the bias term (Em,(x) - m(x)) 
vanishes of higher order. So it remains to show that 

where Ifi,(x) = C:=l K((x - X,)/h)Yl = C?=l Kh(Xl)Yl. 
From the assumptions on the kernel K ( . )  we conclude that bn(u) = 

hP'K(u/h) is a delta function sequence (DFS) in the sense of Watson and 
Leadbetter (1964). We now make use of this general approach in terms of DFS's 
and obtain the following: 

This follows from WBtson and Leadbetter (1964) by noting that S2( . ) fX( . )  is 
continuous and { h ( J  K2)-'b'(u)) is itself a DFS. We may note that the use of 
this DFS-technique would also provide a slight simplification of Hall's proof 
(1981) for Rasenblatt-Parzen kernel density estimates. 

To establish (4.4) with the use of Theorem 2, we have to show that (2.3) holds. 
We thus have to demonstrate that if h, k + 0 such that h/k + 1 (in view of 
assumption (4.3)), then 

(4.5) h-'cov{K((x - X)/h)Y, K((x - Y)/k)YJ += 1. 

But EK((x - X)/h)Y = h J bn(x - u)m(u).fx(u) du = o(hl/'), and so by the 
computations for a2(h)  above it remains to demonstrate that 

From the boundedness of S 2 ( . )  and fx(.)  it is clear that the integral above is 
dominated by 

M S [K(u) - K(uh/k)12 du. 

The kernel K is continuous and so K(uh/k) += K(u)  a.e. and it follows that (4.5) 
holds. 

Assumption (2.1) follows from (4.2) since K ( . )  has compact support and thus 
vn(un) = const. for n large enough. In view of the asymptotic formula for a2(h) 
above we have by assumption (4.2) 

a, = o ((na2(h)log log n )  'I2/(log n )  ') 

which is assumption (2.1). Finally, assumptions (2.2a, b) follow immediately from 
(4.2) since K has compact support and as above a2(h) - h-'. Theorem 3 thus 
follows from Theorem 2. 
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PROOF OF THEOREM 4. TO prove Theorem 4 we decompose 

+ f k l (x ) [mn*(x)  - m ( x ) ] . [ f x ( x )  - f n ( ~ ) l  

where fn (x )  = (nh)-' C?=' K ( ( x  - X i ) / h )  is a density estimate of f x ( x ) .  Now from 
Hall (1981), Theorem 2 it follows that  

if we use assumption (4.1), ensuring that the bias ( E f n ( x )  - f x ( x ) )  = O ( h 2 ) .  From 
Noda (1976) we conclude that with C n-2h-'< w ,  m,*(x)  - m ( x )  = o(1) a.s. This 
and (4.6) thus yield that  the second term on the RHS of the decomposition above 
is of order o ( ( n h / 2  log log n )  '/ ') a.s. 

The first summand of the decomposition above can be written as 

As in the proof of Theorem 3,  it follows by assumption (4.1) that the bias terms 
( ( n h ) - ' E m  - m f x )  and ( E f ,  - f x )  vanish. It remains to show 

(4.7) ( n h ) - ' ( m  - E m )  - m ( f n  - Ef,)  

follows the LIL ,  i.e. 

lim sup,,, f [ ( n h ) - ' ( m  - E m )  - m (  fn - E f n ) ] ( n h / 2  log log n)'12 

This can be deduced from Theorem 2, if we rewrite (4.7) as 

Next we show that (4.3) holds. The variance for the sequence above is now: 

As above in the proof of Theorem 3, we conclude that  (2.3) holds. Theorem 4 
thus follows from Theorem 2. 
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5. Orthogonal polynomial estimators. Estimators of the regression 
function m ( x )  based on orthogonal polynomials fit also in the general framework 
developed in the first section. We define the estimate based on a system of 
orthonormal polynomials on [ - I ,  11 as follows: 

m ,  ( x )  = n-I Cy=, Km ( x ;  X i )  Yi/n-'  C:=, Km ( x ;  X i )  

where m = m ( n )  tends with n to infinity and 

Km(x; X i )  = C/m=o e j ( x ) e j ( x i )  

and ( e j ( . ) ]  is the orthonormal system of polynomials. As a technical more 
tractable estimator we consider also: 

mL(x )  = n-I Cy=l K,(x; X ; ) Y i / f ~ ( x ) .  

As in Section 4, let S 2 ( x )  be the second conditional moment of Y and V 2 ( x )  the 
conditional variance respectively. We further assume that 

f x (x )  has compact support in (-1, 1 )  

( 1  - x2)- ' l4fx(x)  is integrable on (-1, 1).  

For reasons of simplicity we only consider the case of ej( . ) = pj( . ) = orthonormal 
Legendre polynomials here and assume that the following holds: 

(5.1) lim,,olim sup,,,sup,,~~~,,l m ( p ) / m ( n )  - 1 I = 0 

(5.2) CK3 m-'.(log log n ) - l E ( Y 2 . 1 (  I Y I > a,)) < co, 

when (a ,  ] is as in (2.2), (4.2) a sequence of constants tending to infinity such 
that  

a, = ~ ( n ' / ~ m ( l o g  log n)'12/(log n ) 2 ) .  
(5.3) 

n/(m"og log n )  += 0 as n += co. 

We have then the following Theorem for mA(x)  and m,(x) .  

THEOREM 5. Under the assumptions above 

lim sup,,, f [mA(x )  - m ( x ) ] ( n / 2 m  log log n )  ' I 2  

= [ S 2 ( x ) / (  f X ( x )  . T I ]  1 /2(1 - x2)-'I4 a s .  

v- d 

lim sup,,, + [m,(x)  - m ( x ) ] ( n / 2 m  log log n ) 1 / 2  

PROOF. We first show the LIL for mA(x) .  The second assertion will then 
follow as Theorem 4 from Theorem 3. As in Theorem 3, we show first that the 
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bias (Em; (x) - m(x)) is negligible. 

by a slight modification of the argument proving Theorem 1 in Walter and Blum 
(1979). By the same arguments as in Hall's (1981) proof of his Theorem 3 (page 
60) we conclude that 

Assumption (2.1) follows now from (5.2) and 

Assumption (2.2) follows also from (5.2) so we finally derive the desired result 
from Theorem 2, since (2.3) may be proved as in Theorem 3 using (5.1). 

REMARK. There is a wide variety of density estimators based on trigonome- 
tric series or Fourier transforms. In the same way as orthogonal polynomial 
regression estimators are deduced from orthogonal polynomial density estimators, 
one may construct regression estimators based on trigonometric series. It may 
be possible to show a law of the iterated logarithm for trigonometric series 
estimators, but as is indicated in Hall (1981) the computations may be more 
tedious than for the two classes that are considered here. 

Acknowledgement. The author wishes to thank R. Carroll, S. Cambanis 
and an anonymous referee for helpful suggestions and remarks. 
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Robust Smoothing Applied to White Noise and 
Single Outlier Contaminated Raman Spectra 
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There are severai smoothing proeedurea for spectrrrl data which u e  
PRected by occnsionaily occorring outiien. Most of the Lnom methods 
u e  b a d  on locai iverages (W fih) of the spectrPl dain. We introduce 
here an outlier-insensitive, robust smootbing method which rejects the 
infioence of huge noise spikcs. The proposed smoothing rlgorithm can 
be tuned by two p9rpmeters. The Brst correspnnds to the signni-to-noise 
ratio, the second to the hilfrridths of the spectral bands. We apply this 
new technique to severai spectri and prove the advantages of oru method 
of identifying peaks and baseliaes in Rnrua spech.oscopy. 
Index Headings: Ramm spectroscopy, Noise reduction; Robwt smooth- 
Ing; Non-Uaear fütering. 

INTRODUCTION 
Noise aiways accompanies the recording and evaiua- 

tion of spectra and thus introduces a lot of difficulty into 

Received 24 January 1983; revbion received 20 July 1983. 
* Present addrew: Department of Chemktry, Univemity of Oregon, 

Eugene, OR 97403-1210. 

the identifying of certain elementa of the spectra. In 
many cases, smoothing of the experimental data is nec- 
essary because of the unfavorable signal-to-noise ratio 
caused by, for instance, low concentrations of the sample 
in Solution. Smoothing is also useful whenever parame- 
ters of bands with low intensity have to be determined 
exactly. 

If we are interested in shape andlor location of a spec- 
tral band we have to suppress the "noise part" of our 
data, Mathematically speaking, this is the Same as "es- 
timating a curve" or "smoothing contaminated data." 
Smoothing of the raw data ia recommended, especidly 
in the three following cases: 

1. The interpretation of spectra of highly diluted sam- 
ples in solutions leads to the problem of identwng bands 
buried in the noise or superimposed by solvent bands. 
In this case we emphasize the need of Rarnan difference 
spectroscopy, described by Laane and Kiefer.' This sub- 
traction is valid only when the experimental parameten, 
are set equal for both spectra. Since the noise adds to 
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SOURCE AND PROPERTIES OF 
INSTRUMENTATION NOISE 

Fig. 1 

t 
Fig. 3 - E, - 

FIG. 1. Influence curve for LS-methods. 
FIG. 2. Bounded influence curve. 
FIG. 3. Weighting function c i ( t ) .  

the signal, one can surely not expect that the noise can- 
cels out by subtraction of spectra. 

2. The determination of intensities, the exact calcu- 
lation of the depolarization ratio, and the determination 
of the differential profile of p over the band need spectra 
with high signal-to-noise ratios, because even small un- 
certainties in the intensity of the perpendicular spectra 
lead to large errors in p. 

3. Smoothed spectra are necessary when band shape 
analyses such as the determination of Gaussian and Lor- 
entzian contributions to the profile or separation of 
overlapping bands are studied. Gans et aL2 propose a 
manual guess of the parameters and carry out the sep- 
aration of the bands on a graphical display. This method 
rnay be advantageous because the experimenter gets a 
feeling for the spectra. Yet strongly contaminated spec- 
tra rnay lead to a wrong choice of parameters since they 
are subjectively estimated. 

In the last few years several Papers on smoothing have 
been published which are all based on the method of 
"least-squares" fitting.2-8 We will explain why the "least- 
Square techniques" are necessarily sensitive to single 
outliers and rnay therefore lead to wrong conclusions if, 
for example, we are concerned with the determination 
of peak height and bandwidth. 

In the second part of this Paper, we describe the origin 
and properties of the noise, which demands a specific 
mathematical model, developed in the third section. In 
the last section we present our results and apply the 
robust smoothing algorithm to very strongly contami- 
nated raw data, as published recently by Hillig and Mor- 
r i ~ . ~  

The amplitude of noise and its statistical behavior 
* 

depend on the source of tlie noise. Most of the recording 
techniques in use cause noise generation. According to 
the source of the instrumentation noise, we classify it 
into two groups. 

One group is the so-called white noise which is statis- 
tically distributed around the true signal. The ampli- 
tude of the white noise can be influenced by the time 
constant of the amplifier circuitry. The white noise aris- 
es partly from the electronic equipment and partly from 
the dark noise of the photomultiplier. The latter is the 
dominating noise source. 

Besides this kind of noise, there exists a type of noise 
which is caused by random external events such as high 
frequency signals, bubbles in the sample by which scat- 
tering is possible, or shock-waves which occur within the 
optical path. Also, errors in data handling, such as mis- 
prints or punching errors of perforated tapes, rnay in- 
troduce huge, absurd spikes. We call this type of noise 
pattern a "single spike outlier." 

Obviously the presence of such a single spike outlier 
causes difficulties in the smoothing of spectral data. 
Outlying spikes near a spectral band should not be in- 
cluded in a smoothing procedure. In the following sec- 
tion, a mathematical procedure is developed which is 
adapted to the twofold noise pattern described above. 

MATHEMATICAL CONSIDERATION 

In this section we explain how large single spike out- 
liers in spectra rnay affect the value of the estimates. We 
then define the robust smoothing procedure and show 
how the influence of single spike outliers rnay be bound- 
ed. 

The sampling of contaminated spectral data is for- 
mulated in the following model: 

where Yl, . . . , Y, are the observations a t  the points ti, 
and zi represents the noise. In Raman spectroscopy, the 
spacing A = t, - ti - , between two successive points on 
the wavenumber scale is usually constant. The function 
f(t),  denoting the true intensities, is to be estimated. 

A procedure often applied to estimate f(t),  the true 
spectrum, on the basis of the observations Y1, . . . , Y, is 
the moving average (or linear filter) 

n 

fn*(t) = L cl(t)Y1 
&-L 

(2.2) 

n 

where L c,(t) = 1 for all t, and c,(t) are weighting 
1-1 

constants corresponding to a window of certain extent 
(see Refs. 2-8). Tuning the bandwidth of the window in 
accordance with the signal-to-noise ratio gives a smooth 
estimate of the intensities. Since this estimate is based 
on an average of the observations Y, near t, only one 
huge single spike outlier rnay distort the linear filter 
(Eq. 2.2). Thus the estimate 2.2 depends greatly on the 
amount of outliers in the noise z,. Whenever the noise 
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w a v e n u m b e r  (Cm-') 

FIG. 4. Inverse Raman spectra of liquid p-dioxane: a, original data 
after Hillig and Morris;$ b, Savitzky-GolayJ fit, 5 points; C, robust 
smoothing, t, = 5, X = 1.0; d, robust smoothing, t, = 5, X = 2.0; e, ro- 
bust smoothing, t, = 7, X = 1.0. 

conthins single spike outliers, the moving average (2.2) 
will be misleading, in other words "not robust against 
outlying single spikes." We can see the influence of sin- 
gle spike outliers if we rewrite 2.2. The estimate f,* ( t )  
can be considered as the solution of 

n 

c , ( t ) l (Y,  - fn*(t)) = min! 
i- 1 

where C(u) = u2/2. The distance of fn* ( t )  to the obser- 
vations Y, is measured quadratically: Huge single spike 
outliers tow fn* ( t )  away from the true spectral value 
f(t) .  Construction of +, the derivative of C, results in the 
so-called influence curve (IC) which is shown for the 
estimate 2.2 in Fig. 1. 

To obtain a robust estimate, we bend down the tails 
of the IC, bounding the influence of single spike outliers. 
The robust smoothing method is thus defined through 
a +-function which is bounded (and also antisymmetric, 
as in Fig. 2). The robust estimate is f, ( t ) ,  a solution of 

n 

C c,(t)$(yl - fntt)) = 0 (2.3) 
1-1 

with the same window C,  ( t )  as in Eq. 2.2. 
In Fig. 2 we give an example of a bounded IC (a 

+-function, which goes back to ruberl0). This IC is also 

w a v e n u m b e r  ( C m - ' )  

Fic. 5. Inverse Ramm spectra of liquid cyclohexane: a, original data 
after Hillig and M ~ r r i s ; ~  b, Savitzky-GolayS fit, 5 points; C, robust 
smoothing, t, = 5, X = 0.3; d, robust smoothing, f. = 5, X = 1.0; e, ro- 
bust smoothing, t, = 7, X = 0.3. 

implemented in the algorithm stated below. Note that 
any other bounded antisymmetric function, such as an 
arctan-curve, may be used. The IC of Fig. 2 is 

where X is the robustness parameter which corresponds 
to the amount of single spike outliers in the noise. The 
C-function corresponding to  $ in 2.4 is a function which 
is, in the middle, like a parabola, and, in the tails, a 
straight line. Thus, outlying single spikes have less in- 
fluence on the estimate fn(t). 

By tuning X in the +-function in 2.4 one can vary the 
degree of robustness of the estimate fn(t) against single 
spike outliers. By increasing X ,  the solution of 2.3 ap- 
proaches the "least-square" estimate fn*(t), i.e. the tails 
of the IC are lifted. If X approaches Zero we obtain the 
moving median. A bulk of huge single spike outliers may 
be removed with a small value of X ,  whereas spectra 
contaminated only by white noise of small variance 
should be smoothed with a larger value of X .  

As a digression, we may note that the same robustness 
considerations described above hold for pararnetric 
models, where a parameter is estimated by the least- 
Square method. Such a parametric model is, for instance, 
a Gauss-Lorentzian curve mixture which is frequently 
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4 
f 

TABLE I. Fortran Code. 

SUBROUTINE RAMSMO ( DATA, WINDOW, EXT, XP, ES- 
TIM, EPS, KAPPA, Z) 

DIMENSION WINDOW(l), DATA(1). Z(EXT) 
REAL ESTIM, EPS 
INTEGER XP, EXT 

C ---..- Smoothing of Raman spectra --------..-------------.---- --- - - - - -  + 
C DATA(1) spectral data input I 
C WINDOW(1) window, generated by GENWIN input I 
C EXT extension of window input I 
C XP point where to smooth input I 
C ESTIM estimate of intensity at XP output 1 
C EPS precision of zero in Eq. 2.3 input I 
C KAPPA cutoff point of psi-fct. input I 
C Z(EXT) buffer input 1 
C - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - -  + 

ILOW=XP-EXTIP 
D 0  1 I=I,EXT 

1 Z(I)=DATA(ILOW+I) 
C --- start with initial estimate 

T=MEDIAN(Z) 
C --- Newton-Raphson loop with Huber's psi-fct., See Eq. 2.4. 
100 SUMMA-0. 

SUMMAZ=O. 
D 0  2 I= I,EXT 
YPSI=Z(I)-T 
W=WINDOW(I) 
YP=KAPPA 
YPS=O. 
IF( YPSI .GT. KAPPA) GOTO 3 
YP= - KAPPA 
IF( YPSI .LT. -KAPPA) COTO 3 
YP=YPSI 
YPS=l. 

3 SUMMA=SUMMA + W*YP 
SUMMA2=SUMMA2 + W*YPS 

2 CONTINUE 
H=SUMMA / SUMMA2 
IF( ABS( H ) .LE. EPS ) RETURN 
T = T  + H 
GOTO 100 
END 

C 
C 
C 

SUBROUTINE GENWIN( WINDOW, EXT, SPACE ) 
DIMENSION WINDOW(EXT) 
REAL SPACE 
INTEGER EXT 

C ------ Generation of Smoothing Window ------..----. ----------------- + 
C WINDOW(1) window, generated here output 1 
C EXT extension of window (odd) input I 
C SPACE spacing distance on wave- input 1 
C number axis I 
C - - . - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - -  - + 

IMID=EXT/2 + 1 
D 0  1 I=l, (IMID-1) 
X=SPACE * I I IMID 

C --- use quadratic kerne1 for instance 
W= .75 * (1. - X X ) 
WINDOW(IMID+I)= W 

1 WINDOW(IM1D-I)= W 
WINDOW(IMID)=.75 
RETURN 
END 

in use. For this model, a robust estimate of the param- 
eter may be introduced in the Same way as above. 

The numerical algorithm for the robust smoothing 
procedure is given by the FORTRAN code which ap- 
pears as Table I. The procedure uses the Newton-Raph- 
son algorithm to solve the implict equation 2.3 (loop 100 
in the code below). 4 

First, the window c , ( t )  has to be generated; this is 
accomplished in SUBROUTINE GENWIN. We have 
chosen a window of parabolic shape (See Fig. 3),  but any 
other window may be used in GENWIN. 

RESULTS 
We now apply the robust smoothing procedure to some 

experimental data containing different noise ampli- 
tudes. In particular, we consider the inverse Raman 
spectra published recently by Hillig and Morrkg 

Hillig and Morris emphasize that one has need of a 
spike-detecting routine in the case of sensitive absorp- 
tion measurements. In Figs. 4 and 5 we reproduce the 
inverse Raman spectra of p-dioxane and cyclohexane/ 
carbon black, respectively. By comparison of the differ- 
ent spectra given in Figs. 4 and 5, we can demonstrate 
the limitations of the Savitzky-Golay filtei.3 and the 
method proposed by Hillig and Morris; and some ad- 
vantages of the robust smoothing technique. 

The first example shows p-dioxane (Fig. 4). The orig- 
inal data are affected by several single spike outliers (at 
-1150 cm-I for instance), and contain white noise with 
a scale of about 5% of the intensity of the strongest 
band. By applying the Savitzky-Golay (five points) fit, 
one Sees that the single outlying spikes are reduced but 
retained as shoulders. A second more serious effect, gen- 
erated by the locd parabolic fit, is that the intensity of 
single outliers adds up to the peaks in the neighborhood. 
This fact can be drawn from Fig. 4b where the intensity 
ratio between the highest bands changes relative to the 
original data. Figure 4c-e shows the Same spectra fitted 
by the robust smoothing algorithm. While in Fig. 4c and 
d, the intensities are well reproduced, in Fig. 4e the in- 
tensity ratio changes. This is due to  a larger value of C,, 

(See Fig. 3) and to the fact that the spectral band near 
1450 cm-I has a higher halfwidth than the spectral band 
at 1320 cm-I. The effect of increasing X can be Seen by 
comparison of Fig. 4c and 4d. Changing X from 1.0 to 
2.0 allows for more influence of single spike outliers. For 
instance, the shoulder a t  the spectral band 1210 cm-I, 
introduced by the outlier a t  1230 cm-I, is more visible 
in Fig. 4d. With their method, Hillig and Morrisg observe 
a large broadening of the bands while all the spikes are 
removed. This is not so with our method, as cm be Seen 
in Fig. 4c-e. 

For the second example (cyclohexane/carbon black, 
See Fig. 5) Hillig and Morriss emphasize that the Sav- 
itzky-Golay smoother does a poor job of removing the 
spikes. But even the Hillig and Morrisg procedure does 
not remove all outlying spikes, as can be drawn from 
their fig. 2c. The application of our algorithm to their 
spectral data shows the advantage of the robust smooth- 
ing technique. In all cases shown in Fig. 5c-e, the single 
outliers are removed and the ratio of the peak intensities 
is preserved. The cutoff-parameter X, as defined above, 
was set to 0.3 and 1.0, respectively, yielding a highly 
robust estimate of the spectral intensities. In that ex- 
ampie many single outliers occurred; therefore, the ro- 
bustness parameter X should be low, as discussed above. 
Due to the small amount of data points for one band, 
all srnoothed spectra show diminished peak intensities. 
In the case of more observations this effect will not be 
so pronounced. 
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,Tbc fact that not all spikes are removed by the Hillig 
arfd Morrise procedure shows that  their procedure fails 
in the ciase in which a single outlier is close to a spectral 
band. In contrast, Fig. 5e suggests that our robust 
smoothing algorithm removed all single outliers in the 
neighborhood of the dominant spectral peaks. Last, but 
not least, we may note that  the robust smoothing algo- 
rithm usually stopped after one Newton-Raphson iter- 
ation (see loop 100 in the FORTRAN code). The com- 
putation t ime is thus  very low; for instance, the 
smoothing presented in Fig. 5e consumed 0.8 s, which is 
about ten times faster than the Hillig and Morrisg pro- 
cedures. 

SUMMARY 
A new robust smoothing method for spectral data is 

proposed. A comparison with two other methods-the 
Savitzky-Golay and the Hillig-Morris procedures-shows 
the advantage of the new algorithm. While in spectral 
data containing single outliers near a spectral band the 
two other smoothers fail (by introduction of shoulders), 

the robust smoothing algorithm as proposed here does 
a good job when the relevant Parameters are tuned cor- 
rectly. 
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SUMMARY 

The bandwidth selection problem in nonparametric kernel regression is considered. 
Bandwidth selectors based on cross-validation and on Akaike's information criterion, 
AIC, and his finite prediction error, FPE, are among those compared. I t  is seen that they 
are not necessarily asymptotically equivalent. Conditions are given under which the 
equivalence holds and niodifications are suggested which make the selectors equivalent. 

Some key words: Bandwidth selection; Kernel estimator; Model selection; Nonparametric regression. 

1. INTRODUCTION 
Let (X, Y), (XI, Y,), ..., (X,, Y,) be independent, identically distributed random vec- 

tors and let 
m(x) = E ( Y I X  = x) 

denote the regression curve of Y on X.  Consider the estimator 

hh (x) = n h-l  K ( 7 )  Yi/f (XI,  
i =  1 

(Johnston, 1982), where K is a 'kernel' or 'window' function, h = h, is a bandwidth, and 
the marginal density f(x), of X ,  is assumed to be known. In  the present paper, several 
bandwidth selectors, most of which are derived from model selection procedures, are 
compared. I t  will be shown that, contrary to what may be expected in view of the results 
of Stone (1977), Shibata (1981) and Rice (1984), in quite simple cases, these selection 
procedures are not all asymptotically equivalent to each other. 

It may appear as a drawback that the estimator is defined in terms of a known 
marginal density, f(x). This is only done for clarity of presentation. In  the slightly more 
complicated case of the Nadaraya-Watson estimator, mt  = hh f/f;l, with f h  a kernel 
density estimator, the approximations used in an unpublished paper by the present 
authors can be employed to see that the ideas of this paper also apply to mt .  These 
results also hold in the case of a multivariate design vector, X .  

The basic idea of most bandwidth selection rules is to choose the bandwidth h to make 
hh(Xi)  an effective predictor of Yi. A crude attempt a t  this would be to minimize the 
resubstitution estimate of the prediction error, 
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where w is a nonnegative weight function. This estimate has an optimistic bias because 
Yi is used in the prediction of Yi. Thus the bandwidth selector which minimizes p(hh) has 
a tendency to undersmooth or, in other words, take h too small. 

The above optimistic bias can be avoided by the method of cross-validation. For 
bandwidth selection, this leads (Wahba & Wold, 1975; Clark, 1975) to minimizing 

where 

Consider the mean integrated squared error distance given by 

d M ( h h , m ) =  E (hh(x)-m(x))2w(x)f(x)dx. 

minimizing dM ( h h ,  m) , write 

S 
To see that the task of minimizing p f ( h h )  is asynlptotically equivalent to the task of 

The unpublished paper by the present authors shows that, under suitable assumptions, 

almost surely, and 
1 c(h) -E(c(h)) I /dM(hh, m, O 

almost surely, where suph denotes supremum over h in an interval (h,, h*) G R'. Thus, 
since 

SUPh I E{$A(hh, m)) -dM(hh, m) 1 /dM(hh, m) + 0, E(c(h)) = 0, 

(1) may be written as 

where o is uniform over h in the above sense. 
Thus, the task of minimizing pt(hh) is asymptotically equivalent to the task of 

minimizing dM(hh,m) .  For this reason, a bandwidth selector will be said to be 
'asymptotically equivalent to dM(hh,  m)' whenever i t  has an asymptotic representation 
as a sum of a,(&,, m), a term independent of h, and negligible terms as in (2). 

To verify the poor performance of the bandwidth selector which minimizes p (hh ) ,  as in 
(2) write 
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where V(x) denotes the conditional variance V(x) = E( Y 2  I X = x) - { m ( ~ ) ) ~ .  The third 
term on the right-hand side of (3) is of the same order as the variance of h,. Thus p(h,) is 
not asymptotically equivalent to a,(&,, m). 

Several other bandwidth selection rules have been proposed. Most of these selectors 
were originally developed in the context of model selection (Rice, 1984). As above, these 
involve minimization of a function of h. Each of these may be thought of as multiplying 
p(h,)  by a selection penalty, E ( t ) ,  which is a function of 

Examples are as follows: 
(i) generalized cross-validation(Craven & Wahba, 1979), ccv (h) = p ( h h )  (1 - t(h)) -2; 

(ii) Akaike's information criterion, AIC (Akaike, 1974), exp AIC (h) = p ( h h )  exp(2t (h)); 
(iii) finite prediction error, FPE (Akaike, 1970), FPE (h) = p ( h h )  {1 +t(h))/{l -t(h)); 
(iv) a selector of Shibata (1981), S(h) = p ( h h )  {1 +2t(h)); 
(v) a selector of Rice (1984), T(h) = ~(h,)/(l-  2t(h)). 

Observe that, by Taylor's theorem, each of the above selectors may be written in the 
form p ( h h )  [1+2t(h)+o(t(h))], which motivates the definition of a general selection 
penalty function E(t) which includes all of the above. 

For E, with E(0) = 1, E'(0) = 2, 8" bounded on a neighbourhood of the origin, 

The bandwidth selector G, and hence (i)-(v) above as well, may now be analysed by 
noting that, as in (2) and (3) ,  

Straightforward computations yield E(p(m)) = V(x) f (x) w(x) dx, and, if the additional 
assumption is made that f is supported and bounded above 0 on the support of w, say 
the interval (a, b) ,  then E(t(h)) = n - l h - l  K(0) (b-a). Hence, G, and (i)-(v), are not 
asymptotically equivalent to a,(&,, m), unless 

In  general, this seems quite unlikely, but note that it does happen in two commonly 
considered special cases: 

(a) f (x) is constant on (a, b) ,  
(b) V(x)w(x) is constant on (a, b). 

In  the setting of fixed design regression, Rice (1984) has established the asymptotic 
equivalence of (i)-(v) to dM(hh,m)  under assumption (a). In  the setting of spline 
regression, Craven & Wahba (1979) have demonstrated a weaker, expected value version 
of the asymptotic equivalence of (i) to dM(hh,  m) under the assumption that both V and 
w are constant. 

From another point of view, (b) can be interpreted as saying that if one wants to use 
the selector G(h), or any of the others (i)-(v), one should choose w(x) = V(x)-I. This has 
already been suggested by Silverman (1985, $5).  An obvious drawback to this is that 
typically, in practice, the function V is unknown. I t  is an advantage of p l (hh )  to be 
asymptotically equivalent to dM(hh,  m) independently of the choice of w. 
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There are three readily apparent ways to overcome the above difficulties. First, a 
reasonable estimate of S V ( X )  w ( x )  dx is provided by 

Thus the selector S ( h ) ,  for example, could be modified to S ( h )  = p(&,) +2t(h)p*(&,), and 
the other selectors can be similarly modified. The second way is to find an estimate of 
V ( x ) ,  possibly a smoothing of the squared residuals and substitute its inverse for w ( x )  in 
p ( h h ) .  Thirdly, using the idea of prewhitening as suggested by D. Brillinger, transform 
the data so that XI ,  . . ., X, can be thought of as uniform variables, by plugging them into 
the inverse of the cumulative distribution function. 
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UNIFORM CONSISTENCY OF A CLASS OF REGRESSION 
FUNCTION ESTIMATORS1 

University of Frankfurt and University of Heidelberg 

We study a wide class of nonparametric regression function estimators 
including kernel estimators and robust smoothers. Under different assump- 
tions on the kernel and the sequence of bandwidths, we obtain weak uniform 
consistency rates on a bounded interval. The uniform consistency is shown 
in a "stochastic design model" and in a "fixed design model". 

1. Introduction. Let (X,, Y,), (X2, Y2), . . .  be independent bivariate 
random data sampled either with stochastic design &'s XI, X2, . . . or with fixed 
design points xl, x2, . . . . In the stochastic design model (XI, Yl), (X2, Y2), . . . 
are independent bivariate random variables identically distributed as a bivariate 
random variable (X, Y) whose joint cumulative distribution function is F and 
whose joint probability density is f (x, y). In the fixed design model (noisy sampled 
data) we have an underlying family of probability density functions (f (.; x): 
x E [0, 11) and 9, = (x,, x2, . . . x,] where 0 5 x1 5 x2, . . . , 5 X, = 1 is a partition 
of [0, 11 determined by the experimenter. 

The nonparametric regression problem is the problem of estimating the 
regression curve of Y on X. Equivalently, the nonparametric regression problem 
requires finding m (x) = m+,F (x), given observations 

The function $ is used here as an indexing parameter, since, as is shown in 
examples below, the shape of $ determines the regression curve m(x). Different 
choices of $ yield the conditional mean or the conditional median for instance. 
The N, being an independent noise variable which may depend on X, and m + , ~  
being the trend satisfying 

where Ex ( . ) = E ( I X = x) in the stochastic design case or Ex ( . ) = J f (y; x) dy 
in the fixed case and $( .) is a monotone continuous function. 

We propose to estimate m(x) by m,(x) a solution (with respect to 0 )  of 

where oci(x) = ajn'(x) are (localizing) weights depending on X. In the present 
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paper we derive-under mild conditions on the weight sequence a:"'(.)-the 
uniform consistency of m,(.) on the interval I = [O, 11. We show that 

with rate r = r,. In the derivation of this result we shall need bounds on moments 
of sums of independent rv's, as given by Whittle (1960), Theorem 2. 

The quite general setup of mn(x) as the solution of (1.2) and m(x) as the 
solution of (1.1) allows us by tuning ai(.) and +(.) to obtain a wide class of 
estimators and regression functions as will be shown in the following examples. 

One of the following examples (Example 5) will give a partial answer to a 
question raised by C. J. Stone in his special invited paper on optimal rates of 
convergence (Stone, 1982, page 1044, Question 4). 

EXAMPLE 1. Take +(u) = u in both (1.1) and (1.2) and define 

for kernel K( . )  and a sequence of bandwidth h = h(n)  tending to zero. The 
resulting regression curve in the stochastic design case is 

and the estimator is 

The estimator was proposed independently by Nadaraya (1964) and Watson 
(1964). Rosenblatt (1969) and Collomb (1977, 1979) computed bias and variance 
rates. Schuster (1972) demonstrated the multivariate normality at a finite number 
of distinct points; Schuster and Yakowitz (1979) derived uniform consistency of 
m:(x) on a finite interval. Recently, Johnston (1979) in his thesis proved a 
uniform consistency result (with rates) for the related estimator 

fx( . )  denoting the marginal density of X. Further (uniform) consistency results 
for m,*(x) were obtained by Major (1973), Konakov (1977), Nadaraya (1973, 
1974), Stone (1977) among others. A bibliographic review on the estimation of 
m(x) = E ( Y 1 X = X) may be found in Collomb (1981). 

EXAMPLE 2. Take +(u) = u and define in the fixed design case 

where so = 0, sjP1 5 x, I sj, s,, = 1, J K(u)  du = 1 and h = h(n) is as above a 
sequence of bandwidths tending to zero as n + w. Since ELl ai(x) = 1, the 
resulting estimator is 

rnn(x) = EL1 ai(x) Yi, 

first discussed by Gasser and Miiller (1979) and recently considered by Cheng 
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and Lin (1981) (with s j  = xj in aj(x)) .  The Priestley and Chao (1972) estimator 
does not fall in the class of estimators here, but is, as shown by Cheng and Lin 
(1981), also uniform consistent obtaining the same rate as m,(x). 

In the following example we will assume symmetry o f f  (y 1 x). Note that for 
the results of this paper neither symmetry o f f  (y I x) nor antisymmetry of $ are 
required. This assumption is only made to obtain in a convenient way the 
conditional mean from equation (1.1). 

EXAMPLE 3. Take f (y ( x) respectively f (y; x) be symmetric and $ a bounded, 
antiasymmetric function. Then again (1.1) gives for the stochastic design case 

in the fixed design case. The regression curve is thus a quantity m+,F(x) which 
minimizes (w.r.t. 19) 

where we assume p to be positive, even, convex and differentiable with derivative 
p' = $. This is exactly the notation of a M-functional (Bickel and Lehmann, 
1975, page 1053) and shows that  m,(x) from (1.2) (with weights (ai(x)] as in 
example 1 or example 2) is a robust estimator of m(x). 

In the stochastic design case m,(x) is a solution (with respect to 8) of 

In the fixed design case the estimator is a solution (with respect to 0) of 

Pointwise consistency and asymptotic normality along with some numerical 
results are shown in Hardle (1983) and Hardle and Gasser (1982). In the last 
paper i t  is also shown that the robust estimator m,(x) proves to be useful in the 
evaluation of Laser spectra (Raman spectra). If we take for instance 

we obtain a Huber-type (Huber, 1964) robust nonparametric regression function 
estimator. Bias and variance rates for this Huber-type estimator with a uniform 
window, i.e. K ( u )  = II-.5,.5](~) were computed by Stuetzle and Mittal (1979). 

EXAMPLE 4. Taking $(u) = sum-l, u 2 0 and $(u)  = -a(-u)"-l, u < 0, 
1 < a < 2 allows us by tuning a to steer from the (local) least square estimator, 
which is m: (x) as  a = 2, to the (local) median (as a + 1) and vice versa. The 
whole class of these estimators will also be covered by our theorems. 
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EXAMPLE 5. Take $(u) = l/2 - I ( u  a 0), a $-function leading to the 
conditional median m(x) = med(Y 1 X ='x) as the regression curve. Stone (1982) 
raised the question if {n-'] ( r  = ( p  - m)/(2p + d)  in his notation) is still an 
achievable rate of convergence. The results of this paper give a partial ansder to 
that question. We show that for p = 1, d = 1, m = 0 a subclass of his (T(B)]  
indeed, {(n-'log n)'), the optimal rate of his Theorem 1 (for the type of distance 
considered here) is achieved. To see this in the "stochastic design model", note 
that assumption (A4) of Section 2 is trivially d assumption (A3) is 
satisfied if there exists a constant co such that 
tions (Al) and (A5) are only technical and 
med(Y I X = x). Assume now that m is 
modulus of continuity urn(&) is linear in 
rn - hn and rn - (log n)1/2(nhn)-1/2 uniform consistency of m, can be achieved 
with rate rn = n-1/3 (log n)1/3 which is the optimal rate given in Stone (1982). 
Quite analogous conclusions can be drawn in the fixed design model. 

We present the result (UC) for a,(x) as in 1 and example 2 for the 
stochastic design case in Theorem 1 and a Theorem 2 shows 
(UC) in the fixed design case with a,(x) as require a 
certain amount of smobthness of m(.), expressed /through the behaviour of the 
modulus of continuity of m which we denote by k.  These results are improve- 
ments over some previous work. Our assumptions are weaker than those of Major 
(1973) in that Y is not required to be bounded as .  and our results are stronger 
than those of Schuster and Yakowitz (1978) because we were able to compute 
uniform convergence rates for m i  (x) as in Mack and Silverman (1982). 

2. Results. We will make the following assumptions on the kernel function 
and on moments of [$(Y - m(x) + s)]. 

(Al) The kernel K is positive, continuously differentiable with compact support 

1 
[-A, A] and 1: K(u) du = 

(A2) $ is a monotone, locally bounded function with Ex$(Y - m(x)) = 0. 

(A3) There are constants co, cl > 0 such that for every x E I = [O, 11 

IEx$(Y- m(x) + s)l  > colsl, Is1 5 cl. 

(A4,k) For some h r 2 let supxE~Ex I IC,( Y - m(x) + cl) I" a. 

(A4, w) $ is bounded,  sup,,^ I $ (u) I 5 B+ < w. 

(A5) The marginal density of X is bounded from above and below 

0 < a I f ~ ( u )  5 b < co for all u E I. 

(A6) There exists a constant Co such that for every x E 1 
1 

Some remarks about the assumptions should be made. The first assumption is 
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very common in nonparametric regression and needs no further explanation 
(Collomb, 1981). The second assumption is just the proper (implicit) definition 
of the regression function. Assumption (A3) needs some more motivation. Assume 
for simplicity that we have a homoscedastic error structure that is f (y I x) 
= f ( y  - m(x)) and f ( y  I x) is symmetric. If we have that $(u) = u then 
(A3) is trivially fulfilled. For the nonlinear $ functions, (A3) is satisfied if 
I J $(y + s)/sf (y) dy ( > co for small s. So (A3) can be interpreted as a criterion 
for Ex$'(y + s),  (s small) staying away from zero, provided it exists a t  all. 
Assumption (A6) is trivially fulfilled for $(u) = u. For nonlinear $ functions (A6) 
is obviously fulfilled if I J $(y + s)/sf (y) dy I < Co, which can be interpreted as 
an  upper bound for E X q f ( y  - m(x) + s), s small. We have chosen this quite 
technical way of formulation to include the conditional median corresponding to 
( u )  = 2 - I 0) which is nondifferentiable at  p = 0. The assumption (A4,k) 
will be used for unbounded functions only, (A4,w) is just the definition of a 
bounded $ function making m, a robust estimator of m. 

As already mentioned, the modulus of continuity of m will be denoted by 

As long as there is no confusion, the index "n" will be dropped in the sequel. 
The following theorems will split up into a statement on unbounded $ 

functions (i.e. containing as a special case the Nadaraya-Watson estimator) and 
a statement on bounded $ functions. The theorems tell us how we have to choose 
the sequence h = h(n)  in dependence of the sample size n and the rate r = rn in 
order to obtain (UC). 

We begin with the uniform consistency in the stochastic design case. 

THEOREM 1. Let the data be generated with stochastic design (XiJZ1, and let 
a i ( t )  = (nh)-lK((t - Xi)/h). Assume that (A1)-(A5) hold and let 

wrn(2Ah) < r, nh2/log n r d > 0. 

If (A4, k) holds let 
nh1+2/(k-l)r2+2/(k-1) + 

and if (A4,w) holds 

nhr2/log n 2 

ll depending on co, c,, B+, a, b. Then mn(x) satisfies (UC). If in addition (A6) 
holds, only 

nr2h1+2/(k-1) + 

and (A4,k) suffice to establish (UC). 

REMARK. I t  can be shown that (UC) also holds for the situation described in 
example 2 for the stochastic design case. Very similar arguments that are used 
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to prove Theorem 2 yield that if 
n h l + 2 / ( k - l ) r 2 + 2 / ( k - 1 ) / l o g  + in case of (A4,k), 
nhr2/(log n)2 r t2 in case of (A4,w) 

the uniform consistency (UC) with rate r = rn follows. 

THEOREM 2. Let the data be generated with fixed design points satis- 
fying supi 1 xi - xivl 1 = O(n-l) and set cri(t) as in example 2. Assume that (A1)- 
(A5) hold and w,(2Ah) < r. If (A4,k) holds, let 

and if (A4,w) holds 

nhr2/log n r t2 
depending on el, co, B+, J K2. Then mn(x) satisfies (UC). If in addition (A6) 

holds, the condition 
&1+2/(k-l) 2 r + w  

together with (A4, k) suffice to establish (UC). 

3. Proofs. T o  show that the class of estimators defined through (1.2) 
satisfies (UC) for the various choices of $-functions and weights (ai(x)J?=l, we 
have to show that 

is arbitrarily small. Now by monotonicity of $, this can be estimated by 

where 

By the symmetry of the problem it will suffice to consider P (Qn) .  
The principal idea of the proof is to lay an equidistant mesh 0 = to < tl < . . . 

< tLn = 1, where 4 << n, to sum the probabilities a t  the meshpoints and to use 
the mean value theorem applied to q ( t )  between them. More precisely we have 

where 4,  7, are arbitrary sequences to be specified later and Mn is an arbitrary 
set to be chosen for the different cases (stochastic/fixed design and the particular 
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{ai(x))Ll). We will also make use of the following fact that in the fixed design 

EL1 oc?(t) = O(nP'h-l) uniformly in t 

(Gasser and Miiller, 1979) and in the stochastic design 

EaH(t) = O(n-'h-') uniformly in t 

(Johnston, 1979). 

PROOF OF THEOREM 1. Suppose that (A4,k) holds, then with qn = pr,, /3 
small enough to satisfy the assumptions of Lemma 1, we obtain from (A.l) 

~ u p ~ = ~ ,  Uln(t) I ~ l r - ~ ( n h ) - ~ / ~ ,  

and if /;' < Ah we have from (A.3) 

where u denote large constants and Mn is chosen as in Lemma 3. Then with /ff 
= nh-' (such that h-' << en << n) we have from Lemma 3 

which is small by the assumptions of the theorem. A similar inequality, shows 
that if (A6) is fulfilled, P(f2,) can be made arbitrarily small. Suppose now that 
(A4,w) holds and choose & such that '. 

to fulfill the assumptions of Lemma 2. This can be made for q, = pr, and r&h 2 
p5, p6 a large constant. So we get by Lemma'l and Lemma 2 

P ( % )  5 /1.6 exp(-p7r2nh - log r - log h)  + ps exp(-e-'nh2 - log r - log h)  

which is small by the assumptions of the theorem. 

PROOF OF THEOREM 2. Define Mn = {(XI, x,, . . . , x,): SUPz=r_cn-l( S&+I - SI-1 ( 
< yln]. If y is chosen large enough we have that MCn = 4 by assumption on the 
fixed design. Since 

t - u  
ai( t)  = h-1 iy, K(--i;-) d~ 
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we have 

Choosing 4, = prn, P small enough, we get from (Al) and (A4,k) 

Respectively if (A6) holds 

taking & = nh-' respectively & = nh-'r2 (for the (A6) case) shows that P(Q,) is 
small. Now in the case that iC/ is bounded we see that 

4 = ec-'B+ I K' (/(cob), E small S 
ensures 

and 

APPENDIX 

It is shown here how the terms Uln(t), Uzn(t),  U3, may be estimated in the 
different cases (stochastic design, fixed design). Lemma 1 and Lemma 2 are 
shown for the fixed design case only. The proofs for the stochastic design case 
are essentially the same by conditioning on (XI, . . . , X,]. 

LEMMA 1. Suppose that the modulus of continuity of m( . )  satisfies w,(Ah,) 
I rn/4 and let 4, I co6rn/8 where 6 is a small constant, co is the constant of (A3) 
and M,  C (C?=l a i ( t )  > 6). Then if (A4, k) holds 

Uln(t) 5 ~ n k A ~ ' [ s ~ ~ x E ~ ( C Z 1  C Y P ( ~ ) ) ~ / ~ I  
(A.1) 

x supo,x,lEx( l rl/( Y - m(x) f ellk). 

Otherwise if (A4,w) holds 

where A?' denote constants. 
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PROOF. Using the assumption on w, and the monotonicity of $ near the 
origin we have 

for all i E (j: I t - x, 1 < Ah1 and therefore 

by assumption (A3). So by Chebychev's inequality and Theorem 2 of Whittle 
(1960) we have that 

in the case that (A4,k) is used. Otherwise, if (A4,w) holds, by an easy extension 
of Whittle's Theorem 2 

Uln(t)  5 exp[-v;(4eB$ C?=l cr:(t))-l] 

for bounded $ functions which shows that (A.l), (A.2) hold. O 

The next lemma estimates Uzn(t).  

LEMMA 2. Suppose that the modulus of continuity of m( . )  satisfies urn(/;' + 
Ah) < rn/2. Then, if (A4,k) holds 

Uzn(t) 
-k -k (2) 

I v n  en A, ( ~ ~ P ~ , M ~ , U , I  I C?=i acrl(u) I ksupu,rEx I $(Y - m(x) - rn) I 

PROOF. By the assumption on the modulus of continuity of m ( . )  and the 
mean value theorem we conclude that 

where r n ( t )  = {u:  1 u - t 1 I /;l). This already shows that Uzn(t) = 0 if 
Mn c An and (A4,co) holds. 

We now further estimate the RHS of the inequality above using Chebysliev's 

The Annals of Statistics, Vol. 12, No. 2, 612-623

(1984) Härdle, W. and Luckhaus, S.
Uniform Consistency of a Class of Regression Function Estimators



CONSISTENCY OF REGRESSION ESTIMATORS 611 

inequality. We then have 

= Vln + V2,, say. 

Now by Holder's inequality (with p = k)  and Theorem 2 of Whittle (1960), we 
have 

Applying now the assumption on the modulus of continuity, we have the desired 
upper bound for both V1, and V2, (after an application of Holder's inequality to 
v,,, too). O 

In the following lemma we estimate the term U3, for different sets M,. 

LEMMA 3. Let 

M, = {(XI, . . . , X,): C?=laa,(tj ) > a/4 and 

# (  I Xi - t j  I < Ah + /il) < 4bn(Ah + &;l)c-l for j = 0, . . . , fn, 0 < e I 1) 

in the stochastic design case. Then 

U3, I ~(~'/,exp[-X3&-'n(hR + /i2)], 

where X3 are constants. 

PROOF. Since Eai( t )  = n-l Sr-Ah+t,Ah+tlnzK(~)fx(t + uh) du 2 a(2n)-l, 
CZ1 a i ( t )  I a/4 implies 1 CY=l [a i ( t )  - Eai(t)] I > a/4. Now by Whittle's theorem 
we have 

The Annals of Statistics, Vol. 12, No. 2, 612-623

(1984) Härdle, W. and Luckhaus, S.
Uniform Consistency of a Class of Regression Function Estimators



622 HARDLE AND LUCKHAUS 

On the other hand 

# ( I  Xi - t I < Ah + /il) = CZ, IAnc t , (Xi )  = n-l CZ1 Zi 
where 

A,(t)  = (u :  1 u - t 1 < Ah + /il). 
Since n - l E & ( t )  = J A n ( t )  f ~ ( u )  du % 2 b  ( A h  + / i l )  we have by Whittle's theorem 
that 

P ( n - '  C?=l Z i  2 4 b n ( A h  + / i l)c-l)  5 exp[ -XPn(Ah + /il)], A, = const. 0 
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How to determine the bandwidth of 

some nonlinear smoothers in practice *) 

Wolfgang Hardle 

Fachbereich Mathematik 

Johann-Wolfgang Goethe UniversitSt 

D - 6000 Frankfurt/M. 

Abstract. A nonlinear smoothing procedure which estimates a 

regression curve is proposed. A kernel operates on data which 

are first transformed in the way which is familiar in the theo- 

ry of M-estimators. The bandwidth of the kernel is chosen by a 

"crossvalidatory" device and asymptotic optimality properties 

are proven. The proposed method is compared with AIC and FPE 

and shown to be asymptotically equivalent. An application to 

Raman-Spectra and a Monte Carlo study show how well our method 

works in practice. 

1. Introduction 

Let us assume that we observed a triangular sequence of 

datapoints 

with expectation 

* )  Research partially financed by the Deutsche Forschungsgemein- 

schaft, Sonderforschungsbereich 123, "Stochastische Mathe- 

matische Xodelle". 
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(T) with and independent identically distributed errors {Zt 
2 variance n2. The unknown function m E C [o, 1 ] , the regression 

(T) T In curve, is to be estimated from the observations {yt 

this paper we propose a nonlinear smoothing procedure. We 

choose a zero of the function 

and call it the M-smoother S(*)(x) derived from ;! and the 

weights ctiT). We assume the weights to be given by a kernel 

function K as follows 

+ is a given monotone and bounded function, I) E c 2 ,  with ;1, (0) =0, 

E$ (z:" ) = 0. The parameter h = h (T) in the weights (1.2) is 

called bandwidth. Interpreting {aATlx) &Il as a window 
(Brillinqer, 1975, chapter 3.3) the bandwidth h regulates the 

size (or span) of the window. In practice, one must select a 

particular size of the window. It seems desirable to use a 

bandwidth which makes the averaged square error (ASE) small 

Denote by hA = hA(T) the bandwidth which minimizes ASE. The 

ASE is a discrete approximation to the mean integrated square 

error (MISE) 

2 MISE ( h ; ~ )  = E ji[s(~ls) - m(s) I ds 
0 

of the estimated regression curve S(T\. 1 .  Since the regression 

curve m(.) is unknown we cannot determine hA from the data. 

We discuss a data-driven procedure for approximating hA which 

is based on cross-validation in the sense of Stone ( 1 9 7 4 ) .  In 

our case the cross-validatory choice of h(T) is that value 

hc = hc(T) which minimizes 

where s(~\ t/T) denotes the M-smoother computed from the 
(T) subsample {ys , i.e. sjT\t/~) is a suitable zero of 
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This is not exactly Stone's ( 1 9 7 4 )  "leave-one-out" statistic, 

which would be obtained if we would use the weiqhts 

(T/T-I ) ) rather than o ) . For technical convenience 
S 

(T) we prefer our modified definition of S -  . 

We show that 

where R(h;T) is a remainder term which tends to zero'hniform- 

ly in hW(in a sense to be specified later). Remark that the 

first term on the RHS of (1.5) is independent of h and there- 

fore the task to minimize CRVD(h;T) is similar to the task to 

minimize ASE(h;T) over h. We shall in fact prove 

'p 

From this asymptotic behavior we could expect that hC(T), the 

cross-validatory choice of h(T) , is a reasonable selection 
for the bandwidth in practical situations. 

A small Monte Carlo study and an application of M-smoothers to 

Raman-Spectra shows how the method works in practice. We also 

consider the relationship of CRVD to other devices such as 

Akaike's (1970, 7974) AIC or FPE and show that they are equi- 

valent to CRVD. 

Cross-validation as a method for choosing the degree of smooth- 

ing has been proposed by several authors in slightly different 

situations. Wahba and Wold (1975) discuss spline nonparametric 

regression; Chow, Geman and Wu ( 1 9 8 3 )  studied kernel density 

estimators with a bandwidth selected by cross-validation; Wong 

(1983) showed consistency of the Nadaraya-Watson estimator for 

regression curves (fixed, equispaced design) with a cross-vali- 

datory choice of the bandwidth. Our device is competing with 

running medians, considered by Tukey (19771, Velleman and 

Hoaglin (1981). This estimation device admits a similar presen- 

tation. 
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One has to choose 

Our theory does not apply, since these functions do not satis- 

fy our regularity conditions. 

The M-smoothers which we investigate here were proposed in 

a time series setting by Velleman (1980). There are also rela- 

tions to the work of Mallows (1980) who considered some non- 

linear smoothers in the frequency domain but left open the 

question how the span of such nonlinear smoothers ought to be 

chosen in practice. 

The feature which distinguishes our model from those treated 

by the authors mentioned above is the possibility of sampling 

a curve finer and finer. We find this feature in Raman spectro- 

scopy, a field of anorganic chemistry; here indeed the spacings 

between two successive wavenumbers may be decreased ( Bussian 

and Hgrdle, 1984). It seems also that our methods can be used 

in geophysics, in order to identify so-called "nugget-effects" 

(Cressie, 1983). 

For notational convenience we will suppress the index T where 

it seems unnecessary for the understanding. In particular we 

shall write as (t) instead of ajT)(t/~). Similarly St- in- 

stead of s!~\~/T), St instead of s ( ~ \ ~ / T )  and Yt instead 
(T of Yt . 

2. The bandwidth selection problem 

In this section we will show that approximation (1.5) holds 

under the following assumptions on K, m and h = h(T): 

( 2 . 1 )  The kernel K is twice differentiable, symmetric, 
integrates to one and vanishes outside [ - I ,  11 ; 

(2.2) the sequence of bandwidth h = h(T) tends to zero 

such that Th (T) -+ a, as T 4 a; 

(2.3) the regression curve m: [0,1 ] -4 IR is twice 

continuously differentiable with 
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and 

miP\o) = m(p11) , p=0,1,2. 

Assumption (2.1) is fulfilled by many kernels K which have been 

proposed in the literature. A good example is the Bartlett- 

Priestley window (Priestley, 1981, page 569; Epanechnikov,l969). 

The assumption (2.3) is introduced for technical convenience. 

It allows us to treat the problem without modification at the 

boundary points. In a practical situation where we suspect that 

(2.3) is not fulfilled we would use a weighted version of 

ASE(h;T). This is suggested by work of Gasser and MLiller (1979) 

who showed that the rate of convergence of ASE is different 

at the boundary points. 

A linear approximation {gt) to {St) will be defined in 
+ 

order to simplify technical details. For {St) an asymptotic 

relation similar to (1.5) holds. It is then seen that the prob- 

lem of approximating hA(T) can be solved via a cross-valida- 

tion device based on the linear approximation {zt}* 
St is a zero of the equation 1 as (t)$ (Ys- 9 )  = 0. 

s 
Define 

"7 

M - where Ys - ps + $ (Zs) /q, q = E $ '  (Z) . Note that st can be 
interpreted as a classical kernel regression estimate which 

T 
linearly operates on the non-observable pseueo-data {Ys}S=ll 

while the M-smoother {st) operates nonlinearly on the 
T 

original data {Y~)~=,. 

In analogy to ( 1 . 3 )  and (1 .4) define now the following 

quantities for {st}. 

N & 

where St- = 1 as (t)Ys. Define also 
sf t 
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By computations very similar to Parzen (1962) it is seen that 

-2 2 
(2.6) MASE(~;T) = (Th)-'j~~ (u)du E$ (Zj/q 

2 

2 -1 -1 4 + 1 / 4  h4 iL[rn" (x) : 2 d ~  Jn K ( u )  du + o (T h +h 1. 
0 

Neglecting the third summand on the RHS in the equation above, 

we see that h(T) = qT - 1  /s , r\ > 0 balances the trade-off between 
2 

the variance - and the {bias\ - part. The value 7 minimizing 

is obviously 

- 1 / 5  
Fix now two constants a < cl c b  and define h_ = aT I 

5 = bT It will be seen in Theorem 2.1, that the remainder 

terms Ri, i=1,2 in the following equation vanish. uniformly 

over h~ [h,h], - 

To be precise, we show that for all E > O  

(2.9) PC  sup- T 4 / 5  
hshlh - 

Therefore the problem 

reduces to selecting 

which minimizes 

of finding hA E arg min ASE(h;T) 

h E [h,hl 

bandwidth between aT - 1 / 5  and bT-1/5 

/V 

MASE (h;T) + R2 (h;T). 

The first approximation in (2.8) is a consequence of the 

following lemma. 

Lemma 2.1 

Consider a sequence 3!?) with the properties specified in 

(1.1) and assume that (2.1) - (2.3) holds, then for all E > 0 ,  
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Proof 

T Consider the following two functions ? : I R ~  + 1R , 

-4 - - 
By definition of = (Sl1...,ST), S = (S1l...lST) we have 

Applying Taylor's theorem to Ot yields 

where a is between o and us - st. 
s,t 

The difference between at and Yt is then 

We investigate now the rates at which these Riltl i=l ,2,3 

tend uniformly (in the sense of (2.9)) to zero as T -+ 
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170 

are 1 ) Define Vs = ( $ I  (Zs) - q)/q and note that { ~ ~ 3 ~ = ~  
with mean zero. Summation by parts yields i.i.d rv's 

with Ow 
s,t 

Assumption 

with a constant C1 depending on K, and therefore 

By Kolmogorov's inequality we have with a constant C2, 
bounding the variances of usVsl 

which shows that 

2) The term R 
2,t 

is estimated similarly. 

3 )  The third term R 
3 ,t 

splits up into the following three 

summands . 

If C3 2 2b, then as T -t m 

(Marron and Hardle, 1983). 

Lecture Notes in Statistics "Robust and Nonlinear Time Series Analysis"

(1984) Härdle, W. How to determine the bandwidth
of nonlinear smoothers in practice?



Define the set 

Then, ii 5 t TT it is easily seen that with a constant 4 
bounding K and I+!J" 

The Cauchy-schwarz inequality shows that there exist constants 

C5, C6 with: 

Putting these statements together we finally have that 

for 5 E FT 

Now the triangle inequality yields 

Theref ore the function 2 I-+ 1 - @ (rl_ maps the compact, convex 

set FT - p , E = ( L I ~  ,... ,pT) into itself and by a suitable fixed- 
h 

point theorem there exists a fixed point 11 in TT - p. 
A 

- 
Setting S_ = 2 + p we see that O ( S _ )  = 0. 

We furthermore have by (2.11) 
rn 

with the "o " denoting a rv which uniformly in h E  [h,Kl 
P 

tends to zero. This proves the lemma. 

With this lemma we obtain that the difference between ASE and 

A% is of smaller order than T'~'~ uniformly over h E [ h  .hl . 
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This result, together with the second equality in (2.8), yields 

that hAT 1/5 C1 as T - t W .  

Theorem 2.1 

Consider the sequence ylT) , as defined in (1.1 ) , and assume 
that (2.1) - (2.3) hold. Then for all E > O r  as T -+ m, 

P 
with and hA t arg min ASE(h;T) satisfies T ' / ~ ~ ~ ( T )  -+ c,, - 

h ~ & , h 7  
(2.13) 2 1 2  1 /5 

= {I'K~ (u)duEji2 (Z) / ( q 2 ~ 1  [m" ( x )  1 dx ! u ~(u)du) 1 
C 1  -1 0 - 1 

Proof 

Statement (2.12) follows by lemma 2.1 and an application of the 

Cauchy-Schwarz-inequality. Note that the remainder term in 

(2.6) is tending to zero uniformly in h € [ h , E ] .  Therefore 
% (  ) , as defined in (2.7) reads as 

which is a continuous and convex function for ri E [arb] and 

has its unique minimum at cl = arg min ~(h~l'~). NOW 
h €[h , i ; I  

(2.12) and Theorem 1 of Marron and Hardle (1983) yield that, 

sup / T ~ / ~  
n€[a,b] 

The following arguments are as in Rice (1983). For any 6 > 0 

define 
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Then 

-+ o , which proves (2.13). 

Recall now the definition of St- and of CRVD (h;T) . The next 
theorem shows that (1.5) holds. Therefore, for large T, instead 

of minimizing the (unknown) function ASE(.;T), we may minimize 

CRVD(. ;T) . 

Theorem 2.2 

Consider {yiT) > , as defined in (1 .I ) and assume that (2.1 ) - 
(2.3) holds. 

Then, for all E > 0, 

h E arg min CRVD(h;T) satisfies 
c h€[h,El 

where c, is the same constant as in Theorem 2 . 1 .  

Proof 

Consider the following decomposition 
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d 

where St- is the "leave-one-outn statistic based on the pseudo- 

data {YsIsft. From Hgrdle and Marron ( 1 9 8 3 ) ,  Theorem 1 we have 

that, uniformly over h€[h,E] 

Now by Theorem 2.1 and the Cauchy-Schwarz inequality we have 

In view of (2.16) it remains therefore to show that the sum 

- 1 T T 1 (of the following terms} 
t=l 

equals 
2 T-I 1 Zt + o (T - 4 / 5  

P 
) 

t=l 

uniformly over h€[h,K]. Observing that some terms cancel each 

other, we have to show that the "T-I T sum of t=l 

By Theorem 2.1 and (2.6) we have that 

The third term is estimated as in the proof of Lemma 2.1 by 
N 

setting St = S in (2.10) and observing that St- and St- t- 
are independent of $(zt]/q. It remains to show that 
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of  t h e  t e rm where  $ ( Z t ) / q  i s  r e p l a c e d  by Z t  i s  t h e  same. 
N 

Adding and s u b t r a c t i n g  St- and r e p e a t i n g  t h e  argument f o r  

W 
3 , t  

it rema ins  t o  show t h a t  

Cons ide r  t h e  b i a s  t e rm 

where bT ( t )  = pt - 1 a s  ( t )  ps = 0 ( T - ~ ' ~ )  i n  t h e  r ange  h € [ h , K ] .  
s#t  

T h i s  shows t h a t  t h e  b i a s  t e r m  i s  o  ( 1 ) .  Using now t h e  i n d e -  
P 

pendence o f  $ ( Z t ) / q  from 1 a s  ( t ) +  ( Z s ) / q  it f o l l o w s  by 
s#t 

s i m i l a r  c a l c u l a t i o n s  a s  i n  t h e  proof o f  Lemma 2 . 1  t h a t  

T 
T-I 1 W l  = o p ( T  - 4 / 5 )  u n i f o r m l y  o v e r  h ~ [ h , K ] .  T h i s  p r o v e s  

t= I 

( 2 . 1 4 ) .  

W e  show now ( 2 . 1 5 ) .  R e c a l l  t h e  d e f i n i t i o n  of ( )  and D ( 6 )  

" 2 - 1 T  
t h e n  w i t h  (2 .14 )  and uT = T ( T ) 2  we have ,  1 zt  t = l  

-+ 0 by Theorem 2.1.  
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3. Relations to other devices for selecting a bandwidth 

In section 2 we studied the selection of the bandwidth 

hc farg mine CRVD(h;T) on the basis of a modified form of 
GShSh 

Stone's (1974) crossvalidation function. This was mainly done 

for historical reasons, since Wahba and Wold (1975) introduced 

the crossvalidation method as a device to pick up "asymptoti- 

cally correct" sequences of bandwidth in the setting of regres- 

sion function estimation. Stone (1977) showed an asymptotic 

equivalence of the crossvalidation method and Akaike's infor- 

mation criterion (AIC) in the context of model selection. It 

is therefore of interest to study the equivalence of other 

devices, such as AIC, FPE, to cross-validation in our context. 

Note that in the proof of Theorem 2.2 we have essentially 

shown that 

Since the two middle terms on the RHS do not depend on h and 

the last term vanishes uniformly in h€[h,6], we conclude with 
the techniques developed in section 2, that the minima of 

rC/ 

CRVD approximate asymptotically the minima of CRVD. We there- - 
fore consider only CRVD in the following. - 
Let us rewrite CRVD: 

'I' - 1 -1 -1 It is easy to see that sup I T  1 (T h K(o)Gtl / 
h~[h,E] t=l 

uniformly over h€[h,El. 

1 
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Define the residual sum of squares 

N '1' 

RSS ( h ; T )  = T-I I (Gt -St) 2 . 
t= 1 

Then as we have shown above - ,-./' -1 -1 -4/5 CRVD = RSS + 2T h K(o)V($,F) + o (T ) 
P 

Define the leading term 

We will see in Theorem 3.1 that the minima of c*(. ;T) 
approximate asymptotically the minima of the following 

functions. 

h/ 

(3.3) exp (AIC (h;T) ) = RSS (h;T) exp (2~-lh-'K (0) ) 

-1 -1 
AIC(h;T) = log (=S(~;T)) + 2T h K(O) 

(Akaike, 1 9 7 4 ) ,  

(3.4) FPE(h;T) = (1 - T- I h- 1 ) /( ' I  - ~-'h-') Z S ( ~ ; T )  

(Akaike, 1970) , 

(3.5) SHI(h;T) = =(h;T) ( 1  + ZT-'~-~K(O) 

(Shibata, 1981 ) . 
This list may be extended to GXV (generalized cross-validation, 

Craven and Wahba, 1979) or FPE(a), a modified FPE criterion 

from Bhansali and Downham (1977). 

Note that all the devices listed from (3.2) to (3.5) carry 
rJ 

the same structure. They contain a term involving RSS which 

is decreasing as hJ.0 and a penalty term getting bigger if 

h is two small. The next theorem states that a small random 

or nonrandom disturbance 6 (h,T) of C* (h;T) does not affect 

the asymptotic optimality of h. 
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Theorem 3.1 

Suppose that for all E > 0 

Then a sequence of bandwidth hcf6 (T) chosen sc as to mrnimrze 

C;(.;T) = c*(.;T) + o(.;T) 

approximates asymptotically h E arg min CRVD(h;T), i.e. c h~[h,g] - 

The proof of this theorem follows closely the arguments that 

were used in the proof of Theorem 2.2. 

Shibatas criterion function (3.5) may be written as 

where 6 (h;T) = o (T-~'~) uniformly over hE[h,G]. 
P 

The otherfunctionsmay be expanded in Taylor-series to see 

that they are asymptotically equivalent to SHI(h;T). 

4.An example and a Monte Carlo stctdy 

We report here the results of an application and of a small 

Monte Carlo simulation. M-smoothers of the function 

m(s) = sin(2ns) were computed from a sample of T=100 equi- 

spaced data points t IStST. The residuals {Ztl were 
/T' 

generated according to the pdf 

where 4 denotes the pdf of a standard normal distribution. 

By direct computation one sees a2 = 8.19. The kernel we irn- 

plemented was the so-called Bartlett-Priestley window 

(Epanechnikov, 1969) 

(4.1) 
2 ~ ( u )  = .75(1-u ) l u l  6 I 

= 0 jul > I . 
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The IMSL routine GGNPM was used to generate the Gaussian pseudo 

random numbers. For each of the 160 Monte Carlo runs, the 

functions CRVD(h) and ASE(h) for h = i/200, 1 = 3 , 5 , .  . .,I5 
were computed. We used Huber's $-function 

for 3! = 1 . 2 #  1.5, 3. The mean ar.d the standard deviation of 

CRVD and ASE for different bandwidth h and tuning parameter 

3 together with the correlation between ASE and CRVD, 

are shown in Table 1. The numbers shown there are consistant 

with the theory: the averaged CRVD and ASE curves have both 

their minimum at .065 for X = 1.2, 1.5, 3, 

An application of M-smoothing to Raman spectroscopic data was 

also carried out. For various reasons spiky outliers may 

corrupt the recorded Raman spectrum. Intermittent high fre- 

quency signals, bubbles in the sample, furthermore shock waves 

within the optical instrumentation may introduce absurd spikes 

(Bussian and Hardle, 1984). In Figure 1 a typical data sequence, 

T = 330, together with the smoothed series C S ~ } ~ = ~  is shown. 

Huber's $-curve (4.3) was used and S was computed by the t 
Newton-Raphson algorithm. In Figure 2 a batch of CRVD curves 

for different levels of X is shown. To simplify the inter- 

pretation, on the horizontal axis the scale 2hT is used 

rather than h itself. The solid line in Figure 2 corresponds 

to at = .2 and the finest dotted line belongs to ae = .4; the 

three other graphs were computed for a( = .25, $ 3 ,  .35 respec- 

tively. The five curves have their minimum a11 in the range 

between 6 and 8. Selecting 2hT = 7 andX = -25 qives the 

smooth curve of Figure 1. There the M-smoother {st}, overlaid 

with the original data {Y~}, is shown. Obviously {st} is not 
affected by the spurious observations at tu200 and t% 310. 

We tested our assumption on the noise sequence {Zt} by means 

of Bartlett's test (Priestley, 1981). The test did not reject 

the white noise hypothesis at a 5% significance level. The 

programs, written in FORTRAN, can be obtained from the author. 
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CRVD WITH RAMAN DATA T = 330 
SQHRN D R T R  M0181055 

F igu re  2 
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C a k i e r i s  du C . E . R . O . ,  V o h e  2 6 ,  no"-?, 1966 
CoU. Appaches non p a t r a m t ~ q u e s  et a n d y n e  chonaLogique,  &ux&&b, 1 9 8 5  

QUELQUES A S P E C T S  D E  L A  P R E D I C T I O N  NON P A R A M E T R I Q U E  : 

T R A V A U X  D E  GERARD COLLOMB ( 1 9 5 1 - 1 9 8 5 )  E N  

A N A L Y S E  NON P A R A M E T R I Q U E  D E S  S E R I E S  T E M P O R E L L E S  ( * )  

I .  POUR(2UOI L A  P R E D I C T I O N  NON PARAMETRZQlE  DE S E R I E S  CHRONOLOG12UES ? 

r e a l  

w e  

S o i t  {Zi, i = 0, 

i s a t i o n  de longueur 

des hypotheses sur  

f 1, .. .) un processus s t a t i o n n a i r e  i3 va leu rs  r e e l l e s .  On suppose qu'une 

N du processus ( ~ ~ ) r = ~  o n t  t t e  observees e t  l ' o n  veut  p r e d i r e  ZNtlC. Lors-  

l a  s t r u c t u r e  du processus permet tent  de l e  c a r a c t e r i s e r  pa r  un nombre f i -  

n i  de parametres,le probleme de l a  p r e d i c t i o n  de ZN+l r e v i e n t  i3 es t imer  convenablement ces para- 

metres. Une a t t e n t i o n  a e t e  por tee au cas de processus Gaussiens puisque ceux-c i  sont  ent ierement  

ca rac te r i ses  pa r  l e u r  moyenne e t  l e u r s  a u t o c o r r ~ l a t i o n s .  %me l o r s q u ' o n  pense que l e  processus 

observe n ' e s t  pas Gaussien, l e s  methodes basees sur  1 ' es t ima t ion  des a u t o c o r r e l a t i o n s  sont  u t i -  

l i s e e s ,  l ' i n t e r p r e t a t i o n  des parametres est imes e t a n t  consideree come p l u s  impor tante que l ' e f -  

f i c a c i t e  de l a  methode u t i l i s e e .  Ces dern ieres annees, de nombreuses approches o n t  e t e  develop- 

pees pour l a  mode l i sa t ion  de processus non Gaussiens. De nombreux auteurs se sont  i n te resses  & 

des modeles a u t o r e g r e s s i f  non Gaussiens p lus ou moins mod i f i es  (pa r  exemple Lawrence e t  Lewis 

(1980), M a r t i n  e t  Yohai (1985), Tong e t  L i n  (1980) . . . ) .  Une l i s t e  de references,  r i c h e  mais 

cer ta inement  incomplete, se t rouve dans l e s  actes de l a  conference "Robust and Nonl inear  Time 
Ser ies Analys is"  (1984). En p a r t i c u l  i e r ,  1 'approche robuste de 1 'analyse des se r ies  temporel- 

l e s  e s t  t r e s  p r m e t t e u s e  mais e l l e  ne resout  pas l e  probleme du choix  i n i t i a l  du modele para- 

metr ique pour i Z i l .  

N Gerard Collomb env isagea i t  l e  probleme de l a  p r e d i c t i o n  de ZNtl a p a r t i r  de iZi}ipl pa r  

une approche non parametrique. Cet te approche a l 'avantage,  pour un grand nombre d 'observa-  
t i o n s ,  de f o u r n i r  des in format ions t r e s  d e t a i l l e e s ,  e t  peut donc permet t re de d e f i n i r  un modele 

parametrique ra isonnable.  

Dans une s e r i e  de p u b l i c a t i o n s ,  111, I 2 1 ,  [31, [41 ,  151, 161, il a obtenu l e s  v i tesses  de con- 

vergence de p r e d i c t e u r s  non parametriques c o n s t r u i t s  par  l a  methode du noyau ou par c e l l e  des 

k -po in ts  Tes p l u s  proches. Sa revue b ib l i og raph ique  [71 sur  l ' e s t i m a t i o n  non parametrique de 

l a  reg ress ion  e t  sur  l a  p r e d i c t i o n  r e c a p i t u l e  l 'ensemble des t ravaux e f fec tues  dans ce domaine 

e t  apporte un p o i n t  de vue general sur  l e s  methodes non parametriques. Dans l e s  a r t i c l e s  181, 
191, 1101, I l l ]  il a e t u d i e  l a  convergence du p r e d i c t e u r  a noyau e t  d e f i n i  l e  predictogramne. 
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Ce prédictogramne e s t  t r è s  u t i l e  en analyse exploratoire des données corne i l  l ' a  montré dans 
[91, un a r t i c l e  où sont exposées des réa l i sa t ions  de calculs pour des techniques exploratoires 
en régression e t  prédiction. Pour é t ab l i r  des résul ta ts  de convergence uniforme (sur des com- 
pacts) l ' o u t i l  probabiliste essentiel  e s t  une inégal i té  du type Bernstein concernant l e s  pro- 
cessus O-mélangeants qu ' i l  démontre dans [131. Cette inégali té e s t  présentée dans l e  paragra- 

phe 2 .  

I l  s ' e s t  aussi intéressé aux estimateurs non paramétriques de l a  densité de l a  lo i  mar- 

ginale du processus stationnaire I Z i l ,  [19]. Dans des applications par t icul ières ,  ces estima- 
teurs de densité peuvent indiquer s i  une hypothèse Gaussienne e s t  j u s t i f i ée  e t  l e  cas échéant 
quel type d'hypothsse non Gaussienne chois i r .  Ainsi, à pa r t i r  d'estimateurs non paramétriques, 
on peut aboutir à des conclusions sur l e  type de modèle paramétrique approprié pour de futures 

analyses. Une structure non 1 inéaire peut é t r e  détectée ou 1 ' indication qu'une approche 

Gaussienne classique e s t  j u s t i f i ée .  

La méthode qu'employait l e  plus souvent Gérard Collomb e s t  l a  méthode du noyau. Les 
estimateurs à noyau de l a  densité ont é t é  in t rodui ts  par Rosenblatt (1956) e t  l e s  estimateurs 
à noyau de la régression par Nadaraya (1964) e t  Watson (1964). Il e s t  intéressant de noter que 
pour ce dernier auteur, l ' in t roduct ion  de t e l s  estimateurs é t a i t  motivée par l 'analyse non pa- 
ramétrique de données météorologiques. L'approche non paramétrique en l iaison avec l e s  idées 

de robustesse a é t é  proposée par Bril l inger dans une discussion au su j e t  de l ' a r t i c l e  de Stone 
(1974). Ce propos a é t é  repr is  plus en déta i l  par HXrdle (1984) e t  HXrdle e t  Gasser (1984). 
Les M-estimateurs robustes qui y sont étudiés ont é t é  employés pour la prédiction non paramé- 
tr ique pour des sér ies  temporelles dans un t ravai l  commun de Gérard Collomb e t  moi-même [191. 
Ici aussi une étape importante dans l e s  preuves e s t  constituée par l ' i n é g a l i t é ,  déjà mention- 
née, du type Bernstein pour des variables a léa to i res  O-mélangeantes [131. 

Comme tous l e s  autres estimateurs non paramétriques, l 'est imateur à noyau de Nadaraya- 
Watson dépend d'un paramètre de l issage.  La vitesse de convergence e s t  fonction de ce paramè- 
t r e  de l issage e t  de l a  t a i l l e  de l 'échanti l lon.  Elle e s t  d 'autant rieilleure que l a  fonction 
à estimer (généralement l a  fonction de régression ou l a  densité) e s t  l i s s e .  Or, dans les  appli- 
cations,ce degré de régulari té e s t  inconnu e t  pourtant l e  paramètre se doi t  d ' é t r e  choisi con- 

venablement. Une mesure possible de la valeur d'un prédicteur e s t  l a  moyenne des erreurs qua- 

dratiques (ASE) ou la moyenne intégrée de ces erreurs quadratiques (MISE). 

Comnent ces mesures peuvent-elles è t r e  optimisées sur une classe de paramètres de l i s -  
sage ? Dans un travail  commun avec moi-méme, Gérard Collomb étendit  l ' i dée  de validation croi-  

sée (Hardle e t  Marron (1985)) au cas de l a  prédiction optimale de Z N t l .  Ceci cons t i tua i t  l e  
dernier projet  sur lequel i l  t r a v a i l l a i t  avant sa mort bien trop soudaine pour nous tous. 

2. LA METHODE VU NOYAU EN PREDICTION NON PARAMETRIQUE 

La fonction d'autorégression rt : LRd -r IR e s t  définie par 

N Nous voulons prédire Z N t l  à pa r t i r  des données iZ i l i= l .  Pour une fonction de perte quadratique 
l e  meilleur prédicteur e s t  r* ( Z N - d t l ,  . . . , Z N ) .  L'estimateur de Nadaraya-Watson de r* e s t  
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d e f i n i  a 1  ' a i d e  d 'un  noyau K  qu i  e s t  une f o n c t i o n  r e e l  l e ,  bornee, symetrique (K(x)  = K ( -x ) ) ,  
d  d e f i n i e  sur  IR e t  t e l l e  que 

En posant n=N-d,cet est imateur  e s t  d e f i n i  pa r  

oO (hn)nEm e s t  une s u i t e  de nombres r e e l s  s t r i c tement  p o s i t i f s  de l i m i t e  n u l l e ,  e t  oO 

Ce f u t  une impor tante c o n t r i b u t i o n  de Gerard Collomb de v o i r  que l e  probleme de l a  p r e d i c t i o n  

pouva i t  e t r e  t r a i t e  dans un cadre p lus general en considerant  un processus {(Xi, Yi) l  a va leurs 

dans I R ~ "  s a t i s f a i s a n t  ce r ta ines  cond i t i ons  de melange e t  de p a r t i c u l a r i s e r  ensu i te  au cas 

(2.2) .  Ce p o i n t  de vue general englobe aussi l e  cas 00 l e s  va r iab les  (Xi, Yi) SO" independan- 

tes q u i  sera dans l a  s u i t e  appele " l e  cas independant". 

Oans l e s  a r t i c l e s  [ I 3 1  e t  [16],Gerard Collomb o b t i e n t  des r e s u l t a t s  de convergence uniforme qu i  

conduisent a l a  p r o p r i e t e  impor tante 

Une etape fondamentale dans l t @ t a b l i s s e m e n t  des r e s u l t a t s  de convergence uniforme sur  des com- 

pacts e s t  l ' a p p l i c a t i o n  d ' i n e g a l i t e s  sur l e s  moments. Ceci ne pose pas de probleme dans l e  cas 

independant mais dans l e  cas de va r iab les  dependantes, de t e l l e s  i n e g a l i t e s  n ' e x i s t a i e n t  pas e t  J 
devaient  donc Ot re  e t a b l i e s .  Oans l e  cas de va r iab les  a l g a t o i r e s  a-melangeantes il a  obtenu 

dans [ I 3 1  une i n e g a l i t e  du type Berns te in  que nous a l l o n s  enoncer apres a v o i r  rappel6 l a  d e f i -  

n i t i o n  de l a  c o n d i t i o n  de a-melange. 

Un processus {5,, n  E  IN I e s t  d i t  a-melangeant s i  pour une s u i t e  {pn, n  E  H } de r e e l s  

p o s i t i f s  t e l l e  que 

on a  pour t o u t  e n t i e r  k > 0, 

pour t o u t  e n t i e r  n  > 0 e t  pour  t o u t  ensemble A ( resp.  B) qu i  s o i t  o(c1, . . ., 5,) ( resp.  

o(cntk, . . .)-mesurable. 
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ThZoahne 1 ( I n e g a l i  t e  de Collomb) 

S o i t  bi = bni, i E IN une s u i t e  de va r iab les  a l g a t o i r e s  Q-melangeantes t e l l e s  que 

e t  supposons que l a  s u i t e  ( p k ,  k E IN) des c o e f f i c i e n t s  de melange s o i t  independante de n. 
m  

En posant = E pi on a  pour t o u t  E > 0 
i = l  

e t  oO m  e t  a sont  respectivement un e n t i e r  e t  un r e e l  p o s i t i f  t e l s  que 

Cet te i n e g a l i t e  joue un r d l e  essen t ie l  dans l e s  preuves des r e s u l t a t s  de convergence uniforme 

des est imateurs A noyau de l a  dens i te  marginale des {Xi]. E l l e  e s t  auss i  t r e s  u t i l e  pour 

l ' e s t i m a t i o n  de r* s i  l ' o n  appl ique une technique de t ronca tu re  come c e l l e  u t i l i s e e  pa r  l e s  

6 tud ian ts  de Gerard Collomb, Sarda e t  Vieu (1985). 

Dans [13 ]  l a  convergence,uniforme presque complete sur  un compact,de r: vers r* e t a i t  e t a b l i e  

dans l e  cas de v a r i a b l e s  { Y i )  un i fo rm~ment  bornees. 

3 .  PREDICTION NON PARAMETRIQUE ROBUSTE 

Nous observons que 1  'est imateur  de Nadaraya-Watson r* , (x)  d e f i n i  p a r  (2 .1 )  peut e t r e  

considere come un est imateur  des moindres carres dans ce sens q u ' i l  e s t  s o l u t i o n  (pour K > 0)  

du probleme de m in im isa t ion  en t de l a  f o n c t i o n  su ivante 

I 1  e s t  c l a i r  que r i  d o i t  C t r e  for tement  sens ib le  aux grandes v a r i a t i o n s  des donnees p u i s q u ' i l  

e s t  une moyenne l o c a l e  d 'observat ions de Y .  Cet te  d i f f i c u l t 6  e s t  extremement gCnante dans l e  

cas de p e t i t s  e c h a n t i l l o n s .  Un remede cons is te  A remplacer l a  pe r te  quadratique par  une 

f o n c t i o n  de per te  qu i  donne moins de poids aux va leurs extremes. 

A ins i  nous considererons un est imateur  r n ( x )  qu i  e s t  imp l i c i tement  d e f i n i  come un zero de l a  

f o n c t i o n  su ivante 

oO yx e s t  une f o n c t i o n  bornee pour t o u t  x  qu i  s a t i s f a i t  ce r ta ines  cond i t i ons  de r e g u l a r i t @  que 

nous donnerons p l u s  l o i n .  P lus generalement nous de f in i ssons  un p r e d i c t e u r  r ( x )  qu i  e s t  un 

zero de l a  f o n c t i o n  su ivante 

t + E i yX(Y1  - t / X 1  = x ) ) .  
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Lorsque l e  processus {ZnlnEIN e s t  markovien d 'ordre d, l a  v.d.r 

e s t  l e  m e i l l e u r  p r e d i c t e u r  pour l a  f o n c t i o n  de per te  

Le f a i t  que ex s o i t  bornee g a r a n t i t  une f a i b l e  s e n s i b i l i t e  aux va leurs aberrantes.  

L 'es t ima teur  de Nadaraya-Watson correspond au cas p a r t i c u l i e r  

Dans [ I 9 1  l e s  v i tesses  de convergence f o r t e  uniforme son t  ohtenues pour l e s  deux est imateurs 

rn e t  r:. Dans l e  cas independant r n ( x )  a v a i t  e t 6  e t u d i e  pa r  Tsybakov (1983), Robinson (1984) 

e t  HXrdle (1984). I c i  a nouveau on f a i  t 1 ' hypoth6se de @-me1 ange. 

Les cond i t i ons  supplementaires su ivantes sont necessaires : 

En i n t r o d u i s a n t  une s u i t e  c ro i ssan te  d ' e n t i e r s  s a t i s f a i s a n t  

on a sous l e s  hypotheses precedentes l e  r e s u l t a t  su ivan t .  

d S o i t  C un compact de lR e t  G un vo is inage compact de 0 dans lR. Nous supposons que K 
e s t  p o s i t i f  e t  que 

i n f  i n f  E [$A ( Y  - r ( x )  - t ) / X  = XI f ( x )  Co > 0 
t€G XEC 

00 f e s t  l a  dens i te  marg inale de X, e t  que 

Si l a  s u i t e  {hn) v e r i f i e  

a i n s i  que 

38, 0 < B  <+m, 8;' h E Q B  vn E N, 
a l o r s  

-1 
en sup / r n ( x )  - r ( x ) l  = O(1) p .s .  . 

xE C 
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L ' a p p l i c a t i o n  de ce r e s u l t a t  d l a  p r e d i c t i o n  d ' u n  processus markovien e s t  d i scu tee  p l u s  en de- 

t a i l  dans [19] .  Nous voudrions simplement remarquer que l ' o n  peut  c h o i s i r  mn a [ c  l o g  n] des 

que l e  processus e s t  geometriquement +melangeant, ce qu i  amene c o m e  v i t e s s e  de convergence 

en = l o g  n (n h$-1/2 dans l e  cas d 'un  processus {Z i l  qu i  e s t  markovien e t  q u i  s a t i s f a i t  l a  

c o n d i t i o n  de Doeblin. 

Ces r e s u l t a t s  appl iques au cas independant genera l i sen t  ceux de Yack e t  Si lvermann (1982) e t  
Hard le e t  ~ i c k a G s  (1984). 

4. PREDICTION UPllMALE POUR L'ERREUR 2UADRATIQUE 

Le probleme qu i  se pose au p r a t i c i e n  op tan t  pour l a  methode de Nadaraya-Watson e s t  ce- 

l u i  du cho ix  de l a  l a rgeur  de f e n e t r e  hn. Une facon de se lec t ionner  h cons is te  a min imiser  

l ' e r r e u r  quadratique moyenne i n t e g r e e  (MISE) d e f i n i e  par  

Dans [ 111 Gerard Collomb a c a l c u l e  dM(h) e t  montre que s i  r e t a i t  2  f o i s  c o n t i n h e n t  d i f -  

ferentiable,on a v a i t  pour d = 1 

oO l e s  constantes C1  e t  C2 dependent respectivement de l a  variance c o n d i t i o n n e l l e  Var ( Y / X  = x )  

e t  de r U ( x ) .  L 'approx imat ion (4.1)  d o i t  e t r e  comprise au sens que tous l e s  t e n e s  d 'o rd re  

i n f e r i e u r  n - lh - '  + h4 o n t  e t e  supprimes. A l a  lumiere de c e t t e  approximation, il semble d& 

s i r a b l e  de c h o i s i r  hn p ropor t i onne l  d mais dans l a  p ra t ique  l e s  constantes C1 e t  Cp  sont  
generalement inconnues. Pour s u n o n t e r  c e t  obs tac le ,  une methode de s e l e c t i o n  de hn e n t i e r e -  

ment basee sur l e s  donnees e s t  necessai re.  Pour des ra isons de s i m p l i c i t e ,  nous supposerons 

dorenavant que d = 1. 

Pour f i x e r  l e s  idees, considerons l a  d e f i n i t i o n  su ivante.  

Une methode de s e l e c t i o n  e s t  d i t e  asymptotiquement opt imale lo rsque  

oii Hn e s t  un ensemble (Wentue l lement  f i n i )  de va leu rs  pour h,. 

Cet te  d e f i n i t i o n  d i t  que l e  r i s q u e  r e l a t i f  l o rsqu 'on  se lec t ionne  a p a r t i r  des don- 

nees tend vers 1. En u t i l i s a n t  l a  convex i t6  de dM(h) ,  v o i r  formule (4 .1 ) ,  il e s t  c l a i r  qu'une 
* s e l e c t i o n  6 asymptotiquement op t ima le  resou t  l e  probleme de l ' e s t i m a t i o n  de C1 e t  C2. 

Comnent t rouver  une s e l e c t i o n  asymptotiquement opt imale ? Regardons t o u t  d 'abord  

c e r t a i n s  t ravaux recents concernant l e  cas independant. Dans ce cas l a  technique du " leave-  

one-out" peut  e t r e  employee pour  c o n s t r u i r e  l ' e s t i m a t e u r  su ivan t  de l ' e r r e u r  de p r e d i c t i o n  : 

Operations Research, Statistics and Applied Mathematics

(1986) Härdle, W.  Quelque aspects de la prediction non parametrique:
travaux de Gerard Collomb (1951-1985) 
en analyse non parametrique des series temporelles



* 
oO rn e s t  l ' e s t i m a t e u r  de Nadaraya-Watson base su r  l ' e c h a n t i l l o n  p r i v e  de l a  ieme observa- , i 
t i o n .  

En i n s d r a n t  r(Xi) - r(Xi) 1 l ' i n t e r i e u r  des parentheses e t  en developpant on o b t i e n t  

e s t  une mesure quadrat ique de l a  va leu r  de 1 ' es t ima teur  r:, oO 

e s t  un terme independant de h, e t  013 

S i  l e  terme c r o i s e  Cn(h) s 'annule quand n -r i- uniformement su r  Hn, a l o r s  (4.2) donne une 

p o s s i b i l i t e  de s e l e c t i o n  de h. Dans un a r t i c l e  recen t ,  H I r d l e  e t  Marron (1985) o n t  prouve 

que l a  methode c o n s i s t a n t  1 c h o i s i r  6 minimisant  CV(h) e s t  asymptotiquement opt imale.  Leur 

preuve peut  se decomposer en deux etapes : 

Une approche s i m i l a i r e  peut e t r e  envisagee dans no t re  cas, mats on ne d o i t  pas s ' a t -  

tendre 3 v o i r  l e  t e m e  c r o i s e  s 'annu le r  asymptotiquement, a moins de m o d i f i e r  l a  technique 

du " leave-one-out", Dans l e  cas independant, c e t t e  technique i n t r o d u i t  une s t r u c t u r e  d ' i nde-  

pendance spec i f i que  dans Cn(h) qu i  permet de conclure.  Pour u t i l i s e r  l a  meme idee dans n o t r e  

cas de processus O-melangeant, il e s t  necessai re d ' e c a r t e r  p lus  d'une observat ion & l a  f o i s .  

A i n s i ,  nous de f in i ssons  l ' e s t i n a t e u r  " leave-rtot- too-many-out" pa r  

oO l o , ,  n E IN 1 e s t  une s u i t e  qu i  c r o i t  lentenlent. 

Nous notons que s i  0, t 1, c e t  est imateur  e s t  1 ' es t ima teur  " leave-one-out" u t i l i s e  en (4.2) .  

Definissons,de maniere s i m i l a i r e  a (4 .2 ) )  
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Les d e t a i l s  de c e t t e  analyse se t rouven t  dans l ' a r t i c l e  de Collomb, H l r d l e  e t  Vieu (1985) 

Nous voulons simplement d e c r i r e  ce qu i  dans une p a r t i e  du t e n e  equ iva len t  !I Cn(h) necess 

des cons ide ra t ions  supplementaires. Cet te p a r t i e  e s t  ( v o i r  (4 .5 ) )  

00 

ci = Y - X i  v i  E IN. 

Nous devons montrer  que pour  Hn c [ a n - l j s ,  bn-l/sl, 0 < a < b, nous avons 

p [SUP /%I > T] + 0. VT > 0. 
hEHn 

En u t i l i s a n t  l ' i n e g a l i t e  de Bonferroni  e t  c e l l e  de Tchebichef f ,  c e t t e  p r o b a b i l i t e  e s t  bornee 

par  

-4 
r # Hn n4 sup h4 E [ T ( ~ ) ~ ]  

h€Hn 

4 Le problerne r e v i e n t  donc t rouver  une borne convenable pour E [T  ( h ) ] .  Ceci se t rouve dans 

Collomb, H l r d l e  e t  Vieu (1984). I 1  f a u t  remarquer que des techniques de c a l c u l  du type de 

c e l l e s  de Doukhan e t  P o r t a l  (1983) ne peuvent pas e t r e  u t i l i s e e s  i c i  puisque T(h) e s t  forme 
d'une double some.  En f a i t ,  un argument, que nous appelons " b i g  b lock-smal l  b lock "  permet 

de montrer  que 

ce q u i  avec (4.7)  prouve quc l a  p r o b a b i l i t e  pour que T(h) /dM(h)  s 'annule unifonnernent sur  Hn 

e s t  majoree p a r  

En supposant que # Hn e s t  d 'o rd re  a lgebr ique e t  que F(pn) ne c r o 7 t  pas t r o p  v i t e  un r e s u l t a t  

analogue a (4.4) e s t  e t a b l i .  

Apres a v o i r  e t a b l i  (4 .3)  dans l e  cas de va r iab les  @-melangeantes, nous obtenons l ' o p t i r n a l i t e  

asymptotique de h : 

S i  l ' o n  c h o i s i t  6 minimisant  CV(h) d e f i n i  en (4.6) ,  a l o r s  h e s t  asymptotiquernent o p t i -  

mal, i . e . ,  

dM(" p , l ,  
* n f d F l ( h )  n - m  
hEHn 

Nous renvoyons a Collomb, Hard le e t  Vieu (1985) pour une demonstrat ion i n t e g r a l e  de ce r e s u l -  

t a t .  Cet a r t i c l e  e t a i t  en f a i t  l e  d e r n i e r  p r o j e t  sur  l eque l  t r a v a i l l a i t  Gerard Collomb. I 1  

mourut peu de temps apt-& a v o i r  termine l a  premiere redac t ion  de l a  demonstrat ion (4.8) .  
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the regression curve of Y on X. Let m,*(x) denote the nonparametric kernel 
estimate of m(x), as introduced by Nadaraya [12] and Watson [21], 

where 

and 

Here K is a kernel function and h = h(n) is a sequence of "bandwidths" con- 
verging to zero as n tends to infinity. 

This estimator was studied by Rosenblatt [15] who derived bias, 
variance, and asymptotic normality; Schuster [l7] demonstrated mul- 
tivariate normality at a finite number of distinct points. For further results 
we refer to the bibliography of Collomb [3]. 

In the present paper we show that 

A,*(h) = n-' [m,*(Xj) - m(Xj)I2, j = { j :  X,E [0,  I]) ,  (1.2) 
ie/ 

a stochastic measure of accuracy on the interval [0, 1 1 for the estimate m,* , 
exhibits the same limiting behaviour as the deterministic measure 

1 
MISE = MSE(t) fx(t) dt 

0 

where MSE(t) is the mean squared error (MSE) of m,*(t). The proper 
definition of the MSE for m,* will be delayed to Section 2. 

The result of this paper addresses two problems. First, in a survey paper, 
Wegman [22] was interested in comparing the mean integrated squared 
error (MISE) of several different density estimators. As Wegman pointed 
out, the computation of the actual MISE can be quite tedious. Hence, 
Wegman used an empirical measure of accuracy of the structure as in for- 
mula (1.2) and gave some heuristic justification. Now, since the 
biaslvariance decomposition of regression function estimators is rather 
similar to that of density estimators [15, 161 it may be argued that 
Wegman's heuristics hold also in the regression function estimation setting. 
The answer is positive: It is shown here that, as n + co, uniformly over an 
interval [ h  h], 

A,*(h) = MISE + o,(MISE), h E [ h  h]. (1.4) 
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The appealing feature of this approximation is, that it holds uniformly in 
h~ [ h  A]. A Monte Carlo trial comparing different estimators of m(x) 
(w.r.t. MISE) at different sequences of bandwidths can thus be based on 
A,*(h) which is faster to compute than MISE as defined in (1.3). 

Second, the approximation (1.4) contributes to the solution of the 
"optimal bandwidth selection" problem. As the optimal bandwidth h* we 
understand that sequence h = h(n) which minimizes the MISE for each n. 
Hardle and Marron [5] demonstrated by a crossvalidation argument that 
minimization (with respect to h) of A,*(h) is asymptotically equivalent to 
minimization of 

where 

is the "leave-one-out" estimator. So the result of this paper, as stated in 
(1.4), ensures that the minimization of (1.5) with respect to h yields the 
(M1SE)-optimal sequence of bandwidth h* and solves, as is shown in 
Hardle and Marron, a problem raised by Stone [19, Qestion 3, p. 10541. 

We will not only analyze m,*(x), as defined in (1.1), but also 

where fx denotes the marginal density of X. This estimator of m(x) is 
reasonable if we know the marginal density and is somewhat more trac- 
table than m,*. The estimator (1.6) was sudied by Johnston [8], who also 
observed that mn/& has in general a higher asymptotic variance than m,*. 

The stochastic measure of accuracy (1.2) was defined only on the interval 
[O, 11. It will later be assumed that the support of fx properly contains this 
interval. This is due to "boundary effects," more precisely, the bias at the 
endpoints of the support of fx inflates and has a slower rate than in the 
interior [4, 131. Thus, defining the MISE over the whole support off,, 
would ultimately lead to the unappealing situation that the optimal 
bandwidth with respect to MISE would be determined in such a way that 
it minimizes the mean square error at the boundaries, since that is of lower 
order. The estimate in the interior would thus exhibit suboptimal 
behaviour. 

The results of this paper are improvements over some previous work for 
several reasons. First, we do not need such strong smoothness assumptions 
on f, as in Hall [6], who proves similar results in the density estimation 
setting. Second, our assumptions on the variance curve V 2( t ) =  
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var(YI X= t )  and the range of allowable bandwidths are considerably 
weaker than those in Johnston [8] who demonstrates a Gaussian 
approximation to (nh)'12 [m, - Em,] along the same lines as Bickel and 
Rosenblatt [I]. Third, our work extends the result of Wong [23] who 
deals only with the fixed design case, i.e., X, are nonrandom. Finally, we 
may note that Hall's proof would simplify if one uses the approximation 
provided by the Bickel and Rosenblatt paper and the outline of the proof 
given here for regression function estimators. 

Note that although only the two-dimensional case is considered here, the 
proof can probably be extended to the higher dimensional case where we 
observe a (d + 1 )-dimensional random vector (XI ,..., X,, Y), d > 1. The 
assumptions will be different in that case, since it is still unknown whether 
the multivariate empirical process can be strongly approximated by Brow- 
nian bridges with rates comparable to those in the univariate or bivariate 
case. This approximation technique by Brownian bridges, an carried out in 
the Appendix, is vital to our results. A similar technique, exploiting the 
idea of invariance principles in nonparametric regression, was used by 
Mack and Silverman [9] who showed weak and strong uniform con- 
sistency (in sup-norm) of m,*. 

The outline of the paper is organized as follows. First, we prove that 
mn(t) - Emn(t) can be uniformly (in t and h) approximated by a Gaussian 
process similar to that occurring in Bickel and Rosenblatt [I ,  p. 1974, for- 
mula (2.5)]. Second, we plug this approximating process into the formula 
(1.2), which defined the discrete version of MISE, and by evaluation of 
covariances and higher moments be finally arrive at the deterministic 
measure (1.3). 

We will make use of the following definition. 

DEFINITION. A function w is called Lipschitz-continuous of order r 
(LC(a)) iff with a constant L,, 

The following assumptions fix the range of allowable bandwidths [ h  h], 
determine the kernel function K and describe some smoothness of m(t), 
var(Y1 X= t), and f,(t): 

(Al )  Let {h,) denote a sequence for which there is an E > 0 so that 
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and let {h,) denote a sequence for which 

lim h;, = 0, lim h, log n = co. 
n - m  n - c c  

Assume from h = h(n) that it satisfies 

h < h , < h .  

(A2) There exists a sequence of positive constants {a,) t so and a 
c < co such that 

yY,( y )  dy d c, f the marginal density of Y 
> a n  

(A3) The functions S2(t) = E[Y2 I X =  t], fX(t) and m(t) are LC(a) 
with u > 4 and are all of bounded variation. The marginal density of X is 
bounded from below: 

inf f X ( t ) 2 y  >0.  
O i t < l  

(A4) The kernel function K is differentiable with K' of bounded 
variation and fulfills 

j K(u) du = l support {K} c [ - A ,  A ] .  

K is not assumed to be positive. 
By straightforward computations it can be shown that g, is LC(a), a > 4 

and of bounded variation by assumption (A3) on S2(t) andfx(t). It is also 
not hard to see that if g, is LC(1) then the last condition in (A3) follows. 
Note that the set of assumptions in (A2) holds if Y is bounded 
(a, = log log n), an assumption that is often made in other papers, to avoid 
conditions on moments of Y as in (A2). (A2) also holds, if a, = nP, small, 
while (X, Y) are jointly normally distributed. For simplicity of notation, we 
will not explicitly write the indices of h, h h. 
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The following results show that the approximation (1.4) holds for both 
fink and m,*. Only the proof of Theorem 1 (dealing with m,&) will be 
given in full detail since the result for m,* can be obtained quite 
analogously. Let us define 

A  

p,=S K ~ ( u )  du 
- A  

and 

the bias of m,/fx. 

THEOREM 1. Assume that (A l )  to (A4) hold and 6,(t) is of bounded 
variation. Then uniformly over h E [ h  h] 

Assume that fx is dl-times continuously differentiable and m is d2-times 
continuously differentiable. Then, as in Rosenblatt [16], the bias 6,(t) 
would read as 

provided that K satisfies J uJK(u) du = 0, j = 1, ..., d-  1, and J u ~ K ( u )  du = 

d!A,. Many papers in nonparametric regression function estimation assume 
such a kind of differentiability as above and are dealing with methods to 
balance the contribution from the variance and the bias (see [3] for a 
review). 

In a similar manner define b,*(t), the bias of m,*(t), as follows 

( t )  = f ( t )  1 K(u)[m(t - uh) - m(t)] fx(t - uh) du. 
- A  
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Where the expression "bias" has to be understood as the expected value of 
f, [m, - mf,], fn(t) = n- 'h-' C;= K((t - X,)/h) a density estimate of the 
marginal density f,. This is justified by the observation that 

(see [5]) and that moments of m,* need not exist in general [15]. 
The next theorem shows how A,*(h) approximates the MISE. 

THEOREM 2. Assume that (A l )  to (A4) hold and that b,*(t) is of bounded 
variation. Then uniformly over h E [ A  h], 

where V2(t) = S2(t) - m2(t). 

Note that the variance terms and the bias terms of the two estimators 
m,lf, and m,* are completely different. Since V2(t) < S2(t), the 
Nadaraya-Watson estimator m,*(t) attains in general a smaller 
(asymptotic) variance than m,lf,. This was also observed by Johnston [8]. 
The condition "nh5 + O", appearing in the work of the latter, implies that 
the bias vanishes asymptotically faster than the variance. Therefore, any 
difference in bias terms does not show up in that work. It would be 
interesting to find a similar comparison of bias terms, but this would lead 
to complicated and rather unnatural assumptions on derivatives of m and 
f,, as can be seen from the formula for 6,, following Theorem 1. 

We shall prove Theorem 1 in full detail, the proof of Theorem 2 will only 
be sketched since the technical details are similar to the proof of 
Theorem 1. F(x, y )  will denote the joint cumulative distribution function 
(df) of (X, Y) and F,(x, y )  will denote the two-dimensional empirical df, 
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defined as usual. It is understood throughout these proofs that o, 0 in 
remainder terms are uniform over h E [ h  h]. 

Proof of Theorem 1. The basic decomposition is 

m n ( t ) l f X ( t )  - m ( t )  = f n ( t )  + gn( t )  (3.1) 

where 

CC 

R ( t l  = f ; Y t )  h 1  11 yK( ( t  - x ) / h )  d[Fn(x ,  Y )  - F ( X >  Y i l .  
- C C  

In the Appendix it is shown that 

Y*,.(t) = CS2( t ) l f , ( t ) l  R ( t )  

- - - 1 1 2 ~  - 1 ICC K ( ( t  - x ) / h )  d W ( x )  + o,(n-'~'h-'/' 
-cc 

1 9  

where the remainder term is uniform in t. The basic decomposition (3.1)  
now reads 

m,( t ) / f x ( t )  - m ( t )  = n-112h-112Vn( t )  + 6, ( t )  + p. (3.2)  

where p, = ~ , ( n - ' / ~ h k ' / ~ )  is uniformly in t  and 

V J t )  = [ S 2 ( t ) l f x ( t ) ] 1 1 2  h-'I2 jCC K((i - x ) / h )  d W ( x ) .  
- m  

(3 .3)  

Using (3.2) and (3.3) the stochastic measure of accuracy is then 

where F,, denotes the empirical distribution function of {Xi);=, . This can 
be rewritten as 
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We now show that the limits of U,,, i = 1, 2, 3, 4 give us the desired limit 
behaviour of a,(h).  We may note that the approximations, as carried out 
in Bickel and Rosenblatt [ I ] ,  would have led to a process similar to V,(t) 
when estimating a density. So the technique developed here, would be 
useful in density estimation also and would provide an alternative proof of 
Hall's [6] result on stochastic measures of accuracy for density estimators. 

Let us begin with the limit behaviour of U,,. Note first that 

where the remainder term is uniform in h, since S 2( t )  is LC(a), a > 4 by 
assumption (A3). To show that 
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we demonstrate E ( U $ ) -  The statement (3.4) will then follow from 
Chebyshev's inequality. 

Since Z ( t )  = h-'I2 ST, K ( ( t  - x ) / h )  d W ( x )  is a Gaussian process we con- 
clude by the Isserlis 171 formula 

2 

+ 2h-2 [{ K ( ( t l  - x ) / h )  K ( ( t 2  - x ) / h )  d x ]  } dl ,  d l2 .  

The first summand satisfies 

by assumption ( A 4 )  on the kernel K. 
The second summand satisfies 

by evaluation of the integral inside the [.]-brackets. This shows that 

Next we show that 

Un2 = O , ( K  1/2h - 1 )  

Define H,(t)  = F , , ( t )  - Fx( t )  and Z,( t )  = S> K(( t  - x ) / h )  d W ( x ) .  We 
obtain by partial integration, 

Journal of Multivariate Analysis Vol. 18, No.I

(1986) Härdle, W. Approximations to the Mean Squared Error
with Applications to Optimal Bandwidth 
Selection for Nonparametric Regression Function Estimators



where q(t) = S2(t)/fX(t). 
Now since H,(t) = O,(n -'I2) uniformly in t and C ( t o )  = 0,(1), to = 0, 1, 

as is easily verified by Chebyshev's inequality, we only have to consider the 
first two summands in the equality above. 

These are further estimated by Schwarz's inequality, which shows that 
the absolute value of the sum of both is dominated by 

112 

np1l2 sup 1 nl"H,(t) x {s, [lo1 [h-ll '~,(t)] '  dt] 
0.1.1 

where SI = supo., . q2(t) and S2 = supO . t .  q(t). 
By Chebyshev's inequality we have 

where L is either K or K'. Integration by parts applied to Z:(t) show 
immediately that sup,.,. , Z:(t) = 0,(1), therefore (3.5) holds. Now, since 

by an application of Schwarz's inequality, we conclude that 
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The term U,, is estimated again by a partial integration argument as 
follows, 

and 
ously 

where, as for the computations for U,,, H,(t) = F , , , ( t )  - Fx(t) ,  
~ , ( t )  = j> K ( ( t  - x ) / h )  d W ( x ) .  The last summand T,, is obvi 
Op(n-'I2) = op(n- 'h- ' )  by (A l ) .  

The first term, TI, ,  can be estimated as follows: 

1 TI., G n-li2h-' o < I < ~  sup 1 n 1 1 2 ~ , ( t )  [jbl [ ~ , ( t ) ] ~  dt]li2 

Now, since j: [h-'I2 j?, K'( ( t  - x ) / h )  d W ( x ) 1 2  dt = O J l )  and 
sup,, ,, , / H,(t)l = 0,(1), we conclude that 

The terms T,, and T,, are estimated in a similar fashion as we did estimate 
the terms of U,, employing the Lipschitz continuity of 6,(t)  and q ( t )  and 
we thus obtain 

T2,  = 0,(n-112) = op(n - lh - I ) ,  

T,, = 0,(n-'12) = o,(n-lh-l). 

This shows finally that 

U,, = 0, (n-li2h-I [jO1 [bn(t )12 dt]li2) + oP(n- 'h-I) .  (3.8) 

It remains to show that 
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Again by partial integration we have that the LHS of (3.9) is 

As before the last summand is 0,(n-'I2) and so is the first summand. Now, 
putting together (3.5) to (3.9) we finally have that 

which proves the theorem. 

Proof of Theorem 2. This proof goes mainly along the lines of the proof 
of Theorem 1.  From Hardle and Marron [ 5 ,  formula (2.4)] ,  we have 

where 

b f )  = f ( t ) h l  K( ( t  - u) /h ) [m(u )  - m ( t ) l  f,(u) du 
- x 

and 

This process can now be approximated as Pn(t)  (see the Appendix) but 
with V 2( t )  = S 2( t )  - m 2( t )  in the place of S 2( t ) .  So we obtain that 

Yo*,n(t) = CV2(t) l f , ( t ) l -112 Y f ( t )  

uniformly in t. The decomposition (3.10) then reads as 

m f ( t )  - m ( t )  = b f ( t )  + n- ' I2h t1 l2Vf ( t )  + pf 

where 

1 

P f  = op  ( n -u2h -1p+ j [bf ( t )12  dt 
0 
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and 

We then carry out the same procedures as for V,(t) in the proof of 
Theorem 1. 

It is shown here that the variance terms in (3.1) can be approximated by 
a sequence of Gaussian processes. The crucial step in these approximations 
is provided by the following lemma, due to Tusnady [20].  

LEMMA 1. Let T (x ,  y ) = (Fx ,  FY lx ) ( x ,  y )  be the Rosenblatt transfor- 
mation [14].  Then on a suitable probability space there exists a sequence of 
Brownian bridges B,(xl, y ' )  on [O,l] x KO, 1 1  such that 

It is next shown that R ( t )  can be approximated (uniformly in t )  by Gaussian 
processes. For this define 

Yo,,(t) = CS2(t) l f , ( t ) l  - ' I 2  

Yl , ,(t)  = [ S 2 ( t )  f x ( t ) ]  - ' I2  h-' 

where S i ( t )  = E[Y21( /  yl < a,)l X =  t ] ,  

where {B, )  is the sequence of Brownian bridges as in Lemma 1. 

Y,,,(t) = [ S i ( t )  fx( t )]- ' I2  h - k 1 1 2  yK((t  - x ) /h )  dW,(T(x, y ) )  J,, 
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where { W,) is a sequence of Wiener processes used in constructing {B,) 
as 

B,(xl, y') = W,(x', y') - x1y'W,(1, 1) [20] 

where W(x) is a standard Wiener process on ( - co, cc ). 

For the following lemmas I /  Y 1 1  will denote 
SUPo,t,1 I Y(t)l. 

LEMMA 2. 1 1  Yo,, - Y1,, 1 1  = o,(n - '12h - ' I 2  1. 
Proof: We have to show that / /  U,J + P  0, where 

and 

Note that EXnZi(t) = 0 for all t and that XJ . )  are independent, identically 
distributed for each n. Therefore 

establishes UJt) + P  0 for each t by assumption (A2). By (A4) and the 
Cauchy-Schwarz inequality we have 

establishing by (A2) tightness of U,(t) [2, Theorem 15.61. 1 
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Note that the proof of this lemma was done as in Johnston's paper, but 
note also that our assumption is somewhat weaker than his, since we are 
employing Lemma 1, due to Tusnady [20], establishing a faster rate for the 
two-dimensional empirical process. 

LEMMA 3. 1 1  Yl , ,  - Y2,, I /  = ~ ~ ( n - ~ ~ ~ h - ~ ~ ~  ). 

Proof Define g( t )  = S 2( t )  fx( t ) ,  g,(t) = S:(t)  fx( t ) .  We must show that 

Now, from Johnston [8] we have that the second factor inside the curly 
brackets is Op(n-112h-'12) and from the mean value theorem 

where 4,  is between g, and g. Since g,, g are bounded away from zero by 
assumption (A3), 1 1  4;3/2/1 is a bounded sequence. Finally, from (A2) it 
follows that / I  g, - g 1 + 0 and thus the lemma follows. 

LEMMA 4. 1 1  Y2,, - Y3,, / I  = op(n 
- 1/2h - 112 1. 

Proof. Using integration by parts (see [8, Lemma AS] for details), we 
obtain 

1/2h 112 1 g,(t)1 ' I 2  I Yz,,(t) - Y3,,(t)l 

uniformly in t. The proof thus follows using assumption (A2). 

Proof. Since the Jacobian of the transformation T, introduced in 
Lemma 1, is f (x, y), we have by Masani [1 1, Theorem 5.191, 
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So we finally have 

where I,, is a constant ( L 1  = supoGiG1 m(t )  fx ( t ) l ) .  This proves the lemma. 
Note that Y4,,(t) is a zero mean Gaussian process with covariance 

cOv{ Y 4 , n ( t 1 ) ,  Y 4 , n ( t 2 ) )  

= [ s ; ( t l ) f x ( t l ) l  - l I 2  CS;(t2)fx(t2)1 -112 

= ~ 0 ~ { ~ 5 , n ( ~ l ) ,  Y 5 , n ( t 2 ) ) .  

So both Y,,, and Y,,, are Gaussian processes with the same covariance 
structure and can thus be identified. 

LEMMA 6. 1 Y,,, - Y,,, / = op(n- 112h-112 1. 
Proof: Note that by assumption (A3)  on g,(t) = S;( t )  fx ( t ) ,  

G,,,(u) = Cgn(t)l - ' I 2  { [g , ( t -  uh)I1I2 - Cgn(t)1112) 

is also LC(a), a > 4, i.e., 

1 G,,t(u) - Gn,,(ut)l < LGha I u - u' l a ,  a > 4, 
where L,  is independent of t by (A3). 

The difference of interest is now 

(nhI1l2 I Y,,n(t) - Y6,n(t)l 

We will now show that sup,.,., / R,(t)l = o,(l). B y  partial integration we 
have for all n and t ,  
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where R,, is independent of t. The term R,,,(t) is estimated as in Johnston 
[8,   em ma 4.6, p. 41 11 to obtain 

We now show that 

Let w,(s) denote the modulus of continuity of W ( t )  and - 
K= sup-, .. . I K ( u )  1 ,  we then have with Silberman [18, formula 
( 8 ) ,  and his definitions of p, q, B ] ,  

let 
(71, 

Now following the proof of Silverman [18, Proposition 41 we see that 
the both summands are by assumption ( A 3 )  on I dg,(u)I of the order o p ( l )  
uniformly in t. It remains to show that supo,,,, 1 R,,,(t)l = o p ( l ) .  This 
follows again from assumption ( A 3 )  on the LC(a),  a  >4 condition g,(.), 
and the following inequality: 

A 

SUP R , , , ( t ) l # ~ - '  sup I W ( t ) / h - 1 1 2 ~ , h ' j  u ~ " l K 1 ( u ) l d u = o P ( l ) .  
O < t < l  06t.l - A  

I am grateful to Steve Marron for helpful discussions. Ray Carroll contributed much to the 
approximations of the Appendix. 

[ I ]  BICKEL, P., AND ROSENBLATT, M. (1973). On some global measures of the deviation of 
density function estimators. Ann. Statist. 1 1071-1095. 

[2] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. 

Journal of Multivariate Analysis Vol. 18, No.I

(1986) Härdle, W. Approximations to the Mean Squared Error
with Applications to Optimal Bandwidth 
Selection for Nonparametric Regression Function Estimators



[3] COLLOMB, G .  (1981). Estimation non-parametrique de la regression: Revue 
bibliographique. Internat. Statist. Rev. 49 75-93. 

[4] GASSER, T. AND M ~ ~ L L E R ,  G. H. (1979). Kernel estimation of regression functions. In 
Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, Ed.), Lecture 
Notes in Mathematics Vol. 757, Springer-Verlag Heidelberg. 

[5] HARDLE, W., AND MARRON, S. (1983). Optimal Bandwidth Selection in Nonparametric 
Regression Function Estimation. Institute of Statistics Mimeo Series No. 1530, University 
of North Carolina, Chapel Hill. 

[6] HALL, P. (1982). Cross-validation in density estimation. Biometrika 69 383-390. 
[7] ISSERLIS, L. (1918). On a formula for the product moment coeficient of any order of a 

normal frequency distribution in any number of variables. Biometrika 12 134-139. 
[8] JOHNSTON, G .  (1982). Probabilities of maximal deviations of nonparametric regression 

function estimation. J. Multivariate Anal. 12 402-414. 
[9] MACK, Y. P., AND SILVERMAN, B. W. (1982). Weak and strong uniform consistency of 

kernel regression estimates. 2. Wahrsch. Verw. Gebiete 61 405415. 
[ lo ]  MARRON, J .  S. (1986). Convergence properties of an empirical error criterion for mul- 

tivariate density estimation. J. Multivariate Anal. 18, No. 2. 
[11] MASANI, P. (1968). Orthogonally scattered measures. Adv. in Math. 2 61-117. 
[12] NADARAYA, E. A. (1964). O n  estimating regression. Theory Probab. Appl. 9 141-142. 
[13] RICE, T., AXD ROSENBLATT, M .  (1983). Smoothing splines: Regression, derivatives and 

deconvolution. Ann. Statist. 11 141-156. 
[14] ROSENBLATT, M. (1952). Remarks on a multivariate transformation. Ann. Math. Statist. 

23 4 7 M 7 2 .  
[15] ROSENBLATT, M. (1969). Conditional probability density and regression estimation. In 

Multivariate Analysis I1 (P. R. Krishnaiah, Ed.), pp. 25-31. Academic Press, New York. 
[16] ROSENBLATT, M. (1971). Curve estimates. Ann. Math. Stat., 42, 1815-1842. 
[17] SCHUSTER, E. F. (1972), Joint a s y m p t c h  distribution of the estimated regression 

function at a finite number of district points. Ann. Math. Stat., 43, 84-88. 
[18] SILVERMAN, B. (1982). Weak and strong uniform consistency of the kernel estimate of a 

density and its derivatives. Ann. Stat., 6, 177-184. 
[19] STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. 

Ann. Stat., 10, 1040-1053. 
[20] TUSXADY, G. (1977). A remark on the approximation of the sample distribution 

function in the multidimensional case. Period. Math. Hung., 8, 53-55. 
[21] WATSON, G. S. (1964). Smooth regression analysis. Sankhya, Series A, Vol. 26, 359-372. 
[22] WEGMAN, E. J. (1972). Nonparametric probability density estimation: A comparison of 

density estimation methods. J. Statist. Comput. Simulation, 1, 225-245. 
[23] WONG, W. H. (1983). On the consistency of coss-validation in kernel nonparametric 

regression. Ann. Stat., to appear. 

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium 

Journal of Multivariate Analysis Vol. 18, No.I

(1986) Härdle, W. Approximations to the Mean Squared Error
with Applications to Optimal Bandwidth 
Selection for Nonparametric Regression Function Estimators



Stochastic Processes and their Applications 23 (1986) 77-89 
North-Holland 

STRONG UNIFORM CONVERGENCE RATES IN ROBUST 
NONPARAMETRIC TIME SERIES ANALYSIS AND 
PREDICTION: KERNEL REGRESSION ESTIMATION 
FROM DEPENDENT OBSERVATIONS 

Gkrard COLLOMB* 
Universite' Paul Sabatier, Laboratoire de Statistique et Probabilite's, 118, route de Narbonne, 
31 062 Toulouse, France 

Wolfgang HARDLE** 
Johann Wolfgang Goethe-Universitat, FB Mathematik, 6000 Frankfurt/M, FRG 

Received 3 April 1985 
Revised 10 February 1986 

Let {Zi; i E N) be a strictly stationary real valued time series. We predict Z,,, from {Z, , . . . 2,) 
by a robust nonparametric method. The predictor is defined by the kernel method and constructed 
as a functional M-estimate connected with the conditional law of Zp+, on Z,,  . . . , Zp, when 
{Zi; i E N) is Markovian of order p. Strong uniform convergence rates of this estimate are given 
together with some new results concerning robust regression kernel estimates from a sequence of 
RP x R valued, identically distributed and &mixing random pairs {(Xi, Yi); i = 1,.  . . , n).  As a 
special case we obtain strong uniform convergence rates for estimators of the regression curve 
E (  Y,\x, = - ) and of the density of the law of X, . 
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robust time series analysis * robust prediction * robust nonparametric regression * M-estimation 
* rate of convergence kernel estimate * nonparametric regression and density estimation 

1. Introduction 

Let (2,; i E N} be a strictly stationary, real-valued process and let p be a positive 
integer. The autoregression function r* : Wp + W is defined through 

The Nadaraya-Watson method [16,30] for estimating r*( . ) from (2,; i = 1, . . . , N} 
has been studied by a number of authors. Watson [30] applied the kernel estimator 
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with bandwidth h, > 0, kernel K and 

to some time series data. Pointwise asymptotic properties of the above kernel estimate 
have been investigated in [24,2,20,21,7,3 11. A recursive version of (1.1) was 
discussed in [17,19]. Strong uniform convergence of r: on a compact of RP was 
derived in [5,6], leading to the strong convergence of the kernel predictor of Zn+, 
from {Z, , . . . , 2,) (when Zl is valued in a compact) in the following sense 

We here consider a more general nonparametric estimator rn( ) which is implicitly 
defined as a zero with respect to (w.r.t.) t of 

where Qx is a bounded function for all x, satisfying some regularity conditions to 
be stated below. We denote by r(x) a zero w.r.t. t of 

In the special case of a process (2,; n EN) which is markovian of order p, with 
t,bX = Q, VX E We, we can associate a loss function p(u) = Q(s) ds. The equality 

then shows that the real random variable r(ZN-p+l,. . . , ZN) is the best predictor 
of ZN+, from {Z,, . . . , 2,) with respect to the loss p. 

We prove that rn is uniformly convergent to r in some compact set and compute 
rates for this convergence under mild conditions on the process (2,; n EN). The 
results will be stated in a more general setting for a process {(Xi, Y , ) ;  i E N), including 
the case of i.i.d. random pairs. The main application concerns the problem of 
prediction for a Markov process (considered after the statement of our Theorem 2) 
and leads to a result in the spirit of (1.2). 

The estimator rn enjoys some robustness properties. The Nadaraya-Watson esti- 
mate r:(.) defined in (1.1) can be viewed as a least squares estimator, since r:(.) 
is a solution to 

n 

1 K ((x - Xi)/ hn)( Y,  - t)* = min if K 3 0. 
i=1 t ~ l W  

Evidently, r:(x) is a weighted average of the {Y,:  i = 1,. . . , n) and is therefore 
highly sensitive to occasionally occuring large fluctuations in the data which entails 
a high variation of the predictor r:. The choice of a family of bounded functions 
t,hx in (1.3) guarantees bounded influence and suggests more stable prediction 
properties. The unbounded influence function Qx(u) = u, x E Re, u E IW reproduces 
the classical Nadaraya-Watson estimator r:(x). Robustness properties of rn(x) in 
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the case of independent pairs {(Xi, Y,);  i = 1, . . . , n )  along with pointwise asymptotic 
properties are discussed in [28,21,10]. In the case of independent (Xi, Y,)  observa- 
tions uniform convergence rates for r:(. ) were derived in [15,29] and more recently, 
for r,(x), in [ll]. It will be discussed below how our results apply to the case of 
independent (Xi, Y,).  

2. Results 

Let {(Xi, Y,);  i E N )  be a strictly stationary process valued in (RP x R, B,O 93,) 
and uniformly strongly mixing, i.e. (see [I]) 

there exists a sequence {+i; i E N )  of positive numbers, tending to zero, such 
that for every integer k > 0, I P(A n B) - P(A) P(B)I s +kP(A) for all integers 
n  > 0 and all a ( (X, ,  Y,), . . . , (X,, Y,))-measurable sets A and all 
u((X,+~,  Yn+k), . . .)-measurable sets B. 

The kernel K : RP + R is a symmetric (i.e. K (u)  = K (-u), u E RP) bounded function, 
satisfying 

and, in addition, is submitted to the following Lipschitz condition: 

The sequence {h,; n  E N )  is such that 

The functions I.,!J~ are assumed to satisfy the following conditions, involving the 
density f of the marginal law of X and the regression function r (we set X = X, 
and Y =  Y,) 

for all x, $x : R + R is uniformly bounded, strictly monotone, continuously 
differentiable with 

c ,  c, independent of x and u, (2.3) 

and for all x E RP, r(x) is the unique zero with respect to of 

t+H(x ,  t ) = ~ ( * x ( y  - t ) l ~ = x ) f ( x ) ,  (2.4) 

the density off  being uniformly bounded on RP. 

The strict monotony of qbX, for all x in Rp, is assumed here to simplify the proofs. 
The proofs generalize to the case of functions cCI, that are piecewise differentiable 
with monotonicity at the origin. Analogous arguments as in classical robust theory 
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would apply, but would introduce additional complications. The family of rC/- 
functions is indexed by x, in order to allow for general M-estimates. The situation 
that one has in mind is rC/x(  . ) = +( . / a ( x ) ) ,  where a ( x )  is a measure of spread for 
the conditional distribution of ( Y / X  = x ) .  It is also worth noting that the above 
condition on r C / x ,  x E RP, could be simplified by introduction of symmetry conditions 
(Huber [12, Chapter 4, p. 951, "Symmetry is an invectistic assumption"). In this case 
r = r* and r,(x) provides a robust estimate of the conditional mean r*(x) .  

In the following condition it is assumed that there is an increasing sequence 
{m,; n EN) of positive integers such that 

We first present a uniform convergence result for the estimator r,, r, ( x )  being defined 
for all x in RP as a zero with respect to t of the function (1.3). The existence and 
unicity of r,(x) are a consequence of the proof of the following theorem. 

Theorem 1. W e  suppose that the kernel K is positive, the density f is strictly positive 
on a compact C of RP and that the uniform equicontinuity condition YE: > 0 3a > 0: 

is satisfied for all fixed t. If 

then r n ( x )  exists and is unique w.p. 1. for all x in C and suficiently large n, and we have 

sup 1 rn ( x )  - r ( x )  1 + .,, 0 w.p. 1. 
X €  C 

We now make precise the rate of this uniform convergence, and only assume the 
condition (2.2) for the sequense {h,; n EN). 

Theorem 2. Let C be a compact set in RP and G be a compact neighborhood of 0 in 
R. W e  suppose that K is positive and that 

inf inf E ( @ : ( Y - r ( x ) - t I X = x ) f ( x ) >  C,>O 
~ E G  XEC 

and 

If the sequence {h,; n E N} is such that 

0, = ( m ,  Log r~/(nhP,)) l '~  

satisfies 8, +,,, 0 and 
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then we have 

6;' sup lr,(x) - r(x)l= O(1) w.p. 1. 
XE C 

In the following applications of Theorem 2 we discuss the choice of {m,; n E R) 
(see (2.5) for various applications. 

Prediction for a Markov or a m-dependent process 

The principal application of our result concerns the problem of time series analysis 
and prediction in the markovian casc that we mentioned in the introduction. If the 
process (2,; n EN) is markovian of order p, then the associated process {X, = 

(Z,, . . . , Zn+p-l), Yn = Zntp; n E N) is also markovian (of order 1). If in addition 
Doeblin's condition (see [9, page 2091, and also the Lp-norm condition in 
[23, page 2061) is fulfilled this markovian process is geometrically +-mixing (i.e. 
3a E 10, a[ and 3p E 10, I[: 4, cupm, rn EN) so that one can choose rn, = 

c Log n(c > -1/Log p )  in (2.5). This choice leads to the rate 

On = Log n / ( n h ~ ) l / ~  

in (2.11), so that for such a Doeblin markovian process (2,; n EN) the robust 
predictor r, (Zn-,+, , . . . , 2,) of ZN+, satisfies 

w.p. 1. 
If (2,; n E N) is a m-dependent time series we can choose mn = 1 + rn in (2.5) so 

that 

6. = (Log n/(nh:)) 

is the rate of strong uniform consistency of r,. It is interesting to note that the 
4-mixing condition is rather restrictive when we consider Gaussian autoregressive 
processes: a stationary Gaussian process is +-mixing if and only if it is m-dependent 
(see [13, Theorem 17.3.21). It seems therefore reasonable to direct future research 
in the nonparametric analysis of time series towards weaker mixing conditions such 
as the strong mixing condition. 

The case of independent {(Xi, Y,) )  

If we consider the problem of the robust estimation of r from a sequence of i.i.d. 
random pairs (Xi,  Y,) ,  i = 1, . . . , n, we can see that our Theorem 2 extends the results 
of [I I]  who consider the robust estimate r, but work under different assumptions 
on r. Theorem 2 also generalizes the results of [15] who obtain the rate (2.11) but 
only deal with the case p = 1 and the classical Nadaraya-Watson estimate r:, which 
will be considered in our following Theorem 3. We note here that the undermentioned 
works involve proof techniques using strong approximations of the empirical process, 
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leading to the restriction (besides independence) p = 1 (see also [24] who give a 
limit law of a uniform norm associated with r:). However let us note that [15] 
considered the case of a r.r.v. Y which is not necessarily bounded; an extension of 
our results to the case of unbounded Y is possible by a suitable truncation technique 
(see [25]). Our condition nhENLog n +,,, w cannot be improved upon since it 
can be shown [3,4] that it is a necessary and sufficient condition for the uniform 
almost sure convergence (but also in probability) on a compact set of Rp, see [8] 
for similar results on the pointwise convergence. 

Lastly we give a theorem concerning the estimate r: defined by (1.1) and the 
classical [ 18,221 density estimate 

n 

fn(x) = (nhP.)-' 1 K ((x -Xi)/hn), Vx E RP, 
i = l  

which also plays an important role in the analysis of the time series (2,; n EN). 
These last results extend the results of [26] on f, and of [15] on r: to the case of 
&mixing random pairs (Xi, Y,) ,  i = 1, . . . , n and to the case p 3 1. A related result 
in density estimation is shown in [27]. 

Theorem 3. If the sequence {h,; n E N) is such that 

holds, then we have, for all compact C, 

and, if Y is bounded, 

6;' sup Jr:f,(x) - ~r:(x) fn(x)l = O(1) w.p. 1. 
X €  C 

If in addition the second derivative off [resp of r*( . ) f ( )] is uniformly bounded on 
an &-neighborhood of C and the above assumption on h, is satisjied for A = 2, then 

and, iff is bounded below on C by a strictly positive number, 

e i l  sup Jr:(x) - r*(x)l= O(1) w.p. 1. 
X €  c 

It is interesting to note that all convergence results we presented here are not 
holding "w.p. 1." but in fact hold "almost complete" (see [5]). 

3. Proof. 

The proofs involve mainly an extension of the Bernstein inequality to &mixing 
real random variables (Lemma 1 of [5]), an argument using the Lipschitz condition 
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on K and methods introduced in [ lo]  for the M-estimation o f  regression curves. 
Define 

where as a shorthand, 

( Y ~ ( x )  = ani (x)  = (nhP,)-l K ( ( x  - Xi) /  hn) ,  

so that rn(x)  satisfies 

3.1. Preliminary lemmas 

W e  shall use the following positive constants 

r = s u p f ( x ) ,  ~ = s u ~ K ( x )  and R =  I K ( u ) ~ ~ u .  
x e W p  XER' I 

and we shall omit the index n o f  hn from now on. 

Lemma 1. Let 

n 

Rn(x,  t )  = C cui(x)q(K,  x, t ) ,  V ( x ,  t )  E RP = R 
i=l  

where q is a measurable function dejned on IW x RP x R satisfying 

( x ,  t ) ,  V (x ,  ~ ) E R ~ x R ,  (3.4) 

then there exist B > 0, no E N :  
V E  E (0, B )  V ~ E N ,  n a  no, 

sup sup P { I  R. (x ,  t )  - ERn ( x ,  t)l> E }  s a e-b'2nh:'mn. 
x € C  t € W  

where no, a and b are positive constants, which depend only on &, ;I,, k and the sequence 
{+n; ~ E W .  

Proof. Write 

where 
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and note that, with (3.4), 

The choice a = rpnhP/m, m E (1, . . . , n) satisfies condition (4.5) of Lemma 1 of 
[5] and this gives 

where, 6, =I:, C$i, m EN, t(r,  m) = r2p[1- B(rn-l+ 16C$,/m)] and c, = 

2 e3Ln'-/m do not depend on x or t. There exists m& such that 

B ( l / m + l 6 6 , / m ) ~ f  for rnam&.  

Put m = m; = rnax{mn, mh) in (3.6), then (3.5) follows with a = 2 e"&, A as in (2.5) 
and b = (P/2) infn{mn/m;}. 

Lemma 2. Ifthe sequence (8,; n E N} deJined by (2.9) satisJies (2.12), then there exists 
an E, > 0 such that 

where D is a constant which depends only on f i ,  T, E,, K, C and 14.; n EN). 

Proof. The proof follows closely Lemma 3 in [5], we therefore omit it. 

Lemma 3. Put T( y, x, t) = GX( y - r(x) - t) with GX as in (2.3) and assume (2.12), 
then for any compact G c R there exists r0> 0 such that 

where D is a constant depending only on f i ,  T, E,, K, C, G and {$,; n E N}. 

Proof. We consider without loss of generality only the case G = [-0.5,0.5]. Divide 
G into M disjoint subintervals, each of length M-', define ti = 

(i-1)/M+1/(2M)-0.5 and put Un(x, t )=Rn(x ,  t)-ER,(x, t). For each ~ E G ,  if 
tk denotes the nearest neighbor of t in { t j ;  j = 1, .  . . , M), we have 

with 

Stochastic Processes and its Applications, 23, 77-89

(1986) Collomb, G. and Härdle, W. Strong uniform convergence rates
in robust nonparametric Time Series Analysis and Prediction : 
kernel regression estimation from dependent observations



G. Collomb, W. Hurdle / Robust time series analysis 

because of the definitions of tk and cui(x), so that we have 

and therefore from (3.8) 

e;l sup sup I u,(x, t)1 s 2C,k/(enMhP) + Wn 
X E C  ~ E G  

with 

wn = e i l  max sup I U. ( x ,  t k )  1. 
k=1,  ..., M x e C  

The trivial inequality 

and an argument as in Lemma 3 of [5] shows that there is a constant pl 

Now, if we choose M = n we obtain 

and, from (3.9), 

0;' sup sup I u n ( x ,  t)l s 2G'*/(mn Log n(nhP)'I2) + Wn 
X E C  t e G  

SO that, since nhP +,,, rn, the result (3.8) is proved. 

Lemma 4. Under the assumptions of Theorem 1 we have, for all fixed real t, 

and under the assumptions of Theorem 2 we have 

0;' sup sup I E H . ( x ,  r ( x )  + t )  - H ( x ,  r ( x )  + t)l = O(1). 
x e C  t e G  

Proof. The equidistribution of the couples ( X i ,  Y , )  implies 

so that we have, since K ( u )  du = 1 ,  

- H ( x ,  r ( x )+  t ) ) K ( ( x -  u ) h i l )  du. 
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A slight modification of Bochner's Theorem used in [18] gives immediately the first 
part of the lemma from the condition (2.6). 

A Taylor expansion of the function 

up to the order two, the symmetry of K (implying uK(u) du = 0) and the condition 
(2.8) give 

uniformly for x in C and t in G. The condition (2.10) implies immediately the 
second part of the lemma. 

3.2. Proof of theorems 

We first remark that Hn( . , ) defined by (3.1) satisfies 

where Rn( - ,  - )  is defined by (3.3) for the choice of q given in the Lemma 3. The 
Lemma 2 and the first part of the Lemma 4 imply that under the condition of 
Theorem 1 we have 

for all fixed real t. 
The Lemma 3 and the second part of the Lemma 4 show that under the conditions 

of Theorem 2 (note that (2.10) implies (2.12), with A 3 2) show that 

Proof of Theorem 1. We use a classical approach for proving consistency of M- 
estimates (see [12]): this technique is extended here to the uniform consistency 
case. Fix E > 0. The strict monotony of t,hx and positivity off  on C imply 

The result (3.10) entails, for all sufficiently large n, 

and therefore 

because of (3.2) and the positivity of K. This last result can also be written as in 
the conclusion of Theorem 1. 
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Lastly we show the existence and the unicity of rn(x)  defined by (3.2): the positivity 
of K and the strict monotony of rCI, imply the unicity of f n ( x )  when 

3t0€&t: Hn(x,r(x)+to)#O; 

then, since r ( x )  is supposed to be the unique zero with respect to t  of (2.4) 

3t0€&t: H(x , r (x )+to)#O,  

so that the result of (3.10) implies that the above condition on Hn is satisfied w.p. 1. 
for all x  in C and sufficiently large n. 

Proof of Theorem 2. The definitions (2.4) of r  and (3.2) of rn show that for all x  E RP 
we have 

H ( x ,  4 ~ ) )  = H ( x ,  r n W +  H ( x ,  h ( x ) )  - Hn(x, rn(x)) = 0 

so that a Taylor expansion of H ( x ,  a )  leads to 

where & ( x )  is between r ( x )  and rn(x) .  
a sufficiently large no 

sup lrn(x) - r(x)l E G w.p. I . ,  
XE C 

, The result of the Theorem 1 shows that for 

so that we have w.p. 1. for such integers n 

because of (2.7) and 

The formulas (3.1 1 )  and (3.12) immediately give the result of the second theorem. 

Proof of Theorem 3. The result (2.13), resp. (2.14), follows immediately from the 
Lemma 2 applied to the case 

~ ( - , . , - ) = 1 ,  resp. q(Y, , . , . )=Y, ,   EN. 

The other results are obtained by Taylor expansion, e.g. [18] giving 

sup I ER. ( x )  - R ( x ) ~  = ~ ( h : )  for Rs = f  and Rs = r*J with S = "n" or " ", 
X €  C 

with, for (2.16), the inequality (the argument x  is omitted) 

1':- '*I ~ { I r Z f n  -Er:fnI - lr*Ifn -ELI1 + lr:fn - r * ~ f n I } / f ~  
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leading, because of the last assumption on f; to a convenient majorization of 

supx,c I r3x)  - r*Wl. 
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RANDOM APPROXIMATIONS 

and the average square error (ASE) given by 

n 

ASE = n - ' [g(Xi) - g(xi) ]  w(Xi). 
i =  l 

Wegman [48] argued in the setting of density estimation that, for n 
large, ASE should be a good approximation of MISE. 

He then used ASE as a distance measure for a Monte Carlo comparison 
of several density estimators. ASE has also been employed for this purpose 
by Fryer [ l l ]  and Wahba [42]. Breiman, Meisel, and Purcell [5] and 
Raatgever and Duin [27] used a "normalized version" of ASE in their 
Monte Carlo studies. The distance ISE also has been attractive to several 
authors, see, for example, Rust and Tsokos [32], Scott and Factor [33], 
Bean and Tsokos [I], and Bowman [4]. In the regression setting, Stone 
[36] has used a "leave-one-out" version of ASE and Engle, Granger, Rice, 
and Weiss [9] and Silverman [34] have used ASE to study cross-validated 
estimators. In the hazard function setting, Tanner and Wong [40] have 
compared two estimators by computing the difference of their ASEs. 

The use of ASE and ISE as measures of accuracy was criticized by Steele 
[35], who gave an example in which, asymptotically as n -+ co, ASE 
behaved very differently from ISE (hence, at least one is a poor 
approximation to MISE). In reply to this objection, Hall 1131 showed that 
Steele's example was somewhat artificial by showing that, in the case d= 1, 
if B(x) is a kernel density estimator, then under some reasonable 
assumptions, as n -+ oo, 

ASE = MISE + o,(MISE), ( 1.2) 

ISE = MISE + o,(MISE), ( 1-3 ) 

and if t (x )  is a trigonometric series density estimator (1.3) holds. 
The object of this paper is twofold. First, Hal1,'s results are extended to a 

wider class of estimators and to a variety of nonparametric curve 
estimation settings. This demonstrates that the objections of Steele [35] 
need cause no concern in the case of many commonly considered 
estimators. Second, the results of this paper provide an important tool for 
use in analyzing curve estimators with data-based smoothing parameter 
selection. In particular, asymptotic op timality results can be derived from 
suitable uniform versions of (1.2) and (1.3). Special cases of this may be 
seen, either explicitly or implicitly, in the results of Hall [14], Stone 
[37, 383, Burman [2], and Marron [22, 231 in the density estimation set- 
ting, and in the results of Rice [28], Hardle and Marron [19,20], and 
Burman and Chen [3] in the regression setting. 

Section 2 introduces the class of "fractional delta sequence estimators" 
and makes evident that many of the most widely studied nonparametric 
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estimators are contained in this class. Section 3 contains theorems which 
give sufficient conditions for (1.2) and (1.3) for a subset of these estimators. 
Section 4 contains theorems which extend the results of Sections 3 to all 
fractional delta sequence estimators. Section 5 contains examples for 
illustration of these theorems. The proofs of the theorems are in Section 6. 

The class of fractional delta sequence estimators 
estimators of the form 

Z:= 1 ~ A ( x ,  Xi) im) = E:= 1 ~ J ( x ,  Xi)' 

where 6 ,  and 6 ;  are measurable functions on Rd x 

is defined to consist of all 

(2.1 ) 

lRd, which are indexed by 
a "smoothing parameter" A = A(n) E R +. The special case &(x, Xi) = 1 gives 
the delta sequence estimators studied by Watson and Leadbetter [47], 
Foldes and Revesz [lo], and Walter and Blum [44], among others. 

In the setting of density estimation, some well-known estimators of this 
type are: 

D- 1. Kernel estimators. Introduced by Rosenblatt [29] and Parzen 
[ 2 5 ] ,  given a "kernel function," K: Rd -* R, and the smoothing parameter, 
A E  R+,  define 

D-2. Histogram estimators. Write Rd = UE Al, were the "bins" A ,  
are disjoint with Lebesque measure 2-'  (where A is the smoothing 
parameter). For 1 = 1,2, ... let l l (x)  denote the indicator of A,. Define 

The extension to unequal bin sizes is straightforward, but requires more 
notation. 

D-3. Orthogonal series estimators. Introduced by Cencov [ 6 ] .  Sup- 
pose {I,&)) is a sequence of functions which is orthonormal and complete 
with respect to the inner product 
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Given the smoothing parameter A E Z+, define 

Further examples of delta sequence density estimators may be found in 
Walter and Blum 1441 and Susarla and Walter [ 3 9 ] .  Some examples of 
fractional delta sequence estimators in the regression setting are: 

R- 1 .  Kernel estimators. Introduced by Nadaraya [24]  and Watson 
[ 4 5 ] .  Given a kernel function, K ( x f )  and a smoothing parameter, 1, using 
the notation ( 1 . 1 ) ,  define 

Note that, g ( x )  is a weighted average of the Y i .  

R-2. Known-marginal kernel estimators. Studied by Johnston [ 2 1 ] .  
Let f,,,,(z) denote the marginal density of Z i  and define 

To see the idea 
R-1 is properly 
density, f ,(z).  

behind this estimator, note that when the denominator of 
normalized, it becomes the estimate D-1 of the marginal 

R-3. Delta sequence estimators. A generalization of R- 1 ,  discussed in 
Collomb [ 7 ] ;  define &(z, Z i )  as for any of the density estimators and let 

Note that the regressogram of Tukey [ 4 1 ]  is a special case where is 
defined as for D-2. 

In the setting of hazard function estimation, Watson and Leadbetter 
[ 4 6 ]  have introduced the following fractional delta sequence estimators: 

H-1. Kernel estimators. Given a kernel function, K ( x ) ,  and a 
smoothing parameter, A, define 
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H-2. Delta sequence estimators. A straightforward generalization of 
H-1; define 6,(x, Xi) as in any of the density estimators and let 

This section gives sufficient conditions for (1.2) and (1.3) in the special 
case of delta sequence estimators, which are of the form 

Assume that 1 ranges over a finite set A,, whose cardinality is bounded by 

(i.e., is increasing at most algebraically fast). For estimators with a con- 
tinuous smoothing parameter, such as the kernel estimators, the result of 
this paper can be easily extended to A, an interval, by a continuity 
argument (compare Marron [22] and Hardle and Marron 1191). 

For ease of presentation, it will be assumed that there are constants %' 
and E > 0 SO that, for each n, and for all A E A,, 

The next assumptions are rather technical in nature, but are stated in 
this form because these are the common properties which make all of the 
diverse estimators of Section 2 satisfy (1.2) and (1.3). Implicit in these 
assumptions are conditions on w and f, e.g., boundedness of f or 
integrability of w .J: Precise conditions (on w and J) depend on which 
estimator is being considered. These conditions are given in Section 5, 
where it is seen that quite different methods of verification of these 
assumptions are needed for different estimators. The assumption (3.4) 
represents the most important property of delta sequence estimators. 
Intuition can be gained by considering the kernel density estimation case 
and performing integration by substitution. 

For k = 1, 2 ,... assume there is a constant Ce, so that for any m = 2 ,..., 2k 
and d 2 1, 
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where a,. = 0, ..., k subject to 

and the restriction that for each i = 1, ..., m, there is an i' # i so that either 
a,. or a,., is nonzero, and where pi = 0, 1 with pi = 1 any time an uiil 2 1 
(with ~ ( x , ) ~ ~  taken to be 1 when w ( x i )  = pi = 0). 

Assume that the quantity 

satisfies the assumption (3.4), with each pi = 0, and that there is a constant 
% so that 

Assume there is a constant $9 so that 

Another assumption is that there is a constant 5 >0, so that for 
k = l ,2 ,  ... there is a constant Wk such that 

where B(x) denotes the bias and b(A) denotes the integrated squared bias 
of the estimator g given by 

Finally assume that for k = l ,2 ,  ... there is a constant qk so that 

THEOREM 1. Under the 

lim sup 

assumptions (3.1 )-(3.7), 
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THEOREM 2. Under the assumptions (3.1 )-(3.10), and w bounded, 

lim sup 
n-,m 

Remark 1. We believe that the proofs of these approximations can be 
extended to the case of A, a vector, or even a matrix, but additional messy 
notation and tedious work are required for this. 

Remark 2. In this case of kernel density estimation, under stronger 
conditions than those given here, the strong law of large numbers in 
Theorem 1 has been extended to a central limit theorem by Hall [15]. 

Remark 3. The supremum over A is essential for analyzing curve 
estimators with a data-dependent smoothing parameter. Such estimators 
are of the form 

where L=L(Xl ,  ..., X,). Note that as long as L E A  as., we immediately 
have, under the above assumptions, 

lim 
n - m  

and similarly for ASE. 

This section extends Theorems 1 and 2 to include fractional delta 
sequence estimators. Since these estimators have denominators containing 
random variables, they are technically more difficult to work with. In fact, 
for the estimator R-1, if the kernel function, K, is allowed to take on 
negative values, then the moments of g(x) may not exist (see Rosenblatt 
[30] and Hardle and Marron [18]) so MISE is not a reasonable distance. 
These difficulties are overcome using the same method as that employed in 
Chapter 6 of Cochran [8] for the study of ratio estimators. Assume there is 
a function D(x) and a set S c Rd SO that, uniformly over x E S, A E A, ,  
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and assume that 

inf D(x) > 0. 
X E S  

Then, uniformly over x E S, A E An, 

where 

Thus, for w ( x )  supported inside S, it makes sense to replace MISE by 

Similarly, ISE and ASE may be replaced with 

Before the theorems are stated, note that MISE* may be considered to 
be an assessment of how accurately the delta sequence estimator g*(x), 
defined by 

estimates the function g*(x), defined by 

Similarly ISE* and ASE* are the ISE and ASE for this new estimation 
problem. This observation allows immediate application of Theorems 1 
and 2. 
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THEOREM 3. If s a t i s m  the assumptions (3.1 ) - (3.7) then 

COROLLARY. I f ,  in addition, (4.1) holds, then 

ISE*(A) - MISE*(A) 
lim sup I MISE*(A) n - + m  A € A n  

= 0 a.s. 

THEOREM 4. I f  6: satisfies the assumptions (3.1 k(3.10) and w is boun- 
ded, then 

ISE(A) - MISE*(A) 
lim sup 

n - + m  A E A ~  / MHE*( i )  
= 0 a.s. 

COROLLARY. I f ,  in addition, (4.1 ) holds, then 

ASE*(A) - MISE*(A) 
lim sup I MISE*(A) ' n - + m  A E A ~  

= 0 a.s. 

To see how Theorem 1 and 2 are intimately related to Theorems 3 and 4, 
note that in the special case where g(x) is a delta sequence estimator (i.e., 
&(x, Xi) = 1 ), conditions (4.1 ) and (4.2) hold trivially and the quantities 
MISE*, ISE*, and ASE* are the same as their unasterisked counterparts. 
Thus Theorems 1 and 2 are special cases of Theorems 3 and 4. On the 
other hand, using the viewpoint given above, Theorems 3 and 4 are con- 
sequences of Theorems 1 and 2. 

ASE(A) - MISE*(A) 
lim sup 

n - v c o  A E A ,  / MISE*(A) 

In this section it is seen how the fractional delta sequence estimators of 
Section 2 satisfy the conditions of Sections 3 and 4. 

= 0 a.s. 

D-1. Kernel estimators. Conditions (3.4)-(3.7) follow easily from 
integration by substitution and the assumptions that j; w o f ,  and K are 
bounded with K ( x )  dx = 1 and f, w not mutually singular. Condition (3.8) 
is also easily satisfied with 5 = 1. Condition (3.10) requires the additional 
assumption that w f be integrable. Thus the results of Marron [23] and 
Theorems 1 and 2 of Hall [13] are special cases of the results of this paper. 

D-2. Histogram estimators. Note that 
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102 MARRON AND MRDLE 

The verification of (4.1) is easy, in view of Lemma 1 of Hardle and Marron 
[19], under the additional assumption that f, is Holder continuous. 

R-2. Known marginal kernel estimators. This case is similar to R-1 
except that (4.1 ) is not required (but (4.2) is still important). R-1 and R-2 
contain the results of Hardle [17] and Hall [16] as special cases. 

H- 1. Kernel estimators. Conditions (3.4)-(3.10) are easily checked 
when it is assumed that 

r 

and K, f, and w e  f are bounded, together with the assumption that 1 - F is 
bounded above 0 on the support of w. 

Note that, by (3.2) and the Chebyshev inequality, for E > 0, k = 1, 2,  ..., 

I ISE(2) - MISE(A) I > &  <%nP sup E 
R € A n  [ MISE(A) - c 

Thus, by the Borel-Cantelli lemma, the proof of Theorem 1 will be com- 
plete when it is seen that there is a constant y > 0, so that for k = 1, 2, ..., 
there are constants qk so that 

Theorem 2 will be established by the same technique when it is shown that 

The distance ISE can be decomposed as 

ISE = R(A) + 2S(A) + b(A), 

where b(A) is defined in (3.9) and 
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The first term may be further split into 

W) = R l ( 4  + R2(4  + R3(4, 

where, using the notation (3.5), 

To finish the proof of (6.1) it is enough to show that 

( A )  + ( A )  - MISE(A) 2k I MISEiAi 1 < qkn -yk, 

and for "term" denoting R,, R,, or S, 

Write 

ASE = ISE + T(A). 

As above, T(1) admits the decomposition 

T =  T1  + T2 + T3 + 2T4 + 2T5 + T6 

+ T 7 + 2 U l + 2 U 2 + 2 U 3 +  V, 

where 
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Thus, (6.2) will be established when (6.4) is verified for each of the above 
terms as well. 

To check (6.3), note that by the familiar variance-bias squared decom- 
position (see, e g ,  Rosenblatt [3 1 1 ), using the notation (3.9), 

where, using the notation (3.5), 

The inequality (6.3) follows from this and from (3.3), (3.6), and (3.7). 
The verification of (6.4) will now be done term by term, starting with 

those which do not involve d(Fn - F): 

Term T,. Using (3. lo), 
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Term U, . As above, using the Schwartz inequality, 

The remaining terms all have at least one d(F, - F), and so have mean 0. 
Thus to check (6.4), by the cumulant expansion of the 2kth moment, it is 
enough to check that, for k = 2, 3, ..., there is a constant (ifk so that 

1 c u m  ( 1  < n Y k ,  

where cumk(. ) denotes the k th order cumulant, for which each argument is 
the same. 

To verify (6.5) in the case of those terms having only one d(Fn - F), note 
that they may be written 

Thus, using the independence property and linearity of cumulants, it is 
enough to show that 

Term R,. Note that here 

So by the binomial theorem and repeated application of (3.4), 

Term T, . Similar to R,. 

Term T,. Similar to R,. 
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TermT,.  Note that here 

Term V .  Note that here 

Thus, by (3.8), 

Term U,. Note that here 

By (3.8), (3.10), and the Schwartz inequality, for j = 1, 2, ..., there is %, so 
that 

Hence, 
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Term S. Note that here 

It follows from the Schwartz inequality that, 

So, by (3.4), for j even, there is a constant (if$ such that (6.6) is bounded by 

And by the moment inequality, for j odd, there is a constant (if$ such that 

< 48; n - "k/4.  

More precise computations are required in the case k = 2. By ( 3 3 ,  
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Thus, 

It remains to verify (6.5) for the terms containing two or three 
d(F, - F)'s. The terms containing 2 may all be written in the form 

where 

So, using the linearity property of cumulants, (6.5) will be established in 
this case when it is seen that there is a constant y > 0, so that for k = 2, 3, ..., 
there are constants %?, such that 

where, by a moment expansion of cum,, it may be assumed that each of 
i, ,  i; ,..., i,, i; appears at  least twice. In each case, it will be convenient to let 
m denote the number of i, , i; ,..., i,, ib that are unique. Note that, for 
m = 2, 3, ..., k, the number of cum, with m distinct indices is bounded by 
%,nrn. 

Term T,. Note that here 

Journal of Multivariate Analysis, 20, 91-113

(1986) Marron, S. and Härdle, W.  Random approximations 
to an error criterion of nonparametric statistics



RANDOM APPROXIMATIONS 

So, by (3.4) 

Term T4. Similar to T2 .  

Term R, .  Here 

Thus, 

Term U,.  Here 

This term is handled by means quite similar to those used on Term T2 
above, except that (3.4) is augmented by the Schwartz inequality and (3.8). 
The result is, for k = 2, 3 ,..., 
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It remains to verify (6.5) for 

Term T , .  This term may be handled by methods similar to those 
used on term T,. 

This completes the proof of Theorems 1 and 2. 

Using the definition of &(x, y), write 

The multiple integral on the right-hand side may now be factored to give 
an expression of the form 

Consider the set of aiil which have i # it and are positive. Find a subset, 
A, which has the property that each of 1, ..., m appears at least once as an i 
or i f ,  and suppose that this subset is minimal in the sense that if any a, ,  is 
removed, then 1, ..., m no longer all appear as the index of an a. 

Group 1, ..., m into two subsets, I and I', by the following rules: 

(1) Any of 1, ..., m that appear twice (or more) as an index of an a in 
A goes into I. 

(2) If i is in I, and a,, (or qi) is in A, put if into Z'. 

(3 )  For the remaining aii. in A, put i in I and it in I f .  

The above rules partition { 1, ..., m ) into I and I'. 
Observe that for each a,. in A, there is an 1 so that $,(.u,) $,(.Y,.) appears 

in the integrand on the right side of (7.1). Suppose, without loss of 
generality, that I,, ..., I, each correspond in this manner to a different 
element of A, where L denotes the cardinality of A. Also assume, without 
loss of generality, that I,, ..., I, correspond to those a in A which have an 
index appearing more than once in A. 

By the Schwartz inequality, (7.2) may be written as 
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Suppose, without loss of generality, that I'= {l ,  ..., L } .  Then, 

where the last inequality follows from (5.1) and the Bessel inequality, 
because [ 1 dF(xi)  is the ljth Fourier coefficient of a function whose 
norm is bounded in (5.1). Similar techniques give 

It follows from the above that there is a constant gk so that (7 .1 )  is 
bounded by 

gkAk - L p  - 1112 

To put this in more useful terms, note that 

2L-barn-1 
and so 

-L+b/2-$< -m/2. 

It follows that (7.1) is bounded by 

This completes the proof of Lemma 1. 
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A Note on Jackknifing Kernel Regression Function 
Estimators 

WOLFGANG HARDLE 

Ahsrracr-Estimation of the value of a regression function at a point of 
continuity using a kernel-type estimator is considered and improvements 
by a jackknife technique are discussed. It is seen that a so-called gener- 
alized jackknife estimator asymptotically improves UQ~M an ordinary 
kernel-type estimator. However, for a fined sample size the generalized 
jackknife method may inflate the mean-square error. 

I. INTRODUCTION AND BACKGROUND 
Consider the observation model 

where E,, ,. . E , ,  are random errors, t,, - i/n are equispaced 
knot points in the interval (0, 11, and m is an unknown regression 
function. The goal is to estimate m from the observations 
{ ( I , , ,  , q,,)):', , . We consider here so-called kernel estimators 

n 

m , ( t )  = C W n , ( t ) T ,  0  < t  < 1, 
1 - 1  

where ( KI1 ):- , is a sequence of weights generated by a continu- 
ous kernel function K ,  that is, 

with a bandwidth h  = h,. Similar estimators have been consid- 
ered by Georgiev [3] and GyiSrfi [5] in signal processing and 
system identification. 

Assume that the random errors {E,, 1:- , are independent and 
identically distributed zero-mean random variables with variance 
oZ,  having a distribution independent of n. The mean-square 
error (mse) of m,, for fixed t  can then be written as 

It has been shown (e.g., Priestley and Chao [7] that under natural 
conditions on K  and m  the mse converges with a certain 
algebraic rate to zero if the sequence of bandwidths is suitably 
chosen. Schucrnny and Sommers [8] argued in a similar setting of 
kernel density estimation that a so-called generalized jackknife 
estimate might be helpful in iinproving this algebraic rate of 
convergence. 
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In this correspondence we define a generalized jackknife esti- 
mate for m ( t )  and show that, indeed, under certain assumptions 
the jackknife technique reduces the bias asymptotically. How- 
ever, we will also see in an example that for a fixed sample size n, 
the variance of the generalized jackknife estimator may dominate 
the variance of m , ( t )  in such a drastic way that the mse of the 
ordinary kernel regression estimator m , ( t )  is smaller than 
the mse of the generalized jackknife estimator. 

The generalized jackknife technique with the often useful bias 
reduction property should therefore be cautiously appLied in this 
context. A proper inspection of the parameters involved (see 
Table 11) seems to be necessary before using this sophisticated 
method. This observation has also been made by Efron [ l ]  for the 
traditional jackknife. Also Huber [6, p. 161 points out that the 
jackknife may yield a variance that is worse than useless. 

11. DOES THE JACKKNIFED ESTIMATE IMPROVE UPON M,? 
Defiie the constants A ( K ;  j )  by 

j ! A (  K ;  j )  - ~ U J K ( U )  du, j E N U ( 0 )  

and consider only symmetric kernel functions with j K Z ( u )  du < 
w .  Note that A ( K ;  0 )  - 1  and that the symmetry entails 
A ( K ;  j )  - 0  for all odd integers j  E N. A kernel K is said to be 
in the class Br if for some even integer r 2 2  

Let m ( " ( t )  denote the s th  derivative of the regression function. 
The knot point t  E ( 0 , l )  is considered as fixed for the rest of this 
wrresponhence. 

Propmition 1: Suppose that h - h,  * 0 such that nh -, ao as 
n + w .  Let m  E CP[O,l],  p -  2q,  q ~  N ,  and let K E ~ , ,  
r - 2s g p. Then 

Proof: Use the fact that K  E Br and use the Taylor expan- 
sion of m. Now consider two kernel functions Kl and K,; two 
sequences of bandwidths h, = h,, and h2 = h2,,; two weight 
sequences 

and the estimators 
n 

The generalized jackknijfe estimate is then defined as 

with some constant R + 1. Note that the generalized jackknife is 
not based on pseudevalues as is the original jackknife. The 
relationship of the generalized jackknife to the traditional one is 
discussed in Gray and Schucany [4, ch. 31. Since G[m',", m f ) ]  is 
a linear combination of two ordinary kernel estimators, we 
obtain immediately the following proposition. 

Propositioq 2: Let h, + 0 such that nh, -p eo, 1 = 1,2 as 
n oo. Suppose that m  E CP[O,l],  p  - 2q,  and let K, E 9,, 
r = 2s  6 p ,  1 = 1,2.  
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Ili"nen the bias term of G[mil), mf)] is TABLE I 

0.3. 0.6782 1.130 
The bias reduction is now possible by a clever choice of the 0.4 0.7273 1.212 

constant R. For simplicity we will consider for the remainder of 0.5 0.7833 1.305 
this correspondence only the case p = 4 and K,, K2 E g2. ' h e  0.6 0.8446 1.407 
following ideas carry over to the general case. Define 0.7 0.9002 1.517 

0.8 0.9792 1.632 

0.93 1.073 1.788 
Then the coefficient of rn(,)(t) in (2.1) is zero, and indeed the 0.94 1 .08 1.800 
bias of G[mil), mjf'] has been reduced compared with the bias of 0.95 1.087 1.812 
m, in this situation. (Note that the o(.) term changes to o(h2q).) 0.96 1.095 1.825 
Moreover, the following kernel (depending on n), 0.97 1.1022 1.837 

0.98 1.11 1.850 
0.99 1.117 1.862 

K * ( u )  - [ K l W  - r c 3 ~ 2 ( 4  
[I - rc2] 

Example: Let K  = K, = K2 E 92 with 
with 

A(K1; 2) K u ( 2  l u I L 1  
r  - 

A(K2; 2) 
14' 1, 

a kernel function considered by Epanechnikov (21. Straightfor- 
and ward computations show that 

could have been used to define the generalized jackknife estimate 
with R - rc2; that is, in self-explaining notation, 

At first sight the use of G[m',", mi2)] looks like a good 
strategy. If the experimenter in a first attempt ascribes only a 
small amount of smoothness to m, i.e., the existence of the 
second derivative of the regression function, and uses, backed by 
Proposition 1, a kernel K E 9P2, he might be leaning toward the 
generalized jackknife estimate for the following reason. If in fact 
the regression curve is smoother than expected, say, m E c4 [O, 11, 
then the estimate G[mkl), ml)],  being equivalent to m, with 
K* E s4 yields a lower blas. However, a second look at  the 
problem shows that the variance (for fixed n) may be drastically 
inflated. This is investigated in the following example. ' 

Table I shows the dependence of jKb2(u)  du on c together with 
the ratio jK*'(u) du/jK2(u) du. 

It is apparent from these figures that some caution must be 
exercised in selecting c. Recall that the selection of c is the same 
as selecting R or selecting h, as a multiple of h,. To compare 
the mse of m, with the mse of G[mi1), m(2)], we equalize the 
variances by setting h1 = ( j K ~ ~ ( u )  du / /~ ' (u )  du)h. The mse 
of G[m',", mlfl] is then considered as a function of c and h. Let 
m(2)(t)/10 5 m(4) (t)/280 1 1 without loss of generality. Then 
by Propositions 1 and 2 we obtain that the leading bias term B,, 

TABLE 11" 

c - 0.1 c = 0.2 c = 0.3 c = 0.4 c - 0.5 

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

0.2 1.017 0.67 0.51 1.063 0.709 0.532 1.13 0.753 0.565 1.212 0.808 0.606 1.305 0.87 0.652 
0.3 1.52 1.017 0.765 1.59 1.063 0.798 1.695 1.13 0.847 1.818 1.212 0.909 1.958 1.305 0.979 
0.4 2.035 1.357 1.020 2.127 1.418 1.064 2.26 1.507 1.13 2.424 1.616 1.212 2.611 1.74 1.305 

TABLE I1 (continued) 

\ c = 0.6 c = 0.7 c - 0.8 c = 0.9 

0.4 2.815 1.877 1.407 3.034 2.022 1.517 3.264 2.176 1.632 3.503 2.335 1.751 

"mse (~ [ rn i l ) ,  m!,2)]}/mse{m,) for n = 100, o2 = 1, m(t) = sin f, f - r/4. 
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of Mn and the leading bias term B,, of G[m',", mf)]  for 
c - 0.99 are 

This shows that if h2 > 1/(4152.76 - 1) the mse of G[ma), 
mj?] dominates the mse of m,. Similar conditions can be found 
by varying m(2) and m(4). 

In a practical situation a choice of R that avoids a situation of 
this kind, described in the example, seems to be impossible. Such 
a selection of R has to take into account the unknown values 
m(')(t) and m(4'(t). It is therefore impossible in a practical 
solution to compute the parameter regions where G[m',", mf)]  
actually improves ordinary kernel regression estimate m,. 

We also compared the leading terms of the mse G[m',", 
mj;'](t) and of the mse mn(t)  of a fixed regression curve in 
Table 11. Shown are the ratios of the two leading terms for 
different values of h, h,, and c with n = 100 and a 2  = 1. The 
regression curve m(t)  = sin t was selected, and the mse at t = 
a/4 was evaluated with K E R2 as before. A bandwidth h ,  
being roughly about 0.3, would minimize the mse of m,(t); 
therefore only combinations are shown with h ,  h ,  G 
(0.2,0.3,0.4). The use of ~ [ m ' , " ,  mi2'] may result in an mse 
nearly twice as high as the correspondin mse of m, as can be 
m n  from the entry ( h ,  h , ,  r )  - (0.3.0.3.69) in Table 11. 
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An On-Line Parameter Estimation Algorithm for 
Counting Process Observations 

PETER SPREIJ 

Abstract-The parameter estimation problem for counting process ob- 
servation is considered. It is assumed that the intensity of the counting 
process is adapted to the family of a-algebras generated by the counting 
process itself and that the intensity depends linearly on some deterministic 
constant parameters. An on-line parameter estimation algorithm is then 
presented for which convergence is proved by using a stochastic approxi- 
mation type lemma. 

Counting processes frequently occur as observations in 
mathematical models for industrial processes and in biology, 
software engineering, and nuclear medicine. Usually, such a 
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counting process can be considered as the output process of some 
stochastic system. The underlying state process then influences 
the counting process. A problem is then to estimate this state, 
given the observations. This is known as the filtering problem 
and has been investigated extensively [I]. 

The solution of this problem requires knowledge of all parame- 
ters needed to describe the stochastic system, which means that 
one can compute the solution to the filtering problem only if one 
knows the correct parameter values. Unfortunately, in many 
cases these are not known and therefore need to be estimated. 
This may happen before the processes start running, using related 
additional information and/or observations. In the former case 
some asymptotic results for off-line maximum likelihood estima- 
tion are available [3], [4]. 

The purpose of the present correspondence is to make a 
contribution to the on-line parameter estimation problem in a 
specific case. The approach has proven to be fruitful in discrete 
time ARMAX processes [7] or continuous time Gaussian AR 
processes [6] .  

The correspondence is organized as follows. In Section I1 we 
give some basic results for counting processes. In Section I11 we 
give a heuristic derivation of our parameter estimation algorithm. 
Section IV contains the convergence proof of the algorithm. 

We assume that we are given a complete probability space 
( 0 ,  .F, P), a time set T = [0, m), and a filtration { q } ,  , , satis- 
fying the usual conditions of [2]. All stochastic processes in the 
sequel are defined on Q x T and adapted to (9F;],,,. We study 
the case that we are given: an observed process, which is a 
counting process, that is a map n: Q x T -+ No, which has only 
jumps of magnitude + 1. Then it is known [I], (21 that n is a 
submartingale and therefore admits the so-called Doob-Meyer 
decomposition (with respect to {& ), , ,) 

where A: Q x T -, R is a predictable increasing process and m 
a local martingale. Now assume that A is an absolutely continu- 
ous process, say A,  - & A l  ds; then we can rewrite (2.1) as 

dn, = A, dt + dm,. (2.2) 

The process h is called the intensity process. 
Often a major problem for counting process observations is to 

identify the intensity process A. This problem can be set up in 
two stages. In the first stage we have to sqlve a filtering problem. 
To be precise we have ;o determine A, = E(A,I%"), where 
6" = a { n, , s s t }. Then A, is the optimal (in the sense of mean 
squared error) estimate given the observations during [0, t] c T 
and given the values of deterministic parameters. We can then 
replace (2.2) by the minimal decomposition of n (i.e., with 
respect to { 3" 1) 

dn, = 1, dt + dZ, (2.3) 

where Ei is a local martingale adapted to {%" I,, ,. In the 
second stage one looks for estimates of remaining unknown 
deterministic parameters. If one adopts :he maximum likelihood 
criterion, (2.3) and the computation of A, appear to be crucial. 
The likelihood functional in this case is known [I, p. 1741 to be 

The Model 

From here on we assume that 1 has a special structure 

where p E f?"' is the vector of unknown parameters and 0: 
Q x T -+ R "I is a process adapted to ( 8 "  ), , , and thus knoun 
Indeed (2.5) imposes a restrictive condition on the intensit) 
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Abstract. The fetal EEG was studied in seven chronically prepared sheep fetuses (gestational 
age 115-120 days) under different degrees of hypoxia. The EEG was evaluated by spectrum 
analysis. Hypoxia was induced by clamping the common hypogastric artery. During 
normoxia a cyclic high voltage - low voltage (HV-LV) pattern with typical frequency shifts 
occurred. First sign of mild hypoxia was a shortening of the HV-LV cycle. Further increasing 
hypoxia caused a reduction of mean power, especially in the HV-phase. Reduction of p 0 2  
below 16 mmHg resulted in a loss of the cyclic changes of the fetal EEG. An increasing p 0 2  
caused a recovery of the endogeneous HV-LV dynamics with its typical frequency shifts. 
Only in one case during persistent hypoxia and increasing acidosis a slowing of the fetal EEG 
pattern was observed. In all other cases frequency pattern during hypoxia was comparable to a 
normal HV- or  LV-phase. 

Introduction 

Key words: intrauterine hypoxia - fetal cerebral function - sheep fetuses 

At about 110 days of gestation the EEG of the 
sheep fetus begins to differentiate and an episodic 
pattern of high voltage slow activity (HV) and low 
voltage fast activity (LV) is established [Ruckebusch 
1972, Dawes et al. 19721. The differentiated and 
highly organized pattern of activity reflects the matu- 
ration of higher brain centers associated with the 
production of rapid and non-rapid eyemovement 
sleep. Fetal behavior, i.e., fetal muscle activity and 
breathing movements, is associated with the different 
sleep stages [Dawes et al. 19801 at about 120 days of 
gestation. Isocapnic hypoxia causes a reduction of 
fetal breathing [Clewlow et al. 1983, Gauwerky et al. 
19821 and muscle activity [Gauwerky et al. 19821. 

The central control mechanism of fetal behavior 
during hypoxia is still unknown. A recent publication 
has suggested that the decrease of breathing move- 
ments during hypoxia is caused by an active process 
arising from supracollicular structures [Dawes et al. 
19831. Up  to now, no studies have been reported on 
the EEG-related changes of fetal behavior during 
hypoxia on a computerized basis. There is also 
minimal knowledge about the influence of different 

. degrees of hypoxia on the activity of the cerebral 
cortex in the full term fetus. We have therefore 

Correspondence to Dr. J. F. H. Gauwerky: 

examined the sequential changes of fetal EEG activity 
during different states of hypoxia. 

Methods 

The studies were carried out on seven chronically prepared 
sheep fetuses (crossbred Merino) with a gesta;ional age of 115-120 I 

days (term 145 days). Under halothane anesthesia, a catheter was 
implanted into a fetal carotid artery and two pairs of fetal EC 
electrodes were implanted bilaterally on the parietal dura. The 
electrodes were implanted following the midline incision through 
the scalp. To create controlled hypoxia an inflatable vascular 
occluder was applied to the common hypogastric artery. O n  the 4th 
postoperative day the experiments were started to measure the fetal 
response to hypoxia. At this time ail animals were in a steady state 
based on respiratory and cardiovascular parameters. Mean values of 
fetal arterial blood pH and p 0 2  during normoxia were 7.37 t 0.03 
and 25.1 + 2.7 mmHg, respectively. The data were recorded on 
FM-tape (Hewlett Packard HP 3698 A, 8 channel) and digitized. 
For further analysis, data were summarized on 20 second records 
and evaluated by spectrum analysis. The mean power, as well as the 
relative band energy, was calculated in the ranges of 1-2.5 Hz, 
2.5-5 Hz, 5-10 Hz, 10-15 Hz and 20-30 Hz. With the help of 
robust regression methods [Hlrdle and Gassner 19841 rhe'expected 
values were determined. In the figures the mean values (and the 
approx. 95% confidence limit) of the estimated values are shown. 
Fig. 1 shows data and mean values in one case as an example. The 
blood samples for blood gas analysis were taken at 5 minute 
intervals during hypoxia. 

Biological Research in Pregnancy, 7, 164-170

(1986) Gauwerky, J., Wernicke, K., Hölting, T., Matthis, P., Härdle, W. and Kubli, F.
Fetal cerebral function and intrauterine hypoxia in sheep fetuses



Fetal cerebral function and intrauterine hypoxia in sheep fet~rses 165 

Results H?,poxia: p 0 2  C20 mmHg 

Normoxia: p 0 2  >20 mmHg Under the influence of mild hypoxia ( A p Q  
<j mmHg, p 0 1  >16 mmHg) we observed shorten- 

The EEG of the full term fetus is subject to ing of the "high voltage-low voltage" cycle (Figure 4). 
variations with the cyclic increase and decrease of the In the case shown in Figure 4, the duration of the 
mean power (Figure 1). The different phases do  not cycle was reduced from 21 min during the normoxic 
correspond with any specific condition, but are an phase to 12 min during hypoxia. The change of pO, 
expression of a continually changing process. Simi- was 3.6 mmHg in this case, the p H  remained unal- 
larly to the maximum amplitude, the duration of the 

. cycle length is subject to an individual variability 
(average cycle duration: 20 min 3.6 min SE). Par- 3300 

allel to the fluctuation of the mean power, clear shifts rsoo 

of frequency occur. High mean power is correlated 
2ooo 

with a high proportion of low frequencies, while low C 

mean power occurs with a high proportion df higher f isoo 

frequencies (Figures 2 and 3). !t ,000 
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A B 

Fig .3  Distribution of frqucncies during LV and HV (point A and B, Fig.2). 1: 1-2.5 Hz, 2: 2.5-5 Hz, 3: 5-10 Hz, 4: 10-15 Hz, 5: 

15-20 H z , ' ~ :  20-30 Hz. 

tered. During mild hypoxia no frequency shifts were 
observed. The first sign of a further increasing 
hypoxia is a reduction of the mean power, especially 
in the high voltage phase (Figure 4, point A) without 
any frequency shifts. Further reduction of oxygen 
tcnsion (PO? <16 mmHg) caused a loss of the cyclic 
changes of the EEG with high voltage and low voltage 
(Figures 2, 5, 6 and 7). 

In cases in which hypoxia started at the end of a 
low voltage phase (Figures 2 and 7) a change to a high 
voltage phase with its typical frequency pattern always 
occurred. The mean power was reduced to values 
between high voltage and low voltage levels. An 
increasing p 0 2  caused a prompt recovery of the 
endogenous high voltage - low voltage dynamics with 
its typical frequency shifts. The increasing p 0 2  caused 
the onset of a low voltage phase followed by a high 
voltage phase (Figure 2). 

A similar pattern is shown in Figure 5. Hypoxia 
started at the beginning of a high voltage phase. 
During hypoxia no significant frequency shifts occur- 
red. The mean power decreased with persisting 
hypoxia and decreasing pH. A reduction of she 
frequencies in the range 1-2.5 H z  was observed only 
at the end of this registration. When hypoxia starts at 
the beginning of a low voltage phase, the distribution 
of frequencies showed the typical pattern of a low 
voltage phase (Figure 6).  The mean power was 
reduced below the level of  a normal low voltage phase. 
At  the end of this registration, an increasing acidosis 

caused further reduction of the mean power and a 
further decrease of lower frequencies (1-2.5 Hz). 

The data shown in Figure 7 are in agreement with 
these observations. In this case, hypoxia starts again at 
the beginning of a high voltage phase. During persist- 
ent hypoxia and increasing acidosis the mean power 
decreased. We could observe a slightly slowing of the 
fetal EEG pattern only in this experiment. The 
frequency shifts seem to occur especially from the 
band 2 (2.5-5 Hz) into the band 1 (1-2.5). 

Zble f Acid-base values before and during hypoxia. Values are 
given as mean + SE. In the first group of four animals during 
hypoxia no cyclic changes of HV and LV could be observed, 
whereas in the other animals with only slightly decreased p 0 2  the 
HV-LV pattern during hypoxia was at least partially present. 

Ani- HV-LV pattern during Hypoxia 
ma1 Normoxia 
No.  Hypoxia pH p o l  pH po2 Dp02 

(mmHg) (mmHg) (mmHg) 

1 no 7.41 25.2 7.32 '0.05 15.1 + 2.8 10.1 
4 no 7.37 28.6 7.14 t 0.1 1 13.8 t 2.9 14.8 
6 no 7.32 26.5 7.16 -C 0.07 13.3 t 1.6 12.2 
7 no 7.34 27.6 7.20 t 0.02 12.9 + 1.1 14.7 

2 partial 7.38 25.7 7.27 + 0.02 16.4 1t 2.0 9.3 
5 partial 7.36 21.3 7.13 + 0.06 14.3 + 3.0 7.0 

3 yes 7.42 20.9 7.41 + 0.02 17.3 t 2.3 3.6 
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In Table I acid base values of all animals are 
summarized. As shown in this table the HV-LV 
pattern was present during hypoxia only in cases with 
slightly reduced pOz. 

by Ruckebusch [I9721 and Dawes et al. [I9721 in 
animal experiments. Sokol et al. [I9761 observed the 
same in the human fetus. In further animal experi- 
ments [Ruckebusch et al. 19771, a definite pattern of 
fetal behavior was associated with the EEG pattern. 
Fetal behavior was compared with the sleep-waking 
cycle of the newborn and the adult. The shifts of 
power and frequencies of the EEG during these , 
behavioral states have not been described precisely so 
far. We could show that the EEG phases described in 
the literature as "high voltage" or "low voltagen 

Discussion 

The normal EEG of the full term fetus is subject 
to cyclic fluctuations of the mean power, as well as of 
the frequency distribution. This fact was established 
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Fig. I Mean powcr and spectral intensity during normoxia and 
hypoxia in animal 1. Hypoxia starts at the beginning of an HV 
phase. Spectral distribution during hypoxia is that of an HV phase 
during normoxia. Mean power is continuously reduced. 

Fig.4 Mean power and spectral intensity during normoxia and 
hypoxia in animal 3. Reduction of mean power during HV (point 
A) caused by further reduction of PO?. 
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[Ruckebusch et al. 1972, 1977 and Dawes et al. 19721 
do  not correspond to any specific condition. 
Moreover, a permanent and constant change of the 
EEG pattern occurs. It might be consistent with a 
cybcrnetical model of a feed-back mechanism [Wiener 
19631. 

In our  experiments, the duration of one cycle was 
20 min in average. The data was obtained from 
animals of the same gestational age. The influence of 
the gestational age on the duration of one sleep- 
waking cycle is still unknown. Investigations on the 

minutes 
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Fig. 6 Mean power and spcccral intensity during normoxia and 
hypoxia in animal 4. Hypoxia starts at the beginning of an LV- 
phase. Mean power is reduced below the values of LV. Distribution 
of frequencies corresponds to an LV-phase in the first 10 minutes of 
hypoxia. 

sleepwaking cycles of premature newborns [Parmelee 
19741 show that no changes of the total cycle length 
occur in the human fetus from the 36th-40th week of 
gestation. However, prior to this time it seems 
(measured in resting and activity cycles) that the total 
cycle length is clearly shorter. 

A differentiation of fetal EEG between high 
voltage and low voltage phases occurs in the sheep in 
the last trimester (0.8 . term) [Ruckebusch 19 721. 
Investigations on the activity of the human fetus 
[Dreyfufi-Brisac 19751, as well as the EEG of the 

minutes 

minutes 

minutes 

minutes 

Fig. 7 Mean power and spectral intensity during normosia and 
hypoxia in animal 7. Hypoxia starts at the beginning of an HV- 
phase. With prolonged asphyxia, a slowing of frequencies and 
reduction of mean power occurs. 
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premature newborn [Dreyfufl-Brisac 19621, allows us 
to postulate that in human beings a corresponding 
differentiation takes place after the 32nd week of 
gestation. 

Although our experiments do  not allow definite 
conclusions on the basis of a relatively small number 
of investigations, we could show that changes of the 
EEG phase dynamics occur depending on the degree 
of hypoxia as well as the hypoxic gradient. First sign 
of mild hypoxia (ApOz 5-6 mrnHg, p 0 2  >16 mmHg) 
is the shortening of the high voltage - low voltage 
phases. This could be interpreted as a change towards 
a more premature EEG. Investigations carried out by 
Karch et al. [I9771 on newborns with perinatal 
hypoxia confirmed these results. In contrast to these 
findings, Amiel-Tison [I9801 demonstrated an accel- 
eration of the cerebral maturity in children born after 
an intrauterine high risk incidence. 

It may well be that during acute hypoxia, just as 
in our experiments and as reported by Karch et al. 
[1977], a form of reaction occurs other than in a 
prolonged state of intrauterine stress as reported by 
Amiel-Tison [1980]. O u r  experiments confirm the 
statement by Challamel et al. [I9741 that existence of 
fetal sleep-wake cycles during labor can be interpreted 
as a sign of fetal well-being, even though our  experi- 
ments show that changes of the phase dynamics 
already occur during mild hypoxia. In the neonate, 
sleep cycles are present only under conditions of 
normal oxygenation and normal acid-base balance 
[Radvanyi et al. 19731. 

As shown in Figure 4, further increased hypoxia 
(pOz <16 mmHg) leads to a decrease of the mean 
power, especially in the high voltage phase. During 
this period no frequency shifts were observed. Further 
increase of the hypoxia with p 0 2  values under 
16 mmHg causes an inhibition of the cyclic changes of 
high voltage and low voltage phases. When hypoxia 
starts at the beginning of a high voltage phase, this 
phase remains unchanged regardless of the mean 
power. The mean power is depressed, but the fre- 
quency distribution is the same as in a high voltage 
phase during normoxia. With the beginning of 
hypoxia at the transition to a low voltage phase, 
similar results were obtained. The frequency distribu- 
tion is in accordance with that of a low voltage phase 
during normoxia but the mean power is reduced as 
compared to levels during normoxia. 

Only in one case (Figure 7) did we see a minor 
reduction of frequency during prolonged acidosis 
(reduction of the spectral intensity in the band 
2.5-5 Hz, increase of spectral intensity in the band 
1-2.5 Hz). These findings are not in agreement with 
the acute experiments of Rosen et al. [1973, 19671 and 
Symmes et al. [197O], who found that the slowing of 
frequency is one of the first signs during hypoxia. O n  

T.zLle 2 Fetal s l e ~ t r o c n c e p h a l o ~ r a p h ~  and FHK monitoring com- 

pared [Viniker 19791. 

Feature Continuous FHR Fetal electroencephalog- 
monitoring raphy 

-- 

Preceding ex- 
perience 
Signal 

Trace 

Esperience 
Cerebral 
function 
Current status 

Fetal heart auscultation 

"Regular" 
Easily obtainable 
Easily checked by 
auscult. 
Convenient 
Parameters of fetal 
distress well defined 
Simple to read 
Large 
Not  directly related 

Clinically accepted 

New technique 

Random 
Technically difficult to  
obtain 
N o  simple check 
Voluminous 
Parameters of fetal 
distress not established 
Expertise required 
Limited to a few centres ' 
Directly related 

Research technique only 

the basis of our experiments, the following model for 
the regulation of the fetal EEG is possible: higher 
brain centers control the activity of the cerebral 
cortex. The result is a cyclic variation of high voltage 
and low voltage. Under the influence of hypoxia the 
activity of these structures is depressed causing first a 
shortening of the high voltage - low voltage cycles and ! 
after that a total inhibition of the cyclic changes. 
Parallel to that, hypoxia causes a diminution of the 
power of the cortical neurons. Possibly, the frequency 
distribution may be influenced by acidosis. 

Corresponding with these results, investigations 
on the regulation of fetal behavior during hypoxia 
should be done with recourse to the fetal EEG. 

The extent to which the fetal EEG is useful for 
the diagnosis of anteparturn or  intraparturn stress 
situation is still unknown. In Table 2 the fetal EEG 
and the registration of the fetal heart rate are com- 
pared. In contrast to  the fetal EEG, the signal 
collection and the date interpretation of the FHR 
seems to be relatively easy. The fetal EEG, however, 
is directly related to the cerebral function. Symrnes et 
al. [I9701 concluded: "The times at which statistically 
significant changes occurred were not earlier during 
the progressive f.111 of arterial p 0 2  than visual estimates 
of abnormality made on line from the paper record 
and were in all cases later than significant cardiovascu- 
lar changes." H e  presented the fetal EEG as a purely 
competitive method to the fetal CTG with regard to  
the early diagnosis of an intrauterine high risk situa- 
tion. Our  study shows that the fetal EEG is subject to 
physiological long-term dynamics, and thus changes 
due to hypoxia cannot always reliably be distin- 
guished from physiological variants observing only 
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the momentary state. O n  the other hand, the registra- 
tion of the fetal EEG is the only method for under- 
standing the fetal brain function available at present. 
Considering the increased interest in newborn mor- 
bidity, it could be of great importance for the 
recognition and prevention of brain damage. Sureau 
[I9771 summarized that the fetal EEG might improve 
our  understanding of physiological changes in the 
fetus, but technical difficulties have impaired its 
practicability in the clinical day-to-day management. 
However, the rapid development of microprocessor 
techniques in recent years could lead to clinically 
useful methods for the fetal EEG registration and 
interpretation. 
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