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Does hedging with implied volatility factors improve the hedging efficiency of

barrier options?

Abstract

The price of a barrier option depends on the shape of the entire implied volatility

surface which is a high-dimensional dynamic object. Barrier options are hence exposed

to nontrivial volatility risk. We extract the key risk factors of implied volatility surface

fluctuations by means of a semiparametric factor model. Based on the factors we

define a practical hedging procedure within a local volatility framework. The hedging

performance is evaluated using DAX index options.

JEL classification codes: G11

Keywords: implied volatility surface, smile, local volatility, exotic options, semiparametric

factor model, hedging
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1 Introduction

In equity derivative markets barrier options are appealing instruments for investors looking

for a partial protection of their equity allocation. From the perspective of an institution

issuing barrier options this demand raises the need of efficient hedging strategies. This is

a challenging task for at least two reasons. First, reverse barrier options, such as down-

and-out puts and up-and-out calls, have discontinuous payoff profiles and knock out deep

in-the-money thereby loosing the maximum possible intrinsic value. Second, barrier options,

as many other exotic options, are exposed to nontrivial volatility risk, since the knock-out

probability strongly depends on the skew of the implied volatility smile. The latter effect

also prevents simple Black-Scholes type formulae, such as those by Rubinstein and Reiner

(1991), from being usable in practice.

Nowadays there is a plethora of models available that take the shape of the implied volatility

surface (IVS) into account for option valuation. Potential candidates are: the local volatility

(LV) model proposed by Dupire (1994), Derman and Kani (1994), and Rubinstein (1994),

which introduces a nonparametric local volatility function that deterministically depends

on the asset price and time; stochastic volatility models like Hull and White (1987), Stein

and Stein (1991), Heston (1993), Carr et al. (2003); jump-diffusion models, such as Merton

(1976), Bates (1996), and Kou (2002). When calibrated to the IVS, all these models are

able to replicate the plain vanilla market to a similar extent, whereas their prices for barrier

options may differ due to the different properties of the underlying asset price dynamics,

see Hull and Suo (2002) and Hirsa et al. (2003) on model risk for barrier options. The

more challenging part is hedging. For it is straight forward to compute derivatives for the

parameters of these models, but it is intricate to give the parameter greeks a meaning by

mapping them on tradable instruments provided by the plain vanilla market. More seriously,

since the prices of the hedging instruments, either over-the-counter or as listed options, are

given in terms of implied volatility, they necessarily follow the dynamics of the IVS. Indeed it

is in question whether the IVS dynamics inherent in the model that is calibrated to a static

surface and used for pricing truly match the stylized facts of IVS dynamics, see Hagan et al.

(2002) and Bergomi (2005) for such a discussion in context of the LV model and the Heston

model, respectively. In contrast, the dynamics of the IVS are empirically well understood,

see Skiadopoulos et al. (1999), Alexander (2001), Cont and da Fonseca (2002), Fengler et al.
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(2003), Hafner (2004), Fengler et al. (2007) among others. The typical approach extracts

the main driving factors like level, slope, or term structure movements and models these

factors. It therefore appears natural to exploit this knowledge for hedging and portfolio risk

management.

The aim of this paper is to study dynamic hedges of reverse barrier options built on factor

functions of empirically observed IVS dynamics. We project the complex, high dimensional

dynamics of the IVS on a low and finite dimensional space spanned by the semiparametric

factor model (SFM)

σ̂t(κ, τ) = exp

{
L∑
l=0

Zt,lml(κ, τ)

}
, (1)

where σ̂t(κ, τ) denotes the implied volatility of a certain moneyness κ and maturity τ ob-

served in time t. The functions m are nonparametric components and invariant in time,

while the time evolution is modelled by the latent factor series Zt,l. In order to estimate (1)

we apply an estimation technique suggested in Fengler et al. (2007). The SFM estimates the

prevalent movements of the IVS in an (L+ 1)-dimensional function space.

Given the estimated factor functions m̂, we construct hedges for barrier options priced in

a LV model. We use a LV model, since by the nonparametric nature of the local volatility

function it can match any arbitrage-free set of option prices to an arbitrarily precise degree.

It will hence replicate the deformations of the IVS defined by the estimated factor functions

and allow for a precise computation of factor greeks not prone to calibration error. Moreover,

the LV model is numerically very efficient and allows for fast and accurate price valuations

using the finite difference method. The factor hedges we obtain are more general than the

usual vega hedges which are defined by a parallel shift of the IVS since they will take into

account nontrivial surface movements, such as nonparallel up-and-down shifts, slope and

term structure risks. Depending on the payoff profile of an exotic option, these risks can

be substantial. Our approach is hence similar in spirit to Diebold et al. (2006) who define

factor based duration measures and study the efficacy of these measures for the insurance of

bond portfolios.

We note that strictly speaking it may not be necessary to vega hedge in an LV framework,
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since it defines a complete market. This however is a theoretical perspective which does not

correspond to market practice. When minimizing portfolio risk, traders are likely to set up

vega hedges as soon as a liquid over-the-counter or listed option markets allow them to do

so. In this sense our approach is e.g. similar to the practice of hedging a long dated plain

vanilla option which are priced by means of a smile-adjusted Black-Scholes model by adding

a short dated option to the portfolio.

The dynamic hedging performance of plain vanilla options in a LV model is studied in Dumas

et al. (1998), Coleman et al. (2001), McIntyre (2001) and Vähämaa (2004), while the case

of reverse barrier options is treated in Engelmann et al. (2006). Engelmann et al. (2006)

implement hedging strategies that are delta (∂/∂S), vega (∂/∂σ) and vanna (∂2/∂σ∂S)

neutral where vega and vanna are obtained by parallel shifts of the IVS and computing the

difference quotient. We complement this analysis by defining sensitivities with respect to

the most prevalent IVS movements motivated by model (1), namely (∂/∂Z1), (∂/∂Z2) and

by constructing portfolios neutral to these greeks. For this purpose we establish a portfolio

containing a reverse barrier option and hedge it on a daily basis with plain vanillas and the

underlying asset using DAX data from January 3rd, 2000 to June 30th, 2004. We then study

the distribution of the hedging errors across the different hedging strategies.

For completeness we remark that static hedging of barrier options is a competing way of

portfolio insurance, see Derman et al. (1995), Carr and Chou (1997), Carr et al. (1998), An-

dersen et al. (2002), Tompkins (2002), Nalholm and Poulsen (2006a), Nalholm and Poulsen

(2006b). For a static hedge one sets up a portfolio of plain vanillas which replicates the pay-

off of the barrier option as close as possible. The hedge is unwound in case of a knock-out

or at expiry and no other adjustment of the hedge is necessary. In fact, Engelmann et al.

(2007) and Maruhn et al. (2008) show that there are static hedges outperforming dynamic

hedges. However, the practical use of static hedges is limited, since they may not always be

implementable due to insufficient market depth of listed plain vanilla options.

The paper is structured as follows. In Section 2 we present the framework on which the

empirical procedure is based. Section 3 concentrates on the description of the hedging

method. In Section 4 we present the data, describe the empirical hedging design and discuss

the empirical results. Section 5 concludes.
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2 Models

2.1 Local Volatility Model

In the LV model the risk neutral price of the underlying asset is governed by the stochastic

differential equation:

dSt = rtStdt+ σ(St, t)StdWt, (2)

where Wt is a Wiener process and rt denotes the instantaneous interest rate. Dividends are

assumed to be zero, since the DAX, on which our empirical study is based, is a performance

index. σ(St, t) is the local volatility function which depends on the underlying price and

time. This function has a unique representation if an arbitrage-free set of call options is

given for all strikes and maturities, Dupire (1994). It can be shown that

σ2(St, t) =
2∂σ̂(K,T )

∂T
+ σ̂(K,T )

T
+ 2K

∫ T
0
rsds

∂σ̂(K,T )
∂K

K2

{
∂2σ̂(K,T )
∂K2 − d1

√
T
(
∂σ̂(K,T )
∂K

)2

+ 1
σ̂(K,T )

(
1

K
√
T

+ d1
∂σ̂(K,T )
∂K

)2
}∣∣∣∣∣

K=St,T=t

(3)

where d1 =
log(S0/K)+

∫ T
0 rsds+0.5σ̂2(K,T )T

σ̂(K,T )
√
T

and where σ̂(K,T ) is the implied volatility at strike K

and expiry T . Formula (3) gives a correspondence between local and implied volatility

surfaces.

The LV model received much attention in the finance community since it achieves an al-

most exact fit of the observed vanilla market and is numerically and computationally very

tractable. The price of the barrier option denoted by V with barrier B and expiry date T is

obtained by numerically solving the partial differential equation

rtV (S, t) =
∂V (S, t)

∂t
+

1

2
σ2(S, t)S2∂V (S, t)

∂S2
+ rtS

∂V (S, t)

∂S
(4)

with additional boundary conditions, i.e. V (B, t) = 0 for t < T and V (S, T ) equal to

the payoff at expiry. For calibration of the model a number of methods are available, see

Bouchouev and Isakov (1999) for comprehensive review. For example one may directly apply

6



the formula (3). Here we adopt the approach of Andersen and Brotherton-Ratcliffe (1997)

which determines r and σ so that forwards, zero coupon bonds and plain vanilla options are

priced correctly on each grid point. The finite difference method then gives barrier option

prices and sensitivities very efficiently.

Yet the LV is also subject to criticism, see Fengler (2005, Chapter 3.11) for the details of this

discussion. The severest objection was brought forward by Hagan et al. (2002) by showing

that the LV model implies unrealistic smile dynamics and consequently wrong spot greeks.

In practice this problem can be addressed by enforcing the desired smile dynamics when

computing the greeks. Instead of calculating model-consistent LV greeks, one fixes the IVS

in strikes (sticky-strike) or in moneyness (sticky-moneyness) and recalibrates the LV surface

under the spot movements. Engelmann et al. (2006) find that the empirical performance of

the dynamic hedges is negligible under different stickiness assumptions, if a vega hedge is

implemented. Overall they find that the sticky-strike approach, which we will adopt here,

performs best. We therefore believe that the LV model serves well for the purpose of this

study.

2.2 The Semiparametric Factor Model

To model the IVS dynamics we employ the SFM which yields estimates of the IVS for

each day of the sample and explains its dynamic behavior by extracting a small number

of key driving factors of the surface movements. For this aim one could use any other

factor model like the functional principal components model of Cont and da Fonseca (2002)

or the parametric model of Hafner (2004). An alternative definition of the skew shifts

can be also found in Taleb (1997). Our choice for the SFM is motivated by the flexible

nonparametric structure, which allows to extract the most important factors along with a

dimension reduction, and its adaptedness to the expiry behavior of implied volatility data,

see Fengler et al. (2007) for details.

To describe the SFM denote by Yt,j the log-implied volatility observed on day t = 1, . . . , T .

The index j = 1, . . . , Jt counts the implied volatilities observed on day t. Let Xt,j be a

two-dimensional variable containing (forward) moneyness κt,j and time to maturity τt,j. We

define the moneyness κt,j
def
= Kt,j/Fτt,j , where Kt,j is a strike and Fτt,j the forward price of
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the underlying asset at time t. The SFM regresses Yt,j on Xt,j by:

Yt,j =
L∑
l=0

Zt,lml(Xt,j) + εt,j, (5)

where ml (l = 1, ...L) are nonparametric components and the Zt,l form a latent factor

series depending on time t. The estimation error is denoted by εt,j. The basis functions

m0, . . . ,mL are constant in time, while the dynamic propagation of the IVS is modelled by

the time varying weights Zt,l.

The estimation procedure is based on minimizing the following least squares criterion (Ẑt,0 ≡
1 for identification):

T∑
t=1

Jt∑
j=1

∫ {
Yt,j −

L∑
l=0

Ẑt,lm̂l(u)

}2

Kh(u−Xt,j) du, (6)

where Kh denotes a two-dimensional kernel function. A possible choice for a two-dimensional

kernel is a product of one-dimensional kernels Kh(u) = kh1(u1)×kh2(u2), where h = (h1, h2)
>

are bandwidths and kh(v) = h−1k(h−1v) is a one dimensional kernel function. The mini-

mization procedure searches across all functions m̂l : R2 −→ R (l = 0, ..., L) and time series

Ẑt,l ∈ R (t = 1, ..., T ; l = 1, ..., L). Details concerning the estimation algorithm can be found

in Fengler et al. (2007) and Park et al. (2009). In the final step of the procedure one orthog-

onalizes the functions m̂1, . . . , m̂L and orders them with respect to the variance explained.

As a consequence the largest portion of variance is explained by the quantity Ẑt,1m̂1 and the

second largest by Ẑt,1m̂1 + Ẑt,2m̂2 and so forth.

In order to illustrate the decomposition of the IVS dynamics achieved by the SFM we present

in Figure 1 the results on DAX option data from January 3rd, 2000 till June 30th, 2004. The

figure presents the estimated Ẑt,l time series in the upper panel and the estimates of the basis

functions in the lower panel. The function m̂0 is not presented to save space. It has no effect

on the dynamics of the IVS but has to be included to set the correct level of the surface. The

function m̂1 is relatively flat and corresponds to the most important shocks. Changes in Ẑt,1

result in up-and-down type of movements of the whole surface, but the deviations from a
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flat basis function give different weight for each maturity-moneyness location. This effect is

illustrated in Figure 2, where we plot several surfaces and one particular smile with different

values of Ẑt,1. The second factor function can be interpreted as a tilting of the smile. This

can be inferred from the shape of m̂2 and its influence on the IVS in the plots. The variation

in Ẑt,2 results in changing the slope of the smile by making it steeper or flatter while keeping

roughly the same implied volatility levels.

We finally remark that the SFM has spurred further research on IVS dynamics and beyond.

Brüggemann et al. (2008) study the statistical properties of the estimated factor series using

a vector autoregressive framework and analyze the associated movements of macroeconomic

variables. Giacomini and Härdle (2008) apply the modelling idea for an explanation of the

dynamics of risk neutral densities. The CO2 allowance term structure is studied in Trück

et al. (2006) and electricity forward curves in Borak and Weron (2009).

3 Hedging Framework

Dynamic hedging of the asset V , in our case the reverse barrier option, is based on frequent

adjustments of the hedge portfolio. This hedging strategy requires to construct a portfolio

which is to first (or higher) order neutral to the relevant risk factors. Apart from standard

delta hedging, a successful strategy requires hedging the vega, and possibly higher order

greeks as pointed out by Ederington and Guan (2007).

For the LV framework Engelmann et al. (2006) study delta, delta-vega and delta-vega-vanna

hedges. One knock-out option is hedged with the underlying asset and a set of plain vanilla

options. Let the value of the barrier option be denoted by V and let HP1 and HP2 be

portfolios of plain vanilla options. The corresponding hedge ratios are then given by solving

 1 ∂HP1

∂S
∂HP2

∂S

0 ∂HP1

∂σ̂
∂HP2

∂σ̂

0 ∂2HP1

∂σ̂∂S
∂2HP2

∂σ̂∂S

 .

 a0

a1

a2

 =


∂V
∂S
∂V
∂σ̂
∂2V
∂σ̂∂S

 . (7)

Equation (7) reflects the full delta-vega-vanna hedge. Putting a2 = 0 reduces (7) to the
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delta-vega hedge and a1 = a2 = 0 to the pure delta hedge. Since good hedges have a

large exposure to the risk factors to be hedged, one could use an at-the-money plain vanilla

option for the HP1 and for HP2 a risk reversal. A risk reversal is a combination of a long

out-of-the-money call and a short out-of-the-money put (or vice versa).

In order to compute the sensitivities one reprices the option under different scenarios and

computes the greeks by a finite difference quotient. Following Engelmann et al. (2006), we

make a sticky strike assumption for our greeks, i.e. the IVS remains constant in strikes.

Vega and vanna are computed shifting the IVS in a parallel fashion. To be more specific, we

compute

∂V

∂S

def
≈ V (S + ∆S, σ̂)− V (S −∆S, σ̂)

2∆S
, (8)

∂V

∂σ̂

def
≈ V (S, σ̂ + ∆σ̂)− V (S, σ̂ −∆σ̂)

2∆σ̂
, (9)

∂2V

∂S∂σ̂

def
≈

{
V (S + ∆S, σ̂ + ∆σ̂)− V (S + ∆S, σ̂)

−V (S −∆S, σ̂ + ∆σ̂) + V (S −∆S, σ̂)
}
/(2∆S∆σ̂). (10)

With small abuse of notation V (S, σ̂) denotes here the price obtained with spot S and IVS

σ̂, where we omit its arguments for simplicity. σ̂ + ∆σ̂ means the parallel shift of the whole

surface.

It is empirically widely confirmed that parallel shifts are the most prevalent movements

of the IVS. It would be misleading, however, to conclude from this observation that other

types of surface variations do only negligibly influence the prices of exotic derivatives, such

as barrier options. Contrariwise a higher slope leads to a smaller price of an in-the-money

down-and-out put. Consider an artificial example of two one year down-and-out put with

strike 110, barrier 80 at the current spot level of 100. The first option is priced with the IVS

observed on January 3rd, 2000 and the second one on January 2nd, 2001. Figure 3 shows the

surfaces of these days. The LV prices of these options are 1.91% and 2.37% respectively (in

percentage of the spot price), which is quite a difference. From the upper panel of Figure 1

one observes that the level related factor assumes similar values on these days, while the

slope factor differs significantly. This price discrepancy stems mainly from the slope effect,
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which is an exposure not directly hedged in traditional approaches. Our procedure will hedge

such volatility shocks.

In our hedging framework we define new sensitivities with respect to the variation of the

(log)-IVS, which we call ζ-greeks. Based on the results discussed in Section 2.2, the ζ1-greek

(∂/∂Zt,1) reflects an adjusted up-and-down shift, while the ζ2-greek (∂/∂Zt,2) corresponds

to the slope effect. Similarly to (7) we obtain the hedge ratios by


1 ∂HP1

∂S
∂HP2

∂S

0 ∂HP1

∂Zt,1

∂HP2

∂Zt,1

0 ∂HP1

∂Zt,2

∂HP2

∂Zt,2

 .

 a0

a1

a2

 =


∂V
∂S
∂V
∂Zt,1

∂V
∂Zt,2

 . (11)

We call the full setting a ζ1ζ2-hedge, the reduced one with a2 = 0 a ζ1-hedge. As in the

traditional hedge we use an at-the-money plain vanilla for HP1, again due to the high vega.

For HP2, we employ risk reversals because they primarily respond to changes in the wings of

the IVS. Moreover, by selecting appropriate strikes it can even be set up in a vega-neutral,

i.e. ζ1-neutral, way.

We calculate the ζ-greeks by means of a difference quotient. As pricing input for the barrier

options we do not use the estimate of the IVS obtained by the SFM, as it is necessarily

subject to an estimation error. Instead, in order to avoid mispricings, we use the truly

observed ones. Thus, by the definition of the ζ-greeks, the approximations are given by

∂V

∂Zt,l

def
≈ V (S, σ̂ exp(∆Zt,lm̂l))− V (S, σ̂ exp(−∆Zt,lm̂l))

2∆Zt,l
. (12)

In the practical implementation of (12) one faces a couple of numerical issues, which need

to be addressed. First, the size of the ∆Zt,l has to be chosen. An increment too small or

too large can distort the meaning of the greeks. Moreover it cannot be unique for all Zt,l,

since the shift size depends on the basis functions m̂l and on the IVS on a particular day.

Therefore we choose for each t a ∆Zt,l such that the (absolute) mean upward (downward)

shift amounts approximately to one volatility-point. Note that we do not use Ẑt,l for these

perturbations. Another challenge is an accurate calculation of the barrier greeks. To reduce
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numerical errors we employ a constant grid in the pricing algorithm for calculating the ζ-

greeks. Furthermore, the IVS σ̂ needs to be arbitrage-free. However, the shifted surfaces

do not necessarily possess this property. We thus additionally check no-arbitrage conditions

before calculating the ζ-greeks and apply an algorithm due to Fengler (2008) in case of

violations. This method estimates the option price function by means of a natural smoothing

spline under no-arbitrage constraints, i.e. under convexity, monotonicity and bounds on

the price function and on the first order strike derivatives. The resulting estimate is then

converted back to implied volatility. The algorithm is not applied when computing vega and

vanna since parallel shifts do typically not result into arbitrage violations.

The aforementioned greeks are demonstrated in Figure 4 for the down-and-out put with

half a year to expiry. The plot displays the greeks as a function of spot and keeps other

characteristics of the barrier option unchanged. It has to be noted that the SFM, i.e. Ẑt,l and

m̂l , can only be identified up to sign. The sign of the ζ-greeks therefore has no particular

meaning. Hence vega and ζ1 display similar patterns. For the spot values close to the

barrier level vega is negative and approaches zero as it becomes a delta product. For out-of-

the money options vega is positive since the option then resembles a plain vanilla contract.

A similar behavior is observed for ζ2 and vanna, but the vanna is discontinues at the barrier

as it is derived from the delta.

4 Empirical Results

4.1 Data

The data set covers DAX index options traded at the EUREX from January 3rd, 2000

till June 30th, 2004 which give 1135 trading days. We use settlement prices, which are

prices published by the EUREX based on the last intra-day trades. The DAX index is a

capital weighted performance index comprising 30 German blue chips. Since dividends less

corporate tax are reinvested into the index, they do not need to be taken into account for

option valuation.

We preprocess the data by eliminating implied volatilities bigger than 80% and maturities
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smaller than 10 days. Arbitrage violations in the option data are removed by the arbitrage

free smoothing procedure described in Fengler (2008). After smoothing, the data are con-

verted into a regular grid of moneyness and time to maturities. For option pricing, the

zero rates from EURIBOR quotes are linearly interpolated, see Dumas et al. (1998) for this

practice.

4.2 Experimental Design

In our empirical study we assume no transaction costs, no restrictions on short selling and

the possibility of trading each asset at arbitrary size. Each security is priced using the LV

model calibrated to daily market data. We implement the hedging strategies described in

Section 3, i.e. we focus exclusively on volatility and spot risks, leaving other risks like interest

rate exposure unhedged.

In the first step of our experiment we estimate the SFM. As kernel function we use a product

quartic kernel, where k(u) = 15/16(1− u2)2 for |u| < 1 and 0 otherwise. For a data driven

bandwidth choice and the model size selection, we refer to Fengler et al. (2007). The basic

idea is to estimate the model for different combinations of L and h and compare various

information criteria. For the moneyness direction we finally use a bandwidth of 0.04, but

we slightly oversmooth the surfaces in the time to maturity direction in order to reduce

numerical errors for the subsequent price computations. More precisely, we use a local

bandwidth modelled by an arctangent function which increases monotonously from 0.02

to 0.15 (expressed in years). Since in the hedging procedure only two main factors are

included, we set L = 2. With this choice the model describes sufficiently well the IVS

dynamics, since the measure of explained variation is close to 98%.

For each day up to one year before the last observation date in the sample, a long position in

the reverse barrier option is created. This is to evaluate all initiated hedges at market prices

within the sample. We use up-and-out calls with strikes at 80% of the spot and barriers at

140% and down-and-out put with strikes at 80% and barriers at 110%. These specifications

correspond to typically traded contracts. Based on the calibrated LV model, ζ-greeks, delta,

vega and vanna are calculated and the hedging strategies as described in Section 3 are set

up. We concentrate on vega, vanna, ζ1 and ζ1ζ2 strategies since the pure delta hedge is of
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inferior quality. As HP1 we use at-the-money puts for the up-and-out calls and at-the-money

calls for the down-and-out puts. The risk reversal are structured by taking 80% and 120%

strikes of the current spot.

Positions that have not knocked are updated on a daily basis. This choice is motivated by

the results of Engelmann et al. (2006) who do not obtain different rankings of the strategies

for other re-balancing frequencies. For each day we calculate the greeks to solve (7) and (11)

and adjust the hedge ratios a0, a1, a2. The hedges are financed from the cash account and

if the barrier is breached or the barrier option expires we unwind the hedge and record the

hedging error. All positions are traded at market prices. In case of a knock-out event, the

hedging error pays or earns interest until expiry in order to render the results comparable.

Also the cash account bears interest or is financed at the riskless short rate of the concurrent

trading day. Summing up, we have a collection of hedging errors for the two types of barrier

options with four different hedging strategies for each of them.

One could object that the experimental design suffers from an in-sample problem, since the

SFM is estimated on the same data set as the hedging experiment. It is however a common

finding in the empirical literature, either on interest rates or on the IVS, that eigenvectors

or eigenfunctions are remarkably stable across time. Formal tests on IVS data between the

years 1995 to 2001 confirming this hypothesis are provided by Fengler (2005, Chapter 5.2.3).

Even if we made use of a training-sample, we would therefore recover very similar factor

functions. Thus the issue will not seriously affect the results.

4.3 Results

For evaluating the performance we use a pool of 885 hedging errors (1135 trading days less

250 days, since products issued thereafter would not expire within the sample). In order

to make them comparable we normalize by the spot price at the time when the hedge is

initiated. This normalization is common in practice and is meant to remove the dependence

from the underlying’s level. Another normalizing factor could be the option price itself, but

since the risk reversal has a market price close to zero, measuring errors with respect to the

spot appears to be more natural.
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The aim of hedging is to replicate the payoff of the option. In the ideal case the hedge

portfolio should have zero variance and zero mean, but for obvious reasons this cannot

be realized in practice. Our aim is to give a comparative analysis of the hedging error

distributions in order to check how the volatility factors affect the hedging performance.

We use traditional descriptive statistics to assess the location and dispersion of the errors.

Clearly, a superior method would keep these quantities close to zero in absolute terms.

The empirical results are summarized in Tables 2 and 3 for up-and-out calls and down-

and-out puts respectively. We present the minimum, maximum, mean, median, standard

deviation, and the absolute deviation around the median. The terminal hedging error dis-

tributions are given in the rows marked with a ‘0’. As can be inferred from the tables, the

center of all distributions is located around zero, with means slightly below zero for the up-

and-out calls and slightly above zero for the down-and-out puts. Thus the different hedges

are hardly distinguishable in terms of the center of the distribution. This finding corresponds

to our expectations: the volatiliy risk is removed, both for the vega and the ζ1-hedges, and

vanna and ζ1ζ2-hedges do not add any additional drift, since they are almost costless.

For evaluating the dispersion of the hedging errors we focus on the standard deviation and

the absolute deviation around the median (madev.). The first observation is that hedges

relying on higher order greeks tend to exhibit lower variance. In case of the down-and-

out puts the vanna hedge has a slightly smaller dispersion than the ζ1ζ2-hedge, and the

traditional vega hedge performs very similar to the ζ1-hedge. For the up-and-out calls the

ranking is reversed: the standard hedges are clearly outperformed by the factor hedges. How

can this asymmetry be explained and how is the quality of the factor hedges to be judged?

There are two major sources of bias in the hedging strategies due to the behavior of the un-

derlying. Observe that during the analyzed time period the DAX had a downward trend: 81%

out of the down-and-out put options knocked out, but only 10% of the up-and-out call op-

tions, while 5% of the puts and 39% calls expired in-the-money, see Table 1. As a first issue

consider the huge amount of up-and-out calls ending in-the-money. This gives rise to what is

known among practitioners as ‘theta risk’. For explanation reconsider the case in Section 3,

where we demonstrated that the prices for one-year down-and-out puts with a strike of 110%

and barrier at 80% were less than 3% in the two scenarios. In contrast, when the put ends

in-the-money it will pay out up to 30%. Consequently, the value of an in-the-money reverse
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barrier option increases sharply the nearer the expiry date draws (i.e. has a strong theta),

rendering it more and more difficult for traders to earn the payoff by trading the gamma.

Theta risk can thus lead to a more dispersed error distribution. A second issue is gap risk.

We do not unwind the hedges at the barriers, but at the observed spots, since this is the

more realistic scenario in practice. When a barrier is breached, one still owns the hedge

and incurs unbalanced gains or losses. Again this leads to a more dispersed hedging error

distribution. As is clear from Table 1, theta risk is dominating the risk in case of the calls

and gap risk in case of the puts.

To receive a deeper insight, we refer once more to Tables 2 and 3. We report the statistics of

the hedging experiment stopped at 1 day, 5 days and 25 days before the expiry. As is seen

the dispersion measures increase the nearer expiry draws, and the distributions become less

skewed and less heavy-tailed, while the location measures prove to remain stable. In terms

of dispersion the relative order of the hedging strategies across the two products remains the

same: for the down-and-out puts the strategies are comparable, while factor hedging remains

superior for the up-and-out calls. This finding is confirmed in Figure 5, which displays the

standard deviations of the hedging errors as a function through the options’ life time. It is

intuitive to expect this function to increase. Moreover there is a sharp jump just before the

expiry date contributing a large portion of the overall cumulative hedging error in particular

for the up-and-out calls. All these observations highlight the importance of the expiry effect

relative to gap risk when interpreting the data.

We overall conclude two main findings. First, factor hedging is at least of similar quality

as traditional hedging approaches. In particular the hedging efficiency does not deteriorate.

This is a reassuring result given the huge computational effort that must be spent and that

could easily come at the costs of accuracy. This result is obtained when the barrier options

expire worthless or knock out early in life time. Second, when the option needs to be hedged

till expiry and ends in-the-money, the factor hedging approach dominates clearly. From a

trader’s perspective the first situation is the ‘easy one’ unless the knock-out occurs close

to expiry. The second one is much more intricate, because the intrinsic value needs to be

earned. This is a strong case for volatility factor hedging.
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5 Conclusion

We provide an empirical study on hedging reverse barrier options in the local volatility

model. The main focus of this study is on risk factors arising from a decomposition of

the dynamic behavior of the implied volatility surface, which are identified with a flexible

semiparametric technique. The hedging framework is constructed as a natural extension to

traditional vega hedging, where the sensitivity is measured with respect to the more complex

surface movements.

Our empirical investigation shows that hedging higher order risk with risk reversals brings

improvements to hedging with at-the-money plain vanillas only. This is consistent across

the vanna hedge and the more complex factor based hedges, thus confirming evidence of

Ederington and Guan (2007). Intuitively the vega hedge resembles a single factor based

hedge since the first dynamic factor corresponds to a parallel type of shift. Adding a vanna

hedge or another factor to the portfolio removes similar risks as can be inferred from the

comparable hedging performance.

Measured in terms of the hedging error variance, factor hedging performs at least as good as

the corresponding vega and vanna hedges, in certain cases it is superior. As is confirmed by

hedging up-and-out call options and down-and-out put options, the first case occurs when

options knock out early in life time or expire worthless, while the second occurs when the

options need to be hedged up to expiry and end in-the-money. This evidence is present

not only in the terminal hedging errors but also through the option’s life time. From a

trader’s perspective the second case is the more interesting, making factor hedging a powerful

alternative to traditional hedging.

These findings, however, are not necessarily similar for other complex derivatives sensitive

to IVS movements, such as cliquets or long-dated forward starting options. Also a portfolio

context may yield different findings. In particular, when a book of options contains assets

with several maturities it could be beneficial to consider additional factors, such as those

related to the term structure of the IVS. This exposure can be hedged by constructing the

corresponding calendar spreads. Another application in a portfolio context could be stress

test scenarios based on the volatility factors. This would provide a good understanding of
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the volatility exposure of the portfolio. We leave these issues to future research.

18



References

Alexander, C. (2001). Principles of the skew. RISK, 14(1):S29–S32.

Andersen, L. B. G., Andreasen, J., and Eliezer, D. (2002). Static replication of barrier

options: Some general results. Journal of Computational Finance, 5(4):1–25.

Andersen, L. B. G. and Brotherton-Ratcliffe, R. (1997). The equity option volatility smile:

An implicit finite-difference approach. Journal of Computational Finance, 1(2):5–37.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in

Deutsche Mark options. Review of Financial Studies, 9:69–107.

Bergomi, L. (2005). Smile dynamics II. RISK, 18(10):67–73.

Borak, S. and Weron, R. (2009). A semiparametric factor model for electricity forward curve

dynamics. The Journal of Energy Markets, 1(3).

Bouchouev, I. and Isakov, V. (1999). Uniqueness, stability and numerical methods for the

inverse problem that arises in financial markets. Inverse Problems, 15:R95–R116.
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Figure 1: The estimates of the SFM obtained from IVS data from January 3rd, 2000 till

June 30th, 2004 for L = 2. Upper panel: estimated latent factor series Ẑ1 and Ẑ2. Lower

panel: estimates of m̂1, the non-uniform up-and-down shift, and m̂2, the slope risk.
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Figure 2: Impact of Ẑ1 and Ẑ2 on the IVS. Shocks in Ẑ1 trigger up-and-down movements

while shocks in Ẑ2 tilt the smile around at-the-money point. Upper panel: a visualization

of the shocks for the entire surface. Lower panel: the impact presented on one particular

smile.
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Figure 5: Standard deviations of the hedging errors as a function of time from option is-

suance. Solid lines represent the factor hedging methods motivated by the SFM. Dashed

lines represent the vega and vanna hedges. Upper panel: up-and-out call. Lower panel:

down-and-out put.
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option type barrier strike knock-outs in-the-money

up-and-out call 140% 80% 10% 39%

down-and-out put 80% 110% 81% 5%

Table 1: Characteristics of the analyzed barrier options. Strikes and barriers are in percent-

age of spot at issuance. The column ‘knock-outs’ refers to the contracts that breached the

barrier and ‘in-the-money’ to those yielding a positive payoff at expiry.
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Summary This paper offers a new method for estimation and forecasting of the volatility
of financial time series when the stationarity assumption is violated. Our general, local
parametric approach particularly applies to general varying-coefficient parametric models,
such as GARCH, whose coefficients may arbitrarily vary with time. Global parametric, smooth
transition and change-point models are special cases. The method is based on an adaptive
pointwise selection of the largest interval of homogeneity with a given right-end point by a
local change-point analysis. We construct locally adaptive estimates that can perform this task
and investigate them both from the theoretical point of view and by Monte Carlo simulations.
In the particular case of GARCH estimation, the proposed method is applied to stock-index
series and is shown to outperform the standard parametric GARCH model.

Keywords: Adaptive pointwise estimation, Autoregressive models, Conditional hetero-
scedasticity models, Local time-homogeneity.

1. INTRODUCTION

A growing amount of econometrical and statistical research is devoted to modelling financial
time series and their volatility, which measures dispersion at a point in time (i.e. conditional
variance). Although many economies and financial markets have been recently experiencing
many shorter and longer periods of instability or uncertainty such as the Asian crisis (1997),
the Russian crisis (1998), the start of the European currency (1999), the ‘dot-Com’ technology-
bubble crash (2000–02) or the terrorist attacks (September, 2001), the war in Iraq (2003) and the
current global recession (2008), mostly used econometric models are based on the assumption
of time homogeneity. This includes linear and non-linear autoregressive (AR) and moving-
average models and conditional heteroscedasticity (CH) models such as ARCH (Engel, 1982)
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and GARCH (Bollerslev, 1986), stochastic volatility models (Taylor, 1986), as well as their
combinations such as AR-GARCH.

On the other hand, the market and institutional changes have long been assumed to cause
structural breaks in financial time series, which was confirmed, e.g. in data on stock prices
(Andreou and Ghysels, 2002, and Beltratti and Morana, 2004) and exchange rates (Herwatz and
Reimers, 2001). Moreover, ignoring these breaks can adversely affect the modelling, estimation
and forecasting of volatility as suggested e.g. by Diebold and Inoue (2001), Mikosch and
Starica (2004), Pesaran and Timmermann (2004) and Hillebrand (2005). Such findings led to
the development of the change-point analysis in the context of CH models; see e.g. Chen and
Gupta (1997), Kokoszka and Leipus (2000) and Andreou and Ghysels (2006).

An alternative approach lies in relaxing the assumption of time homogeneity and allowing
some or all model parameters to vary over time (Chen and Tsay, 1993, Cai et al., 2000, and Fan
and Zhang, 2008). Without structural assumptions about the transition of model parameters over
time, time-varying coefficient models have to be estimated non-parametrically, e.g. under the
identification condition that their parameters are smooth functions of time (Cai et al., 2000). In
this paper, we follow a different strategy based on the assumption that a time series can be locally,
i.e. over short periods of time, approximated by a parametric model. As suggested by Spokoiny
(1998), such a local approximation can form a starting point in the search for the longest period
of stability (homogeneity), i.e. for the longest time interval in which the series is described well
by the parametric model. In the context of the local constant approximation, this strategy was
employed for volatility modelling by Härdle et al. (2003), Mercurio and Spokoiny (2004) and
Spokoiny (2009a). Our aim is to generalize this approach so that it can identify intervals of
homogeneity for any parametric CH model regardless of its complexity.

In contrast to the local constant approximation of the volatility of a process (Mercurio and
Spokoiny, 2004), the main benefit of the proposed generalization consists in the possibility to
apply the methodology to a much wider class of models and to forecast over a longer time
horizon. The reason is that approximating the mean or volatility process by a constant is in many
cases too restrictive or even inappropriate and it is fulfilled only for short time intervals, which
precludes its use for longer-term forecasting. On the contrary, parametric models like GARCH
mimic the majority of stylized facts about financial time series and can reasonably fit the data
over rather long periods of time in many practical situations. Allowing for time dependence of
model parameters offers then much more flexibility in modelling real-life time series, which can
be both with or without structural breaks since global parametric models are included as a special
case.

Moreover, the proposed adaptive local parametric modelling unifies the change-point and
varying-coefficient models. First, since finding the longest time-homogeneous interval for a
parametric model at any point in time corresponds to detecting the most recent change-point
in a time series, this approach resembles the change-point modelling as in Bai and Perron (1998)
or Mikosch and Starica (1999, 2004), for instance, but it does not require prior information
such as the number of changes. Additionally, the traditional structural-change tests require that
the number of observations before each break point is large (and can grow to infinity) as these
tests rely on asymptotic results. On the contrary, the proposed pointwise adaptive estimation
does not rely on asymptotic results and does not thus place any requirements on the number
of observations before, between or after any break point. Second, since the adaptively selected
time-homogeneous interval used for estimation necessarily differs at each time point, the model
coefficients can arbitrarily vary over time. In comparison to varying-coefficient models assuming
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smooth development of parameters over time (Cai et al., 2000), our approach however allows for
structural breaks in the form of sudden jumps in parameter values.

Although seemingly straightforward, extending Mercurio and Spokoiny’s (2004) procedure
to the local parametric modelling is a non-trivial problem, which requires new tools and
techniques. We concentrate here on the change-point estimation of financial time series, which
are often modelled by data-demanding models such as GARCH. While the benefits of a flexible
change-point analysis for time series spanning several years are well known, its feasibility
(which stands in the focus of this work) is much more difficult to achieve. The reason is thus
that, at each time point, the procedure starts from a small interval, where a local parametric
approximation holds, and then iteratively extends this interval and tests it for time-homogeneity
until a structural break is found or data exhausted. Hence, a model has to be initially estimated on
very short time intervals (e.g. 10 observations). Using standard testing methods, such a procedure
might be feasible for simple parametric models, but it is hardly possible for more complex
parametric models such as GARCH that generally require rather large samples for reasonably
good estimates.

Therefore, we use an alternative and more robust approach to local change-point analysis
that relies on a finite-sample theory of testing a growing sequence of historical time intervals
on homogeneity against a change-point alternative. The proposed adaptive pointwise estimation
procedure applies to a wide class of time-series models, including AR and CH models.
Concentrating on the latter, we describe in details the adaptive procedure, derive its basic
properties, and focusing on the feasibility of adaptive estimation for CH models, study the
performance in comparison to the parametric (G)ARCH by means of simulations and real-data
applications. The main conclusion is two-fold: on one hand, the adaptive pointwise estimation
is feasible and beneficial also in the case of data-demanding models such as GARCH; on the
other hand, the adaptive estimates based on various parametric models such as constant, ARCH
or GARCH models are much closer to each other (while being better than the usual parametric
estimates), which eliminates to some extent the need for using too complex models in adaptive
estimation.

The rest of the paper is organized as follows. In Section 2, the parametric estimation of
CH models and its finite-sample properties are introduced. In Section 3, we define the adaptive
pointwise estimation procedure and discuss the choice of its parameters. Theoretical properties
of the method are discussed in Section 4. In the specific case of the ARCH(1) and GARCH(1,1)
models, a simulation study illustrates the performance of the new methodology with respect to
the standard parametric and change-point models in Section 5. Applications to real stock-index
series data are presented in Section 6. The proofs are provided in the Appendix.

2. PARAMETRIC CONDITIONAL HETEROSCEDASTICITY MODELS

Consider a time series Y t in discrete time, t ∈ N . The CH assumption means that Y t =
σ tεt , where {εt}t∈N is a white noise process and {σ t}t∈N is a predictable volatility (conditional
variance) process. Modelling of the volatility process σ t typically relies on some parametric CH
specification such as the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models:

σ 2
t = ω +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j , (2.1)
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where p ∈ N , q ∈ N and θ = (ω, α1, . . . , αp, β1, . . . , βq)� is the parameter vector. An attractive
feature of this model is that, even with very few coefficients, one can model most stylized facts
of financial time series like volatility clustering or excessive kurtosis, for instance. A number
of (G)ARCH extensions were proposed to make the model even more flexible; e.g. EGARCH
(Nelson, 1991), QGARCH (Sentana, 1995) and TGARCH (Glosten et al., 1993) that account for
asymmetries in a volatility process.

All such CH models can be put into a common class of generalized linear volatility models:

Yt = σtεt =
√

g(Xt )εt , (2.2)

Xt = ω +
p∑

i=1

αih(Yt−i) +
q∑

j=1

βjXt−j , (2.3)

where g and h are known functions and Xt is a (partially) unobserved process (structural variable)
that models the volatility coefficient σ 2

t via transformation g : σ 2
t = g(Xt ). For example, the

GARCH model (2.1) is described by g(u) = u and h(r) = r2.
Models (2.2)–(2.3) are time homogeneous in the sense that the process Y t follows the same

structural equation at each time point. In other words, the parameter θ and hence the structural
dependence in Y t is constant over time. Even though models like (2.2)–(2.3) can often fit data
well over a longer period of time, the assumption of homogeneity is too restrictive in practical
applications: to guarantee a sufficient amount of data for sufficiently precise estimation, these
models are often applied over time spans of many years. On the contrary, the strategy pursued
here requires only local time homogeneity, which means that at each time point t there is a
(possibly rather short) interval [t − m, t], where the process Y t is well described by models
(2.2)–(2.3). This strategy aims then both at finding an interval of homogeneity (preferably as
long as possible) and at the estimation of the corresponding parameter values θ , which then
enable predicting Y t and Xt .

Next, we discuss the parameter estimation for models (2.2)–(2.3) using observations Y t from
some time interval I = [t 0, t 1]. The conditional distribution of each observation Y t given the past
Ft−1 is determined by the structural variable Xt , whose dynamics are described by the parameter
vector θ : Xt = Xt (θ) for t ∈ I due to (2.3). We denote the underlying value of θ by θ0.

For estimating θ0, we apply the quasi-maximum likelihood (quasi-MLE) approach using
the estimating equations generated under the assumption of Gaussian errors εt . This guarantees
efficiency under the normality of innovations and consistency under rather general moment
conditions (Hansen and Lee, 1994, and Francq and Zakoian, 2007). The log-likelihood for
models (2.2)–(2.3) on an interval I can be represented in the form

LI (θ) =
∑
t∈I

�{Yt , g[Xt (θ )]}

with log-likelihood function �(y, υ) = −0.5{log (υ) + y2/υ}. We define the quasi-MLE estimate
θ̃ I of the parameter θ by maximizing the log-likelihood LI (θ),

θ̃ I = argmax
θ∈	

LI (θ) = argmax
θ∈	

∑
t∈I

�{Yt , g[Xt (θ )]}, (2.4)

and denote by LI (̃θ I ) the corresponding maximum.
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To characterize the quality of estimating the parameter vector θ0 = (ω, α1, . . . , αp,

β1, . . . , βq)� by θ̃ I , we now present an exact (non-asymptotic) exponential risk bound. This
bound concerns the value of maximum LI (̃θ I ) = maxθ∈	 LI (θ ) rather than the point of
maximum θ̃ I . More precisely, we consider the difference LI (̃θ I , θ0) = LI (̃θ I ) − LI (θ0). By
definition, this value is non-negative and represents the deviation of the maximum of the log-
likelihood process from its value at the ‘true’ point θ0. Later, we comment on how the accuracy
of estimation of the parameter θ0 by θ̃ I relates to the value LI (̃θ I , θ0). We will also see that the
bound for LI (̃θ I , θ0) yields the confidence set for the parameter θ0, which will be used for the
proposed change-point test. Now, the non-asymptotic risk bound is specified in the following
theorem, which formulates corollaries 4.2 and 4.3 of Spokoiny (2009b) for the case of the quasi-
MLE estimation of a CH model (2.2)–(2.3) at θ = θ0. The result can be viewed as an extension
of the Wilks phenomenon that the distribution of LI (̃θ I , θ0) for a linear Gaussian model is χ2

p/2,
where p is the number of estimated parameters in the model.

THEOREM 2.1. Assume that the process Y t follows models (2.2)–(2.3) with the parameter θ0 ∈
	, where the set 	 is compact. The function g(·) is assumed to be continuously differentiable
with the uniformly bounded first derivative and g(x) ≥ δ > 0 for all x. Further, let the process
Xt (θ) be sub-ergodic in the sense that for any smooth function f (·) there exists f ∗ such that for
any time interval I

Eθ0

∣∣∣∣∑
I

{
f (Xt (θ )) − Eθ0f (Xt (θ ))

}∣∣∣∣2

≤ f ∗|I |, θ ∈ 	.

Finally, let E exp{κ(ε2
t − 1)|Ft−1} ≤ c(κ) for some κ > 0, c(κ) > 0, and all t ∈ N . Then there

are λ > 0 and e(λ, θ0) > 0 such that for any interval I and z > 0

Pθ0

(
LI (̃θ I , θ0) > z

) ≤ exp{e(λ, θ0) − λz}. (2.5)

Moreover, for any r > 0, there is a constant Rr (θ0) such that

Eθ0

∣∣LI (̃θ I , θ0)
∣∣r ≤ Rr (θ0). (2.6)

REMARK 2.1. The condition g(x) ≥ δ > 0 guarantees that the variance process cannot reach
zero. In the case of GARCH, it is sufficient to assume ω > 0, for instance.

One attractive feature of Theorem 2.1, formulated in the following corollary, is that it enables
constructing the non-asymptotic confidence sets and testing the parametric hypothesis on the
basis of the fitted log-likelihood LI (̃θ I , θ ). This feature is especially important for our procedure
presented in Section 3.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, let the value zα fulfil e(λ, θ0) −
λzα < log α for some α < 1. Then the random set EI (zα) = {θ : LI (̃θ I , θ ) ≤ zα} is an α-
confidence set for θ0 in the sense that Pθ0 (θ0 �∈ EI (zα)) ≤ α.

Theorem 2.1 also gives a non-asymptotic and fixed upper bound for the risk of estimation
LI (̃θ I , θ0) that applies to an arbitrary sample size |I |. To understand the relation of this result to
the classical rate result, we can apply the standard arguments based on the quadratic expansion
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of the log-likelihood L(̃θ, θ ). Let ∇2L(θ) denote the Hessian matrix of the second derivatives of
L(θ) with respect to the parameter θ . Then

LI (̃θ I , θ0) = 0.5(̃θ I − θ0)�∇2LI (θ ′
I )(̃θ I − θ0), (2.7)

where θ ′
I is a convex combination of θ0 and θ̃ I . Under usual regularity assumptions and for

sufficiently large |I |, the normalized matrix |I |−1∇2LI (θ) is close to some matrix V (θ), which
depends only on the stationary distribution of Y t and is continuous in θ . Then (2.5) approximately
means that ‖√V (θ0)(̃θ I − θ0)‖2 ≤ z/|I | with probability close to 1 for large z. Hence, the large
deviation result of Theorem 2.1 yields the root-|I | consistency of the MLE estimate θ̃ I . See
Spokoiny (2009b) for further details.

3. POINTWISE ADAPTIVE NON-PARAMETRIC ESTIMATION

An obvious feature of models (2.2)–(2.3) is that the parametric structure of the process is assumed
constant over the whole sample and cannot thus incorporate changes and structural breaks at
unknown times in the models. A natural generalization leads to models whose coefficients may
change over time (Fan and Zhang, 2008). One can then assume that the structural process Xt

satisfies the relation (2.3) at any time, but the vector of coefficients θ may vary with the time
t, θ = θ(t). The estimation of the coefficients as general functions of time is possible only under
some additional assumptions on these functions. Typical assumptions are (i) varying coefficients
are smooth functions of time (Cai et al., 2000) and (ii) varying coefficients are piecewise constant
functions (Bai and Perron, 1998, and Mikosch and Starica, 1999, 2004).

Our local parametric approach differs from the commonly used identification assumptions (i)
and (ii). We assume that the observed data Y t are described by a (partially) unobserved process
Xt due to (2.2), and at each point T , there exists a historical interval I (T ) = [t 0, T ] in which the
process Xt ‘nearly’ follows the parametric specification (2.3) (see Section 4 for details on what
‘nearly’ means). This local structural assumption enables us to apply well-developed parametric
estimation for data {Y t}t∈I (T ) to estimate the underlying parameter θ = θ (T ) by θ̂ = θ̂ (T ). (The
estimate θ̂ = θ̂ (T ) can then be used for estimating the value X̂T of the process Xt at T from
equation (2.3) and for further modelling such as forecasting Y T +1.) Moreover, this assumption
includes the above-mentioned ‘smooth transition’ and ‘switching regime’ assumptions (i) and
(ii) as special cases: parameters θ̂(T ) vary over time as the interval I(T) changes with T and, at
the same time, discontinuities and jumps in θ̂ (T ) as a function of time are possible.

To estimate θ̂ (T ), we have to find the historical interval of homogeneity I(T), i.e. the longest
interval I with the right-end point T , where data do not contradict a specified parametric model
with fixed parameter values. Starting at each time T with a very short interval I = [t 0, T ], we
search by successive extending and testing of interval I on homogeneity against a change-point
alternative: if the hypothesis of homogeneity is not rejected for a given I, a larger interval is
taken and tested again. Contrary to Bai and Perron (1998) and Mikosch and Starica (1999), who
detect all change points in a given time series, our approach is local: it focuses on the local
change-point analysis near point T of estimation and tries to find only one change closest to the
reference point.

In the rest of this section, we first discuss the test statistics employed to test the
time-homogeneity of an interval I against a change-point alternative in Section 3.1. Later,
we rigorously describe the pointwise adaptive estimation procedure in Section 3.2. Its
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implementation and the choice of parameters entering the adaptive procedure are described in
Sections 3.2–3.4. Theoretical properties of the method are studied in Section 4.

3.1. Test of homogeneity against a change-point alternative

The pointwise adaptive estimation procedure crucially relies on the test of local time-
homogeneity of an interval I = [t 0, T ]. The null hypothesis for I means that the observations
{Y t}t∈I follow the parametric models (2.2)–(2.3) with a fixed parameter θ0, leading to the quasi-
MLE estimate θ̃ I from (2.4) and the corresponding fitted log-likelihood LI (̃θ I ).

The change-point alternative for a given change-point location τ ∈ I can be described
as follows: process Y t follows the parametric models (2.2)–(2.3) with a parameter θJ for
t ∈ J = [t 0, τ ] and with a different parameter θJ c for t ∈ J c = [τ + 1, T ]; θJ �= θJ c . The fitted
log-likelihood under this alternative reads as LJ (̃θJ ) + LJc (̃θJ c ). The test of homogeneity can be
performed using the likelihood ratio (LR) test statistic T I,τ :

TI,τ = max
θJ ,θJc ∈	

{LJ (θJ ) + LJc (θJ c )} − max
θ∈	

LI (θ) = {
LJ (̃θJ ) + LJc (̃θJ c ) − LI (̃θ I )

}
.

Since the change-point location τ is generally not known, we consider the supremum of the LR
statistics T I,τ over some subset τ ∈ T (I ); cf. Andrews (1993):

TI,T (I ) = sup
τ∈T (I )

TI,τ . (3.1)

A typical example of a set T (I ) is T (I ) = {τ : t0 + m′ ≤ τ ≤ T − m′′} for some fixed
m′, m′′ > 0.

3.2. Adaptive search for the longest interval of homogeneity

This section presents the proposed adaptive pointwise estimation procedure. At each point T , we
aim at estimating the unknown parameters θ (T ) from historical data Y t , t ≤ T ; this procedure
repeats for every current time point T as new data arrive. At the first step, the procedure selects
on the base of historical data an interval Î (T ) of homogeneity in which the data do not contradict
the parametric models (2.2)–(2.3). Afterwards, the quasi-MLE estimation is applied using the
selected historical interval Î (T ) to obtain estimate θ̂ (T ) = θ̃ Î (T ). From now on, we consider an
arbitrary, but fixed time point T .

Suppose that a growing set I 0 ⊂ I 1 ⊂ · · · ⊂ I K of historical interval-candidates I k =
[T − mk + 1, T ] with the right-end point T is fixed. The smallest interval I0 is accepted
automatically as homogeneous. Then the procedure successively checks every larger interval I k

on homogeneity using the test statistic TIk,T (Ik) from (3.1). The selected interval Î corresponds
to the largest accepted interval Ik̂ with index k̂ such that

TIk,T (Ik) ≤ zk, k ≤ k̂, (3.2)

and TIk̂+1,T (Ik̂+1) > zk̂+1, where the critical values zk are discussed later in this section and
specified in Section 3.3. This procedure then leads to the adaptive estimate θ̂ = θ̃ Î corresponding
to the selected interval Î = Ik̂ .

The complete description of the procedure includes two steps. (A) Fixing the set-up and the
parameters of the procedure. (B) Data-driven search for the longest interval of homogeneity.
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(A) Set-up and parameters:

1 Select specific parametric models (2.2)–(2.3) [e.g. constant volatility, ARCH(1),
GARCH(1,1)].

2 Select the set I = (I0, . . . , IK ) of interval-candidates, and for each Ik ∈ I , the set
T (Ik) of possible change points τ ∈ I k used in the LR test (3.1).

3 Select the critical values z1, . . . , zK in (3.2) as described in Section 3.3.

(B) Adaptive search and estimation: Set k = 1, Î = I0 and θ̂ = θ̃ I0 .

1 Test the hypothesis H 0,k of no change point within the interval I k using test statistics
(3.1) and the critical values zk obtained in (A3). If a change point is detected (H 0,k is
rejected), go to (B3). Otherwise proceed with (B2).

2 Set θ̂ = θ̃ Ik
and θ̂ Ik

= θ̃ Ik
. Further, set k := k + 1. If k ≤ K , repeat (B1); otherwise go

to (B3).
3 Define Î = Ik−1 = ‘the last accepted interval’ and θ̂ = θ̃ Î . Additionally, set

θ̂ Ik
= · · · = θ̂ IK

= θ̂ if k ≤ K .

In step (A), one has to select three main ingredients of the procedure. First, the parametric
model used locally to approximate the process Y t has to be specified in (A1), e.g. the constant
volatility or GARCH(1,1) in our context. Next, in step (A2), the set of intervals I = {Ik}Kk=0
is fixed, each interval with the right-end point T , length mk = |I k|, and the set T (Ik) of tested
change points. Our default proposal is to use a geometric grid mk = [m0a

k], a > 1, and to set
I k = [T − mk + 1, T ] and T (Ik) = [T − mk−1 + 1, T − mk−2]. Although our experiments
show that the procedure is rather insensitive to the choice of m0 and a (e.g. we use m0 = 10 and
a = 1.25 in simulations), the length m0 of interval I0 should take into account the parametric
model selected in (A1). The reason is that I0 is always assumed to be time-homogeneous
and m0 thus has to reflect flexibility of the parametric model; e.g. while m0 = 20 might be
reasonable for the GARCH(1,1) model, m0 = 5 could be a reasonable choice for the locally
constant approximation of a volatility process. Finally, in step (A3), one has to select the K
critical values zk in (3.2) for the LR test statistics TIk,T (Ik) from (3.1). The critical values zk will
generally depend on the parametric model describing the null hypothesis of time-homogeneity,
the set I of intervals I k and corresponding sets of considered change points T (Ik), k ≤ K , and
additionally, on two constants r and ρ that are counterparts of the usual significance level. All
these determinants of the critical values can be selected in step (A) and the critical values are thus
obtained before the actual estimation takes place in step (B). Due to its importance, the method
of constructing critical values {zk}Kk=1 is discussed separately in Section 3.3.

The main step (B) performs the search for the longest time-homogeneous interval. Initially,
I0 is assumed to be homogeneous. If I k−1 is negatively tested on the presence of a change point,
one continues with I k by employing test (3.1) in step (B1), which checks for a potential change
point in I k . If no change point is found, then I k is accepted as time-homogeneous in step (B2);
otherwise the procedure terminates in step (B3). We sequentially repeat these tests until we find a
change point or exhaust all intervals. The latest (longest) interval accepted as time-homogeneous
is used for estimation in step (B3). Note that the estimate θ̂ Ik

defined in (B2) and (B3) corresponds
to the latest accepted interval Îk after the first k steps, or equivalently, the interval selected out of
I 1, . . . , I k .

Moreover, the whole search and estimation step (B) can be repeated at different time points T
without reiterating the initial step (A) as the critical values zk depend only on the approximating
parametric model and interval lengths mk = |I k|, not on the time point T (see Section 3.3).
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3.3. Choice of critical values zk

The presented method of choosing the interval of homogeneity Î can be viewed as multiple
testing procedure. The critical values for this procedure are selected using the general approach
of testing theory: to provide a prescribed performance of the procedure under the null hypothesis,
i.e. in the pure parametric situation. This means that the procedure is trained on the data generated
from the pure parametric time-homogeneous model from step (A1). The correct choice in this
situation is the largest considered interval I K and a choice Ik̂ with k̂ < K can be interpreted as
a ‘false alarm’. We select the minimal critical values ensuring a small probability of such a false
alarm. Our condition slightly differs though from the classical level condition because we focus
on parameter estimation rather than on hypothesis testing.

In the pure parametric case, the ‘ideal’ estimate corresponds to the largest considered interval
I K . Due to Theorem 2.1, the quality of estimation of the parameter θ0 by θ̃ IK

can be measured

by the log-likelihood ‘loss’ LIK
(̃θ IK

, θ0), which is stochastically bounded with exponential

and polynomial moments: Eθ0 |LIK
(̃θ IK

, θ0)|r ≤ Rr (θ0). If the adaptive procedure stops earlier

at some intermediate step k < K , we select instead of θ̃ IK
another estimate θ̂ = θ̃ Ik

with a
larger variability. The loss associated with such a false alarm can be measured by the value
LIK

(̃θ IK
, θ̂ ) = LIK

(̃θ IK
) − LIK

(θ̂). The corresponding condition bounding the loss due to the
adaptive estimation reads as

Eθ0

∣∣LIK
(̃θ IK

, θ̂ )
∣∣r ≤ ρRr (θ0). (3.3)

This is in fact an implicit condition on the critical values {zk}Kk=1, which ensures that the loss
associated with the false alarm is at most the ρ-fraction of the log-likelihood loss of the ‘ideal’ or
‘oracle’ estimate θ̃ IK

for the parametric situation. The constant r corresponds to the power of the
loss in (3.3), while ρ is similar in meaning to the test level. In the limit case when r tends to zero,
this condition (3.3) becomes the usual level condition: Pθ0 (IK is rejected) = Pθ0 (̃θ IK

�= θ̂ ) ≤ ρ.
The choice of the metaparameters r and ρ is discussed in Section 3.4.

A condition similar to (3.3) is imposed at each step of the adaptive procedure. The estimate
θ̂ Ik

coming after the k steps of the procedure should satisfy

Eθ0

∣∣LIk
(̃θ Ik

, θ̂ Ik
)
∣∣r ≤ ρkRr (θ0), k = 1, . . . , K, (3.4)

where ρk = ρ k/K ≤ ρ. The following theorem presents some sufficient conditions on the critical
values {zk}Kk=1 ensuring (3.4); recall that mk = |I k| denotes the length of I k .

THEOREM 3.1. Suppose that r > 0, ρ > 0. Under the assumptions of Theorem 2.1, there are
constants a0, a1, a2 such that the condition (3.4) is fulfilled with the choice

zk = a0r log(ρ−1) + a1r log(mK/mk−1) + a2 log(mk), k = 1, . . . , K.

Since K and {mk}K
k=1 are fixed, the zk’s in Theorem 3.1 have a form zk = C + D log(mk)

for k = 1, . . . , K with some constant C and D. However, a practically relevant choice of these
constants has to be done by Monte Carlo simulations. Note first that every particular choice of
the coefficients C and D determines the whole set of the critical values {zk}Kk=1 and thus the local
change-point procedure. For the critical values given by fixed (C, D), one can run the procedure
and observe its performance on the simulated data using the data-generating process (2.2)–
(2.3); in particular, one can check whether the condition (3.4) is fulfilled. For any (sufficiently
large) fixed value of C, one can thus find the minimal value D(C) < 0 of D that ensures (3.4).
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Every corresponding set of critical values in the form zk = C + D(C) log(mk) is admissible. The
condition D(C) < 0 ensures that the critical values decreases with k. This reflects the fact that
a false alarm at an early stage of the algorithm is more crucial because it leads to the choice of
a highly variable estimate. The critical values zk for small k should thus be rather conservative
to provide the stability of the algorithm in the parametric situation. To determine C, the value
z1 can be fixed by considering the false alarm at the first step of the procedure, which leads to
estimation using the smallest interval I0 instead of the ‘ideal’ largest interval I K . The related
condition (used in Section 5.1) reads as

Eθ0

∣∣LIK
(̃θ IK

, θ̃ I0 )
∣∣r1(TI1,T (I1) > z1) ≤ ρRr (θ0)/K. (3.5)

Alternatively, one could select a pair (C, D) that minimizes the resulting prediction error; see
Section 3.4.

3.4. Selecting parameters r and ρ

The choice of critical values using inequality (3.4) additionally depends on two ‘metaparameters’
r and ρ. A simple strategy is to use conservative values for these parameters and the
corresponding set of critical values (e.g. our default is r = 1 and ρ = 1). On the other hand,
the two parameters are global in the sense that they are independent of T . Hence, one can
also determine them in a data-driven way by minimizing some global forecasting error (Cheng
et al., 2003). Different values of r and ρ may lead to different sets of critical values and hence to

different estimates θ̂
(r,ρ)

(T ) and to different forecasts Ŷ
(r,ρ)
T +h|T of the future values Y T +h, where h

is the forecasting horizon. Now, a data-driven choice of r and ρ can be done by minimizing the
following objective function:

(r̂ , ρ̂) = arg min
r>0,ρ>0

PE�,H (r, ρ) = arg min
r,ρ

∑
T

∑
h∈H

�
(
YT +h, Ŷ

(r,ρ)
T +h|T

)
, (3.6)

where � is a loss function and H is the forecasting horizon set. For example, one can take
�r (υ, υ ′) = |υ − υ ′|r for r ∈ [1/2, 2]. For daily data, the forecasting horizon could be one day,
H = {1}, or two weeks, H = {1, . . . , 10}.

4. THEORETIC PROPERTIES

In this section, we collect basic results describing the quality of the proposed adaptive procedure.
First, the definition of the procedure ensures the performance prescribed by (3.4) in the
parametric situation. We however claimed that the adaptive pointwise estimation applies even
if the process Y t is only locally approximated by a parametric model. Therefore, we now define
a locally ‘nearly parametric’ process, for which we derive an analogy of Theorem 2.1 (Section
4.1). Later, we prove certain ‘oracle’ properties of the proposed method (Section 4.2).

4.1. Small modelling bias condition

This section discusses the concept of a ‘nearly parametric’ case. To define it rigorously, we have
to quantify the quality of approximating the true latent process Xt , which drives the observed
data Y t due to (2.2), by the parametric process Xt (θ) described by (2.3) for some θ ∈ 	. Below
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258 P. Čı́žek, W. Härdle and V. Spokoiny

we assume that the innovations εt in the model (2.2) are independent and identically distributed
and denote the distribution of

√
υεt by P υ so that the conditional distribution of Y t given Ft−1

is Pg(Xt ). To measure the distance of a data-generating process from a parametric model, we
introduce for every interval Ik ∈ I and every parameter θ ∈ 	 the random quantity

�Ik
(θ) =

∑
t∈Ik

K {g(Xt ), g[Xt (θ)]},

where K (υ, υ ′) denotes the Kullback–Leibler distance between P υ and P υ ′ . For CH models
with Gaussian innovations εt ,K (υ, υ ′) = −0.5{log(υ/υ ′) + 1 − υ/υ ′}. In the parametric
case with Xt = Xt (θ0), we clearly have �Ik

(θ0) = 0. To characterize the ‘nearly parametric
case’, we introduce a {small modelling bias} (SMB) condition, which simply means that, for
some θ ∈ 	, �Ik

(θ) is bounded by a small constant with a high probability. Informally, this
means that the ‘true’ model can be well approximated on the interval I k by the parametric one
with the parameter θ . The best parametric fit (2.3) to the underlying model (2.2) on I k can be
defined by minimizing the value E�Ik

(θ) over θ ∈ 	 and θ̃ Ik
can be viewed as its estimate.

The following theorem claims that the results on the accuracy of estimation given in Theorem
2.1 can be extended from the parametric case to the general non-parametric situation under the
SMB condition. Let �(θ̂ , θ ) be any loss function for an estimate θ̂ .

THEOREM 4.1. Let for some θ ∈ 	 and some � ≥ 0

E�Ik
(θ ) ≤ �. (4.1)

Then it holds for an estimate θ̂ constructed from the observations {Yt }t∈Ik
that

E log
(
1 + �(θ̂, θ )/Eθ�(θ̂, θ )

) ≤ 1 + �.

This general result applied to the quasi-MLE estimation with the loss function LI (̃θ I , θ )
yields the following corollary.

COROLLARY 4.1. Let the SMB condition (4.1) hold for some interval I k and θ ∈ 	. Then

E log
(

1 + ∣∣LIk
(̃θ Ik

, θ )
∣∣r/Rr (θ )

)
≤ 1 + �,

where Rr (θ) is the parametric risk bound from (2.6).

This result shows that the estimation loss |LI (̃θ I , θ )|r normalized by the parametric risk
Rr (θ ) is stochastically bounded by a constant proportional to e�. If � is not large, this result
extends the parametric risk bound (Theorem 2.1) to the non-parametric situation under the SMB
condition. Another implication of Corollary 4.1 is that the confidence set built for the parametric
model (Corollary 2.1) continues to hold, with a slightly smaller coverage probability, under
SMB.

4.2. The ‘oracle’ choice and the ‘oracle’ result

Corollary 4.1 suggests that the ‘optimal’ or ‘oracle’ choice of the interval I k from the set
I 1, . . . , I K can be defined as the largest interval for which the SMB condition (4.1) still holds
(for a given small � > 0). For such an interval, one can neglect deviations of the underlying
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process from a parametric model with a fixed parameter θ . Therefore, we say that the choice
k∗ is the ‘oracle’ choice if there exists θ ∈ 	 such that

E�Ik∗ (θ ) ≤ � (4.2)

for a fixed � > 0 and that (4.2) does not hold for k > k∗. Unfortunately, the underlying process
Xt and, hence, the value �Ik

is unknown and the oracle choice cannot be implemented. The
proposed adaptive procedure tries to mimic this oracle on the basis of available data using the
sequential test of homogeneity. The final oracle result claims that the adaptive estimate provides
the same (in order) accuracy as the oracle one.

By construction, the pointwise adaptive procedure described in Section 3 provides the
prescribed performance if the underlying process follows the parametric model (2.2). Now,
condition (3.4) combined with Theorem 4.1 implies similar performance in the first k∗ steps
of the adaptive estimation procedure.

THEOREM 4.2. Let θ ∈ 	 and � > 0 be such that E�Ik∗ (θ) ≤ � for some k∗ ≤ K . Also let
maxk≤k∗ Eθ |LIk

(̃θ Ik
, θ )|r ≤ Rr (θ). Then

E log

(
1 +

∣∣LIk∗
(̃
θ Ik∗ , θ

)∣∣r
Rr (θ)

)
≤ 1 + � and E log

(
1 +

∣∣LIk∗
(̃
θ Ik∗ , θ̂ Ik∗

)∣∣r
Rr (θ)

)
≤ ρ + �.

Similarly to the parametric case, under the SMB condition E�Ik∗ (θ) ≤ �, any choice k̂ < k∗

can be viewed as a false alarm. Theorem 4.2 documents that the loss induced by such a false
alarm at the first k∗ steps and measured by LIk∗ (̃θ Ik∗ , θ̂ Ik∗ ) is of the same magnitude as the loss
LIk∗ (̃θ Ik∗ , θ ) of estimating the parameter θ from the SMB (4.2) by θ̃ Ik∗ . Thus, under (4.2) the
adaptive estimation during steps k ≤ k∗ does not induce larger errors into estimation than the
quasi-MLE estimation itself.

For further steps of the algorithm with k > k∗, where (4.2) does not hold, the value �′ =
E�Ik

(θ) can be large and the bound for the risk becomes meaningless due to the factor e�′
. To

establish the result about the quality of the final estimate, we thus have to show that the quality
of estimation cannot be destroyed at the steps k > k∗. The next ‘oracle’ result states the final
quality of our adaptive estimate θ̂ .

THEOREM 4.3. Let E�Ik∗ (θ) ≤ � for some k∗ ≤ K . Then LIk∗ (̃θ Ik∗ , θ̂ )1(k̂ ≥ k∗) ≤ zk∗ yielding

E log

(
1 +

∣∣LIk∗
(̃
θ Ik∗ , θ̂

)∣∣r
Rr (θ)

)
≤ ρ + � + log

(
1 + zr

k∗

Rr (θ )

)
.

Due to this result, the value LIk∗ (̃θ Ik∗ , θ̂ ) is stochastically bounded. This can be interpreted
as the oracle property of θ̂ because it means that the adaptive estimate θ̂ belongs with a high
probability to the confidence set of the oracle estimate θ̃ Ik∗ .

5. SIMULATION STUDY

In the last two sections, we present simulation study (Section 5) and real data applications
(Section 6) documenting the performance of the proposed adaptive estimation procedure. To
verify the practical applicability of the method in a complex setting, we concentrate on the
volatility estimation using parametric and adaptive pointwise estimation of constant volatility,
ARCH(1) and GARCH(1,1) models (for the sake of brevity, referred to as the local constant,
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local ARCH and local GARCH). The reason is that the estimation of GARCH models requires
generally hundreds of observations for a reasonable quality of estimation, which puts the adaptive
procedure working with samples as small as 10 or 20 observations to a hard test. Additionally, the
critical values obtained as described in Section 3.3 depend on the underlying parameter values in
the case of (G)ARCH.

Here we first study the finite-sample critical values for the test of homogeneity by means
of Monte Carlo simulations and discuss practical implementation details (Section 5.1). Later,
we demonstrate the performance of the proposed adaptive pointwise estimation procedure in
simulated samples (Section 5.2). Note that, throughout this section, we identify the GARCH(1,1)
models by triplets (ω, α, β): e.g. (1, 0.1, 0.3)-model. Constant volatility and ARCH(1) are then
indicated by α = β = 0 and β = 0, respectively. The GARCH estimation is done using the
GARCH 3.0 package (Laurent and Peters, 2006) and Ox 3.30 (Doornik, 2002). Finally, since the
focus is on modelling the volatility σ 2

t in (2.2), the performance measurement and comparison
of all models at time t is done by the absolute prediction error (PE) of the volatility process
over a prediction horizon H : APE(t) = ∑

h∈H |σ 2
t+h − σ̂ 2

t+h|t |/|H |, where σ̂ 2
t+h|t represents

the volatility prediction by a particular model.

5.1. Finite-sample critical values for the test of homogeneity

A practical application of the pointwise adaptive procedure requires critical values for the test
of local homogeneity of a time series. Since they are obtained under the null hypothesis that
a chosen parametric model (locally) describes the data, see Section 3, we need to obtain the
critical values for the constant volatility, ARCH(1) and GARCH(1,1) models. Furthermore, for
given r and ρ, the average risk (3.4) between the adaptive and oracle estimates can be bounded
for critical values that linearly depend on the logarithm of interval length |Ik| : z(|Ik|) = zk =
C + D log(|Ik|) (see Theorem 3.1). As described in Section 3.3, we choose here the smallest C
satisfying (3.5) and the corresponding minimum admissible value D = D(C) < 0 that guarantees
the conditions (3.4).

We simulated the critical values for ARCH(1) and GARCH(1,1) models with different values
of underlying parameters; see Table 1 for the critical values corresponding to r = 1 and ρ = 1.
Their simulation was performed sequentially on intervals with lengths ranging from |I 0| = m0 =
10 to |I K | = 570 observations using a geometric grid with multiplier a = 1.25; see Section 3.2.
(The results are, however, not sensitive to the choice of a.)

Unfortunately, the critical values depend on the parameters of the underlying (G)ARCH
model (in contrast to the constant-volatility model). They generally seem to increase with the
values of the ARCH and GARCH parameters keeping the other one fixed; see Table 1. To deal
with this dependence on the underlying model parameters, we propose to choose the largest
(most conservative) critical values corresponding to any estimated parameter in the analysed
data. For example, if the largest estimated parameters of GARCH(1,1) are α̂ = 0.3 and β̂ = 0.8,
one should use z(10) = 26.4 and z(570) = 14.5, which are the largest critical values for models
with α = 0.3, β ≤ 0.8 and with α ≤ 0.3, β = 0.8. (The proposed procedure is, however, not
overly sensitive to this choice, as we shall see later.)

Finally, let us have a look at the influence of the tuning constants r and ρ in (3.4) on the critical
values for several selected models (Table 2). The influence is significant, but can be classified in
the following way. Whereas increasing ρ generally leads to an overall decrease of critical values
(cf. Theorem 3.1), but primarily for the longer intervals, increasing r leads to an increase of
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Table 1. Critical values zk = z(|Ik|) of the supremum LR test.

β
z(|Ik|)
α |I k| 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 10 15.5 15.5 16.4 16.8 17.9 17.3 17.0 17.0 16.9 16.0

570 5.5 7.2 7.0 7.0 7.5 7.5 7.4 7.3 7.0 6.7

0.1 10 16.3 14.5 15.1 15.9 16.4 15.9 16.1 16.0 16.0

570 8.6 9.0 9.1 9.6 9.8 10.7 11.5 12.5 14.0

0.2 10 16.7 15.2 15.7 16.2 16.9 18.9 20.1 25.1

570 9.4 10.6 11.2 11.4 11.4 12.5 13.3 14.2

0.3 10 18.5 16.4 16.7 16.9 18.1 21.8 26.4

570 9.7 10.8 12.0 12.4 12.9 13.5 14.5

0.4 10 22.1 16.5 18.3 19.3 22.8 30.9

570 9.9 12.0 13.0 13.4 13.9 14.7

0.5 10 26.2 19.1 19.5 25.4 38.1

570 10.7 12.6 13.8 14.0 14.6

0.6 10 33.0 22.8 25.9 32.4

570 12.7 12.7 13.9 15.3

0.7 10 41.1 24.8 29.1

570 16.8 14.7 16.1

0.8 10 66.2 26.4

570 31.5 15.8

0.9 10 88.6

570 60.9

Note: ω = 1, r = 1 and ρ = 1.

critical values mainly for the shorter intervals; cf. (3.4). In simulations and real applications, we
verified that a fixed choice such as r = 1 and ρ = 1 performs well. To optimize the performance
of the adaptive methods, one can however determine constants r and ρ in a data-dependent way
as described in Section 3.3. We use here this strategy for a small grid of r ∈ {0.5, 1.0} and ρ ∈
{0.5, 1.0, 1.5} and find globally optimal r and ρ. We will document, though, that the differences
in the average absolute PE (3.6) for various values of r and ρ are relatively small.

5.2. Simulation study

We aim (i) to examine how well the proposed estimation method is able to adapt to long stable
(time-homogeneous) periods and to less stable periods with more frequent volatility changes and
(ii) to see which adaptively estimated model—local volatility, local ARCH or local GARCH—
performs best in different regimes. To this end, we simulated 100 series from two change-point
GARCH models with a low GARCH effect (ω, 0.2, 0.1) and a high GARCH effect (ω, 0.2, 0.7).
Changes in constant ω are spread over a time span of 1000 days; see Figure 1. There is a long
stable period at the beginning (500 days ≈ 2 years) and end (250 days ≈ 1 year) of time series
with several volatility changes between them.
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Table 2. Critical values z(|Ik|) of the supremum LR test for various values r and ρ.

Model (ω, α, β) (0.1, 0.0, 0.0) (0.1, 0.2, 0.0) (0.1, 0.1, 0.8)

r ρ z(10) z(570) z(10) z(570) z(10) z(570)

1.0 0.5 16.3 7.3 17.4 11.2 18.7 17.1

1.0 1.0 15.4 5.5 16.7 9.4 16.0 14.0

1.0 1.5 14.9 4.5 15.9 8.3 15.2 13.4

0.5 0.5 10.7 7.1 11.7 10.1 11.7 10.1

0.5 1.0 8.9 5.5 10.3 8.5 10.3 8.5

0.5 1.5 7.7 4.6 9.3 7.5 9.3 7.5
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Figure 1. GARCH(1,1) parameters of low (left panel) and high (right panel) GARCH-effect simulations.

5.2.1. Low GARCH effect. Let us now discuss simulation results from the low GARCH-effect
model. First, we mention the effect of structural changes in time series on the parameter
estimation. Later, we compare the performance of all methods in terms of absolute PE.

Estimating a parametric model from data containing a change point will necessarily lead
to various biases in estimation. For example, Hillebrand (2005) demonstrates that a change
in volatility level ω within a sample drives the GARCH parameter β very close to 1. This is
confirmed when we analyse the parameter estimates for parametric and adaptive GARCH at
each time point t ∈ [250, 1000] as depicted on Figure 2, where the mean (solid line), the 10%
and 90% quantiles (dotted lines), and the true values (thick dotted line) of the model parameters
are provided. The parametric estimates are consistent before breaks starting at t = 500, but the
GARCH parameter β becomes inconsistent and converges to 1 once data contain breaks, t > 500.
The locally adaptive estimates are similar to parametric ones before the breaks and become rather
imprecise after the first change point, but they are not too far from the true value on average and
stay consistent (in the sense that the confidence interval covers the true values). The low precision
of estimation can be attributed to rather short intervals used for estimation (cf. Figure 2 for t <

500).
Next, we would like to compare the performance of parametric and adaptive estimation

methods by means of absolute PE: first for the prediction horizon of one day, H = {1}, and
later for prediction two weeks ahead, H = {1, . . . , 10}. To make the results easier to decipher,
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Figure 2. Parameter values estimated by the parametric (top row) and locally adaptive (bottom row)
GARCH methods.

we present in what follows PEs averaged over the past month (21 days). The absolute-PE
criterion was also used to determine the optimal values of parameters r and ρ ( jointly across
all simulations and for all t = 250, . . . , 1000). The results differ for different models: r = 0.5,
ρ = 0.5 for local constant, r = 0.5, ρ = 1.0 for local ARCH, and r = 0.5, ρ = 1.5 for local
GARCH.

Let us now compare the adaptively estimated local constant, local ARCH and local GARCH
models with the parametric GARCH, which is the best performing parametric model in this
set-up. Forecasting one period ahead, the average PEs for all methods and the median lengths
of the selected time-homogeneous intervals for adaptive methods are presented on Figure 3 for
t ∈ [250, 1000]. First of all, let us observe in the case of the simplest local constant model that
even the (median) estimated interval of homogeneity at the end of the first homogeneous period,
1 ≤ t < 500, can actually be shorter than the true one. The reason is that the probability of some
5 or 10 subsequent observations used as I0 having their sample variance very different from the
underlying one increases with the length of the series.

Next, one can notice that all methods are sensitive to jumps in volatility, especially to the
first one at t = 500: the parametric ones because they ignore a structural break, the adaptive ones
because they use a small amount of data after a structural change. In general, the local GARCH
performs rather similarly to the parametric GARCH for t < 650 because it uses all historical
data. After initial volatility jumps, the local GARCH, however, outperforms the parametric one,
650 < t < 775. Following the last jump at t = 750, where the volatility level returns closer to
the initial one, the parametric GARCH is best of all methods for some time, 775 < t < 850,
until the adaptive estimation procedure detects the (last) break, and after it, ‘collects’ enough
observations for estimation. Then the local GARCH and local ARCH become preferable to the
parametric model again, 850 < t . Interestingly, the local ARCH approximation performs almost
as well as both GARCH methods and even outperforms them shortly after structural breaks
(except for break at t = 750), 600 < t < 775 and 850 < t < 1000. Finally, the local constant
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Figure 3. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors one period ahead.
Right-hand panel: The median lengths of the adaptively selected intervals.
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Figure 4. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors 10 periods ahead.
Right-hand panel: High GARCH-effect simulations—absolute prediction errors one period ahead.

volatility is lacking behind the other two adaptive methods whenever there is a longer time period
without a structural break, but keeps up with them in periods with frequent volatility changes,
500 < t < 650. All these observations can be documented also by the absolute PE averaged over
the whole period 250 ≤ t ≤ 1000 (we refer to it as the global PE from now on): the smallest PE
is achieved by local ARCH (0.075), then by local GARCH (0.079) and the worst result is from
local constant (0.094).

Additionally, all models are compared using the forecasting horizon of 10 days. Most of the
results are the same (e.g. parameter estimates) or similar (e.g. absolute PE) to forecasting one
period ahead due to the fact that all models rely on at most one past observation. The absolute
PEs averaged over one month are summarized for t ∈ [250, 1000] on Figure 4, which reveals
that the difference between local constant volatility, local ARCH and local GARCH models are
smaller in this case. As a result, it is interesting to note that: (i) the local constant model becomes
a viable alternative to the other methods (it has in fact the smallest global PE 0.107 from all
adaptive methods) and (ii) the local ARCH model still outperforms the local GARCH (global
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PEs are 0.108 and 0.116, respectively) even though the underlying model is GARCH (with a
small value of β = 0.1 however).

5.2.2. High GARCH effect. Let us now discuss the high GARCH-effect model. One would
expect much more prevalent behaviour of both GARCH models, since the underlying GARCH
parameter is higher and the changes in the volatility level ω are likely to be small compared to
overall volatility fluctuations. Note that the optimal values of tuning constant r and ρ differ from
the low GARCH-effect simulations: r = 0.5, ρ = 1.5 for local constant; r = 0.5, ρ = 1.5 for
local ARCH; and r = 1.0, ρ = 0.5 for local GARCH.

Comparing the absolute PEs for the one-period-ahead forecast at each time point (Figure 4)
indicates that the adaptive and parametric GARCH estimations perform approximately equally
well. On the other hand, both the parametric and adaptively estimated ARCH and constant
volatility models are lacking significantly. Unreported results confirm, similarly to the low
GARCH-effect simulations, that the differences among method are much smaller once a longer
prediction horizon of 10 days is used.

6. APPLICATIONS

The proposed adaptive pointwise estimation method will be now applied to real time series
consisting of the log-returns of the DAX and S&P 500 stock indices (Sections 6.1 and 6.2).
We will again summarize the results concerning both parametric and adaptive methods by
the absolute PEs one day ahead averaged over one month. As a benchmark, we employ the
parametric GARCH estimated using the last two years of data (500 observations). Since we
however do not have the underlying volatility process now, it is approximated by squared returns.
Despite being noisy, this approximation is unbiased and provides usually the correct ranking of
methods (Andersen and Bollerslev, 1998).

6.1. DAX analysis

Let us now analyse the log-returns of the German stock index DAX from January 1990 till
December 2002 depicted at the top of Figure 5. Several periods interesting for comparing the
performance of parametric and adaptive pointwise estimates are selected since results for the
whole period might be hard to decipher at once.

First, consider the estimation results for years 1991 to 1996. Contrary to later periods,
there are structural breaks practically immediately detected by all adaptive methods (July 1991
and June 1992; cf. Stapf and Werner, 2003). For the local GARCH, this differs from less
pronounced structural changes discussed later, which are typically detected only with delays
of several months. One additional break detected by all methods occurs in October 1994. Note
that parameters r and ρ were r = 0.5, ρ = 1.5 for local constant, r = 1.0, ρ = 1.0 for local
ARCH, and r = 0.5, ρ = 1.5 for local GARCH.

The results for the period 1991–96 are summarized in the left bottom panel of Figure 5, which
depicts the PEs of each adaptive method relative to the PEs of parametric GARCH. First, one can
notice that the local constant and local ARCH approximations are preferable till July 1991, where
we have less than 500 observations. After the detection of the structural change in June 1991, all
adaptive methods are shortly worse than the parametric GARCH due to the limited amount of
data used, but then outperform the parametric GARCH till the next structural break in the second
half of 1992. A similar behaviour can be observed after the break detected in October 1994,
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Figure 5. Top panel: The log-returns of DAX series. Bottom panels: The absolute prediction errors of the
pointwise adaptive methods relative to the parametric GARCH errors for predictions one period ahead.

where the local constant and local ARCH models actually outperform both the parametric and
adaptive GARCH. In the other parts of the data, the performance of all methods is approximately
the same, and even though the adaptive GARCH is overall better than the parametric one, the
most interesting fact is that the adaptively estimated local constant and local ARCH models
perform equally well. In terms of the global PE, the local constant is best (0.829), followed by
the local ARCH (0.844) and local GARCH (0.869). This closely corresponds to our findings in
simulation study with low GARCH effect in Section 5.2. Note that for other choices of r and ρ,
the global PEs are at most 0.835 and 0.851 for the local constant and local ARCH, respectively.
This indicates low sensitivity to the choice of these parameters.

Next, we discuss the estimation results for years 1999 to 2001 (r = 1.0 for all methods
now). After the financial markets were hit by the Asian crisis in 1997 and the Russian crisis in
1998, the market headed to a more stable state in year 1999. The adaptive methods detected the
structural breaks in the autumn of 1997 and 1998. The local GARCH detected them, however,
with more than a one-year delay—only during 1999. The results in Figure 5 (right bottom panel)
confirm that the benefits of the adaptive GARCH are practically negligible compared to the
parametric GARCH in such a case. On the other hand, the local constant and ARCH methods
perform slightly better than both GARCH methods during the first presented year (July 1999
to June 2000). From July 2000, the situation becomes just the opposite and the performance
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Figure 6. Left-hand panel: The log-returns of S&P 500. Right-hand panel: The absolute prediction errors
of the pointwise adaptive methods relative to the parametric GARCH errors for predictions one period
ahead.

of the GARCH models is better (parametric and adaptive GARCH estimates are practically the
same in this period since the last detected structural change occurred approximately two years
ago). Together with previous results, this opens the question of model selection among adaptive
procedures as different parametric approximations might be preferred in different time periods.
Judging by the global PE, the local ARCH provides slightly better predictions on average than
the local constant and local GARCH—despite the ‘peak’ of the PE ratio in the second half of
year 2000 (see Figure 5). This, however, depends on the specific choice of loss � in (3.6).

Finally, let us mention that the relatively similar behaviour of the local constant and local
ARCH methods is probably due to the use of ARCH(1) model, which is not sufficient to capture
more complex time developments. Hence, ARCH(p) might be a more appropriate interim step
between the local constant and GARCH models.

6.2. S&P 500

Now we turn our attention to more recent data regarding the S&P 500 stock index considered
from January 2000 to December 2004; see Figure 6. This period is marked by many substantial
events affecting the financial markets, ranging from September 11, 2001, terrorist attacks and
the war in Iraq (2003) to the crash of the technology stock-market bubble (2000–02). For the
sake of simplicity, a particular time period is again selected: year 2003 representing a more
volatile period (the war in Iraq) and year 2004 being a less volatile period. All adaptive methods
detected rather quickly a structural break at the beginning of 2003, and additionally they detected
a structural break in the second half of 2003, although the adaptive GARCH did so with a delay
of more than eight months. The ratios of monthly PE of all adaptive methods to those of the
parametric GARCH from January 2003 to December 2004 are summarized on Figure 6 (r = 0.5
and ρ = 1.5 for all methods).
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In the beginning of year 2003, corresponding with 2002 to a more volatile period (see
Figure 6), all adaptive methods perform as well as the parametric GARCH. In the middle of year
2003, the local constant and local ARCH models are able to detect another structural change
(possibly less pronounced than the one at the beginning of 2003 because of its late detection
by the adaptive GARCH). Around this period, the local ARCH shortly performs worse than
the parametric GARCH. From the end of 2003 and in year 2004, all adaptive methods starts
to outperform the parametric GARCH, where the reduction of the PEs due to the adaptive
estimation amounts to 20% on average. All adaptive pointwise estimates exhibit a short period
of instability in the first months of 2004, where their performance temporarily worsens to the
level of parametric GARCH. This corresponds to ‘uncertainty’ of the adaptive methods about
the length of the interval of homogeneity. After this short period, the performance of all adaptive
methods is comparable, although the local constant performs overall best of all methods (closely
followed by local ARCH) judged by the global PE.

Similarly to the low GARCH-effect simulations and to the analysis of DAX in Section 6.1,
it seems that the benefit of pointwise adaptive estimation is most pronounced during periods of
stability that follow an unstable period (i.e. year 2004) rather than during a presumably rapidly
changing environment. The reason is that, despite possible inconsistency of parametric methods
under change points, the adaptive methods tend to have a rather large variance when the intervals
of time homogeneity become very short.

7. CONCLUSION

We extend the idea of adaptive pointwise estimation to parametric CH models. In the specific case
of ARCH and GARCH, which represent particularly difficult cases due to high data demands and
dependence of critical values on underlying parameters, we demonstrate the use and feasibility
of the proposed procedure: on the one hand, the adaptive procedure, which itself depends on
a number of auxiliary parameters, is shown to be rather insensitive to their choice, and on the
other hand, it facilitates the global selection of these parameters by means of fit or forecasting
criteria. The real-data applications highlight the flexibility of the proposed time-inhomogeneous
models since even simple varying-coefficients models such as constant volatility and ARCH(1)
can outperform standard parametric methods such as GARCH(1,1). Finally, the relatively small
differences among the adaptive estimates based on different parametric approximations indicate
that, in the context of adaptive pointwise estimation, it is sufficient to concentrate on simpler and
less data-intensive models such as ARCH(p), 0 ≤ p ≤ 3, to achieve good forecasts.
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APPENDIX: PROOFS

Proof of Corollary 2.1: Given the choice of zα , it directly follows from (2.5). �
Proof of Theorem 3.1: Consider the event Bk = {Î = Ik−1} for some k ≤ K . This particularly means that
I k−1 is accepted while I k = [T − mk + 1, T ] is rejected; i.e. there is I ′ = [t ′, T ] ⊆ I k and τ ∈ T (Ik) such
that TIk,τ > zk = zIk ,T (Ik ). For every fixed τ ∈ T (Ik) and J = I k \ [τ + 1, T ], J c = [τ + 1, T ], it holds by
definition of TIk,τ that

TIk,τ ≤ LJ (̃θJ ) + LJc (̃θJ c ) − LI (θ 0) = LJ (̃θJ , θ 0) + LJc (̃θJ c , θ 0).

This implies by Theorem 2.1 that P θ0 (TIk,τ > 2z) ≤ exp{e(λ, θ 0) − λz}. Now,

P θ0 (Bk) ≤
T −m0∑

t ′=T −mk+1

T −m0+1∑
τ=t ′+1

2 exp{e(λ, θ 0) − λzk/2} ≤ 2
m2

k

2
exp{e(λ, θ 0) − λzk/2}.

Next, by the Cauchy–Schwartz inequality

Eθ0 |LIK (̃θ IK , θ̂ )|r =
K∑

k=1

Eθ0 [|LIK (̃θ IK , θ̃ k−1)|r1(Bk)]

≤
K∑

k=1

E1/2
θ0

|LIK (̃θ IK , θ̃ k−1)|2r P1/2
θ0

(Bk).

Under the conditions of Theorem 2.1, it follows similarly to (2.6) that

Eθ0 |LIK (̃θ IK , θ̃ k−1)|2r ≤ (mK/mk−1)2rR∗
2r (θ 0)
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for some constant R∗
2r (θ0) and k = 1, . . . , K , and therefore,

Eθ0 |LIK (̃θ IK , θ̂ )|r ≤ [R∗
2r (θ 0)]1/2

K∑
k=1

mk(mK/mk−1)r exp{e(λ, θ 0)/2 − λzk/4}

and the result follows by simple algebra provided that a1λ/4 ≥ 1 and a2λ/4 > 2. �
LEMMA A.1. Let P and P0 be two measures such that the Kullback–Leibler divergence E log(d P/d P0),
satisfies E log(d P/d P0) ≤ � < ∞. Then for any random variable ζ with E0ζ < ∞, it holds that
E log(1 + ζ ) ≤ � + E0ζ.

Proof: By simple algebra one can check that for any fixed y the maximum of the function f (x) = xy −
x log x + x is attained at x = ey leading to the inequality xy ≤ x log x − x + ey . Using this inequality and
the representation E log(1 + ζ ) = E0{Z log(1 + ζ )} with Z = d P/d P0 we obtain

E log(1 + ζ ) = E0{Z log(1 + ζ )} ≤ E0(Z log Z − Z) + E0(1 + ζ )

= E0(Z log Z) + E0ζ − E0Z + 1.

It remains to note that E0Z = 1 and E0(Z log Z) = E log Z. �
Proof of Theorem 4.1: Lemma A.1 applied with ζ = �(θ̂ , θ )/Eθ�(θ̂, θ ) yields the result in the view of

Eθ (ZI,θ log ZI,θ ) = E log ZI,θ = E
∑
t∈I

log
p[Yt , g(Xt )]

p[Yt , g(Xt (θ ))]

= E
∑
t∈I

E

⎧⎨
⎩ log

p[Yt , g(Xt )]

p[Yt , g(Xt (θ))]

∣∣∣∣∣∣Ft−1

⎫⎬
⎭ = E�Ik (θ ). �

Proof of Corollary 4.1: It is Theorem 4.1 formulated for �(θ ′, θ ) = LI (θ ′, θ ). �
Proof of Theorem 4.2: The first inequality follows from Corollary 4.1, the second one from condition
(3.4) and the property x ≥ log x for x > 0. �
Proof of Theorem 4.3: Let k̂ = k > k∗. This means that I k is not rejected as homogeneous. Next, we
show that for every k > k∗ the inequality TIk,τ ≤ TIk,T (Ik ) ≤ zk with τ = T − mk∗ = T − |Ik∗ | implies
LIk∗ (̃θ Ik∗ , θ̃ Ik ) ≤ zk∗ . Indeed with J = Ik\Ik∗ , this means that, by construction, zk ≤ zk∗ for k > k∗ and

zk ≥ TIk,τ = LIk∗ (̃θ Ik∗ , θ̃ Ik ) + LJ (̃θJ , θ̃ Ik ) ≥ LIk∗ (̃θ Ik∗ , θ̃ Ik ).

It remains to note that

|LIk∗ (̃θ Ik∗ , θ̂ )|r ≤ |LIk∗ (̃θ Ik∗ , θ̂ Ik∗ )|r1(k̂ < k∗) + zr
k∗ 1(k̂ > k∗),

which obviously yields the assertion. �
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Abstract Dynamic semiparametric factor models (DSFM) simultaneously smooth in
space and are parametric in time, approximating complex dynamic structures by time
invariant basis functions and low dimensional time series. In contrast to traditional
dimension reduction techniques, DSFM allows the access of the dynamics embedded
in high dimensional data through the lower dimensional time series. In this paper, we
study the time behavior of risk assessments from investors facing random financial
payoffs. We use DSFM to estimate risk neutral densities from a dataset of option
prices on the German stock index DAX. The dynamics and term structure of risk
neutral densities are investigated by Vector Autoregressive (VAR) methods applied
on the estimated lower dimensional time series.

Keywords Dynamic factor models · Dimension reduction · Risk neutral density

1 Introduction

Large datasets containing various samples of high dimensional observations became
common in diverse fields of science with advances in measurement and computa-
tional techniques. In many applications the data come in curves, i.e., as observa-
tions of discretized values of smooth random functions, presenting evident functional
structure. In these cases, it is natural to perform statistical inference using functional
data analysis techniques.
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Consider a dataset {(Yjt ,Xjt )}, j = 1, . . . , Jt , t = 1, . . . , T , containing noisy sam-
ples of a real valued smooth random function F ∈ L2(X ), X ⊆ R

d , d ∈ N, evaluated
at unbalanced design points as

Yjt = Ft (Xjt ) + εjt , (1.1)

where εjt denote unknown zero-mean error terms and {Ft } are realizations of F .
Each sample St = {(Yjt ,Xjt ) : j = 1, . . . , Jt }, t = 1, . . . , T , may correspond to ob-
servations on, e.g., different individuals, time periods or experimental conditions.
Examples in biomedicine are measurements of growth curves and brain potentials
across individuals, see Kneip and Gasser (1992) and Gasser and Kneip (1995), in
econometrics such are expenditures across households and implied volatilities across
trading days, see Kneip (1994) and Fengler et al. (2007).

A large branch of functional data analysis concentrates on approximating F by
lower dimensional objects. Distributions on function spaces are highly complex ob-
jects and dimension reduction techniques present a feasible and interpretable ap-
proach for investigating them. Functional principal components analysis (FPCA),
based on the Karhunen–Loève expansion of F is the most prominent and widely
used dimension reduction technique, see Rice and Silverman (1991) and Ramsay and
Dalzell (1991).

Asymptotic results on FPCA have been obtained by Dauxois et al. (1982) and
Hall et al. (2006) for observed functional data {Ft }. For non-observable data, the
standard approach is to perform FPCA on presmoothed {F̂t }, see Benko et al. (2009)
for recent developments. In practical applications, however, presmoothing may suffer
from design-sparseness, see Cont and Fonseca (2002) and Fengler et al. (2007).

In general lines, previous literature combines PCA and dimension reduction with
presmoothing for effective dimensional space at fixed time horizon. Various applica-
tions, however, involve the dynamics of the unobserved random functions, calling for
dimension reduction techniques that smooth in space and are parametric in time.

In this paper, we investigate the dynamics of {Ft } by reducing dimensionality
without presmoothing. Ft is considered as a linear combination of L + 1 � T un-
known smooth basis functions ml ∈ L2(X ), l = 0, . . . ,L:

Ft (Xjt ) =
L∑

l=0

Zltml(Xjt ), (1.2)

where Zt = (Z0t , . . . ,ZLt )
� is an unobservable random vector taking values on

R
L+1 with Z0t = 1. Defining the tuple of functions m = (m0, . . . ,mL)�, the Dy-

namic Semiparametric Factor Model (DSFM) reads as

Yjt = Z�
t m(Xjt ) + εjt . (1.3)

The basis functions are estimated nonparametrically avoiding specification issues.
Their estimation is performed simultaneously with Zt , i.e., the smoothing is trans-
ferred directly to ml and design-sparseness issues become secondary. In addition, the
random process {Zt } is allowed to be non-stationary. Park et al. (2009) show that
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under (1.2) the autocorrelation structures of {Ẑt } and {Zt } are asymptotically equiva-
lent; therefore, no loss is incurred by inferring the dynamics from the estimated {Ẑt },
and there is no payment for not knowing the true {Zt }. This result is essential for in-
vestigating cointegration between dynamical systems, see Brüggemann et al. (2008)
for an econometric application.

Note that the common regressors model, Kneip (1994), also represents unobserv-
able functions by (1.2). There are, however, crucial differences between the DSFM
and common regressors:

1. In DSFM, {Zt } is a (non-stationary) random process with autocovariance structure
inferable from {Ẑt }.

2. DSFM is implementable in unbalanced designs.
3. DSFM avoids presmoothing by transferring the smoothing to the basis functions.

Thus DSFM goes beyond traditional dimension reductions techniques (FPCA and
common regressors) as it captures structural dynamics embedded in the observations.

In economics, there is substantial interest in the behavior (over time) of investors
facing risks and its relation to macroeconomic and financial indicators. The knowl-
edge about the dynamics of risk assessments from investors is essential for many
applications ranging from pricing of illiquid instruments to risk management.

Option prices contain information on risk assessments from investors facing future
financial payoffs, summarized in the risk neutral densities q , see Ait-Sahalia and
Lo (1998). An European call option with price Ct at time 0 ≤ t ≤ T , maturity date
T > 0 and strike K > 0 is a financial instrument that delivers the random payoff
(ST − K)+ at time T where St is the price of an underlying asset at time t . Breeden
and Litzenberger (1978) show that under no arbitrage assumptions the risk neutral
density is obtained from the European call price function Ct through the relation

qt,T (sT |st ) = er(T −t) ∂
2Ct(st , r,K,T − t)

∂K2

∣∣∣∣
K=sT

, (1.4)

where r > 0 is interest rate, see Sect. 4 for details.
We estimate risk neutral densities based on observed intraday prices of calls on the

German stock index (DAX). Each observation consists of a price Yjt on a design point
Xjt = (κjt , τjt )

� where j = 1, . . . , Jt , denote the transactions at day t = 1, . . . , T , κ

is the moneyness, a monotone transformation of strikes K, and τ = T − t is the time
to maturity associated with the option. Stock exchange regulations impose prespeci-
fied values for tradable maturities resulting in degenerated designs, see Fig. 1.

Following Ait-Sahalia and Lo (1998) and Fengler et al. (2007), call prices are
transformed into log-implied volatilities Ỹj t = logC−1

BS (Yjt ), where CBS is the
Black–Scholes call price function defined in Sect. 4. These are assumed as discretized
noisy values of the log-implied volatility surface evaluated at {Xjt }:

Ỹj t = logVt (Xjt ) + εjt , (1.5)

where V ∈ L2(X ), X ⊂ R
2+, is a smooth random function, called the implied volatil-

ity surface, and εjt is an error term. The realizations {Vt } are filtered out from the data
with DSFM and, remarking that CBS is a function of K , the risk neutral densities are
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Fig. 1 Samples St , t = 1, . . . ,22, of DAX call prices traded on January 2001 (left). Corresponding un-
balanced design {Xjt } (right)

obtained by (1.4) with CBS(V̂) as an estimator for Ct . The dynamics of the estimated
{̂qt,T } is analyzed based on the autocorrelation structure of {Ẑt }.

In the sequel, the DSFM estimation method and its asymptotic properties are de-
scribed (Sect. 2). In Sect. 3, the risk neutral densities are defined, and in Sect. 4
they are estimated from observed prices of European call options on the DAX index
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(ODAX dataset). Their dynamic structure is then analyzed by vector autoregressive
models.

2 Estimation method

Consider a dataset {(Yjt ,Xjt )}, j = 1, . . . , Jt , t = 1, . . . , T , such that

Yjt =
L∑

l=0

Zltml(Xjt ) + εjt , (2.1)

where εjt are unknown error terms with E[εjt ] = 0 and E[ε2
j t ] < ∞. The variables

X11, . . . ,XT,JT
, ε1,1, . . . , εT ,JT

are independent. Here Zt = (Z0t , . . . ,ZLt )
� is an

unobservable random vector taking values on R
L+1 with Z0t = 1 and ml ∈ L2(X ),

l = 0, . . . ,L, are unknown smooth functions, called basis functions, mapping X ⊆
R

d , d ∈ N, into real values.
Following Park et al. (2009), the basis functions are estimated using a series ex-

pansion. Defining K normed functions ψk :X → R,
∫

X ψ2
k (x)dx = 1, k = 1, . . . ,K,

and an ((L + 1) × K) matrix of coefficients Γ = (γl,k), γl,k ∈ R, the tuple of func-
tions m = (m0, . . . ,mL)� is approximated by Γ �ψ where ψ = (ψ1, . . . ,ψK)�. For
simplicity of notation, we assume that Jt = J does not depend on t . We define the
least squares estimators as

(Γ̂ , Ẑ) = arg min
Γ ∈G,Z∈Z

T∑
t=1

J∑
j=1

{
Yjt − Z�

t Γ ψ(Xjt )
}2

, (2.2)

where G = M(L + 1,K), Z = {Z ∈ M(T ,L + 1) : Z0t = 1} and M(a, b) is the set
of all (a × b) matrices. The basis functions m are estimated by m̂ = Γ̂ ψ .

Theorem (2.1) gives the asymptotic behavior of the least squares estimators
(Γ̂ , Ẑ). See Park et al. (2009) for the proof.

Theorem 2.1 Suppose that DSFM holds and that (Γ̂ , Ẑ) is defined by (2.2). Under
Assumptions (A1)–(A8), see Appendix, it holds for K,J → ∞:

1

T

∑
1≤t≤T

∥∥Ẑ�
t Γ̂ − Z�

t Γ ∗∥∥2 = OP

(
δ2
K + ξ2).

See (A5) and (A8) for the definitions of δK and ξ . Note that the model (2.1) is only
identifiable up to linear transformations. Consider an ((L + 1) × (L + 1)) regular
matrix B = (bij ) with b1j = δ1j and bi1 = δi1 for i, j = 1, . . . ,L + 1, where δij =
1(i = j). Define Z∗

t = B�Zt , m∗ = B−1m. Then from (1.2)

Ft (X) = Z�
t m(X) = Z�

t BB−1m(X) = Z∗
t
�
m∗(X)

for X ∈ X . On the other hand, it is always possible to chose orthonormal basis func-
tions by setting m∗ = Hm where H is an orthogonal matrix.
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Theorem (2.2) states that for any Ẑt there exists a random matrix B such that
the autocovariances of {Z̃t }, Z̃t = B�Ẑt , are asymptotically equivalent to the auto-
covariances of the true unobservable {Zt }. This equivalence is transferred to classi-
cal estimation and testing procedures in the context of, e.g., vector autoregressive
models and, in particular, justifies inference based on {Z̃t } when {Zt } is a VAR
process. Define for Ht ∈ Z , t = 1, . . . , T : H = T −1 ∑T

t=1 Ht , Hc,t = Ht − H and
Hn,t = (T −1 ∑T

s=1 Hc,sH
�
c,s)

−1/2Hc,t .

Theorem 2.2 Suppose that DSFM holds and that (Γ̂ , Ẑ) is defined by (2.2). Under
Assumptions (A1)–(A11), see Appendix, there exists a random matrix B such that for
h �= 0, hd = max(1,1 − h), hu = max(T ,T − h) and T → ∞:

1

T

hu∑
t=hd

Z̃c,t (Z̃c,t+h − Z̃c,t )
� − 1

T

hu∑
t=hd

Zc,t (Zc,t+h − Zc,t )
� = OP

(
T −1/2),

where Z̃t = B�Ẑt . Moreover,

1

T

hu∑
t=hd

Z̃n,t Z̃
�
n,t+h − 1

T

hu∑
t=hd

Zn,tZ
�
n,t+h = OP

(
T −1/2).

See Park et al. (2009) for the proof. Note that, in contrast to FPCA, DSFM does not
require stationarity neither for {Zt } nor for {εt }, but only weak assumptions on the
average behavior of Zt , like being a martingale difference, see Appendix.

3 Risk neutral density estimation

3.1 Risk neutral densities

Consider a financial market with one risky asset and one riskless bond with constant
interest rate r > 0. Let the price of the asset traded on the market be described by the
real valued random process {St }, t = [0, T ], T < ∞, on a filtered probability space
(Ω, {Ft },P) with Ft = σ(Su,u ≤ t) and F0 = {∅,Ω}. Assume further no arbitrage in
the financial market in the sense that there exists a (risk neutral) probability measure
Q equivalent to P under which the discounted price process {e−rtSt } is a martingale.

A European call option at strike K > 0 is a financial instrument that pays Ψ (ST ) =
(ST − K)+ at time T . By the risk-neutral valuation principle w.r.t. Q, the price Ct of
a European call option at time t is defined to be

Ct = e−r(T −t)EQ
[
Ψ (ST )|Ft

]
. (3.1)

Assuming that {St } is a Q-Markov process and denoting the P-density of Q by π , the
price can be rewritten as

Ct = e−r(T −t)E
[
Ψ (ST )K t

π (St , ST )|St

]
,
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where E denotes the expectation under P and K t
π (St , ST )

def.= E[π |St ,ST ]
E[π |St ] . The condi-

tional risk neutral distribution of ST is defined as

QST |St=st

([ST ≤ x]) def.=
∫ x

−∞
K t

π (st , ·) dPST |St=st , (3.2)

where PST |St=st is the conditional distribution of ST under St = st . Specializing to
the following two factor model, we assume that the price process has dynamics given
by

dSt = Stμ(Yt ) dt + Stσ (Yt ) dW 1
t ,

here W 1 is a standard P-Brownian motion and Y denotes an external economic factor
process modeled by

dYt = g(Yt ) + ρ dW 1
t + ρ dW 2

t ,

where ρ ∈ [−1,1] is some correlation factor, ρ
def.= √

1 − ρ2 and W 2 is a stan-
dard P-Brownian motion independent of W 1 under P. Market models of this type
are popular in mathematical finance and economics, in particular, if Y follows an
Ornstein–Uhlenbeck dynamics with mean reversion term g(y) = ι(θ − y) for con-
stants θ ≥ 0 and ι > 0. Moreover, {St } is a Q-Markov process for any Q, see
Hernández-Hernández and Schied (2007) and the conditional risk neutral distribu-
tion QST |St=st has a density function denoted by qt,T (·|st ). Hence, recalling (3.1),
the call prices can be expressed as

Ct(st , r,K,T − t) = e−r(T −t)

∫
(sT − K)+qt,T (sT |st ) dsT .

We assume that the observed prices in the financial market are built based on the risk
neutral valuation principle w.r.t. an unknown risk neutral measure Q. Our interest lies
in estimating the conditional risk neutral distribution QST |St=st , or equivalently the
risk neutral density function qt,T (·|st ), implied by Q through (3.2).

3.2 Estimation

Adapting Breeden and Litzenberger (1978), one can show that the risk neutral density
function qt,T (·|st ) is obtained as the second derivative of the call price function Ct

with respect to strike K

qt,T (sT |st ) = erτ ∂2Ct(st , r,K, τ)

∂K2

∣∣∣∣
K=sT

, (3.3)

where τ = T − t is the time to maturity.
The unknown price function Ct might be smoothed out of price observations and

used in (3.3) to recover risk neutral densities. Here we follow the semiparametric
approach from Ait-Sahalia and Lo (1998) where the smoothing is carried out in the
space of implied volatilities.
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The implied volatility surface is the function vt : R
2+ → R+ satisfying for all

(K, τ) ∈ R
2+

Ct(st , r,K, τ) = CBS
{
st , r,K, τ, vt (K, τ)

}
, (3.4)

where CBS(s, r,K, τ, v) = sΦ(d1) − Ke−rτΦ(d2) is the Black–Scholes price of Ψ

with strike K and maturity τ , Φ(·) is the cumulative distribution function of the
standard normal distribution, d1 = {log( s

K
) + (r + 1

2v2)τ }/(v√
τ) and d2 = d1 −

v
√

τ .
More generally, the implied volatility surface is considered a smooth random func-

tion V ∈ L2(X ) on the space X ⊂ R
2 of strikes K and maturities τ . Combining (3.3)

and (3.4), the functional random variable H ∈ L2(X ), called the risk neutral (RN)
surface, is defined as

H(s, r,K, τ,V) = erτD2CBS(s, r,K, τ,V)

= ϕ(d2)

{
1

K
√

τV + 2d1

V DV + K
√

τ
d1d2

V (DV)2 + K
√

τD2V
}
,

(3.5)

where Dm denotes the mth partial derivative with respect to K and ϕ(·) the proba-
bility density function of the standard normal distribution. The explicit derivation of
(3.5) and a detailed treatment of implied volatilities can be found in Hafner (2004)
and Fengler (2005). Clearly, lower dimension objects describing V may be used to
analyze the RN surface H.

A functional dataset containing realizations of the implied volatility surface V is,
however, not available, as in an exchange only discretized values of Vt corrupted
by noise are registered from trades. On each day t = 1, . . . , T there are Jt options
traded, each intraday trade j = 1, . . . , Jt corresponds to an observed option price Yjt

at a pair of moneyness κ and maturities τ , Xjt = (κjt , τjt )
� where κ = erτK/st .

Let CBS(v) = CBS(v; s, r,K, τ) denote the Black–Scholes price as a function of v

with all other arguments held constant. As CBS(v) is continuous and monotone in
v with inverse C−1

BS , the observed implied volatility associated with trade j at day t

is then vjt = C−1
BS (Yjt ). Figure 2 shows the implied volatilities from options on the

German Stock Index DAX traded on 2 May 2000, the sparse and degenerated design
is caused by regulation imposed by stock exchanges on the tradable maturities from
call options.

For numerical tractability, see Fengler et al. (2007), observations vjt are trans-
formed into log-implied volatilities Ỹj t = logvjt and based on {(Ỹj t ,Xjt )}, we use
DSFM to model

Ỹj t = Z�
t m(Xjt ) + εjt . (3.6)

The implied volatility surface at t is estimated by V̂t = exp(Ẑ�
t Γ̂ ψ), recall (2.2).

The RN surface is estimated using (3.5) by Ĥt = H(st , r,K, τ, V̂t ). The dynamics of
the unobservable sequence of RN surfaces {Ht } implied in the observations may be
investigated by analyzing the lower dimensional {Ẑt }.
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Fig. 2 Implied volatilities (left) and data design (right), ODAX on 2 May 2000

Table 1 Descriptive statistics,
number of intraday observations
Jt , t = 1, . . . ,253

Mean Std. dev. Max Min

2845.92 1589.90 11298 616

4 Application

In this section, the implied volatility and risk neutral surfaces are estimated with
DSFM from intraday prices of calls on the DAX index, i.e., St represents the value
of the DAX index at time t . The dataset contains prices observed from 1 Jan. 2001
to 1 Jan. 2002 corresponding to T = 253 trading days. The descriptive statistics of
the number of intraday observations Jt are in Table 1, the total number of intraday
observations across days is

∑T
t=1 Jt = 720017.

Tensor B-splines, quadratic in τ and cubic in κ directions placed on 8 × 6 knots,
are used for the series estimators of m. The number of basis functions is chosen based
on

EV(L) = 1 −
∑T

t=1
∑Jt

j=1{Ỹj t − Ẑ�
t m̂(Xjt )}2∑T

t=1
∑Jt

j=1(Ỹj t − Y )2
,

where Y = (
∑T

t=1
∑Jt

j=1 Ỹj t )/
∑T

t=1 Jt . The value EV(L) may be interpreted as the
ratio of variation explained by the model to total variation. As established by numer-
ous simulations in Park et al. (2009), the order of the splines and number of knots
have negligible influence on EV(L).
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4.1 Simulation

The choice of the number of basis functions based on the explained variation criteria
is validated by a small simulation study. Datasets {(Yjt ,Xjt )} are generated following

Yjt =
L∗∑
l=0

Zltml(Xjt ) + εjt , j = 1, . . . , J, t = 1, . . . , T ,

εjt ∼ N
(
0, σ 2

ε

)
, (4.1)

Xjt ∼ U
([0,1]2),

where εjt and Xjt are i.i.d. For ζt = (Z1t , . . . ,ZL∗t )�, with 0d denoting the (d × 1)

vector of zeros and Id the d identity matrix we define

Zt = (1, ζt )
�,

ζt = AL∗ζt−1 + ut ,

ut ∼ N
(
0L∗ , σ 2

u IL∗
)
,

where ut is i.i.d. and AL∗ is a square matrix containing the first L∗ rows and L∗
columns from A,

A =

⎛
⎜⎜⎝

0.95 −0.2 0 0.1
0 0.8 0.1 0.2

0.1 0 0.6 −0.1
0 0.1 −0.2 0.5

⎞
⎟⎟⎠ .

The basis functions are defined as

m0(κ, τ ) = 1,

m1(κ, τ ) = 3.46(κ − 0.5),

m2(κ, τ ) = 9.45
{
(κ − 0.5)2 + (τ − 0.5)2}−1.6,

m3(κ, τ ) = 1.41 sin(2πτ),

m4(κ, τ ) = 1.41 cos(2πκ),

and are close to orthogonal, enhancing similar choice from Park et al. (2009). The
value L∗ denotes the true number of dynamic basis functions.

Setting T = 500, J = 100, σε = 0.05, and σu = 0.1, i = 1, . . . ,100 samples
following (4.1) are generated with L∗ = 2,3 and 4. Each of them is estimated by
DSFM with L = 1, . . . ,6, and the corresponding EVi (L) is computed. The average
explained variation under the true L∗, defined as EV(L;L∗) = 1

100

∑
i EVi (L), is

also calculated.
Table 2 shows EV(L;L∗) and indicates that the increase in the average ex-

plained variation between estimation with L∗ and L∗ + 1 dynamic basis functions,
EV(L∗ + 1;L∗) − EV(L∗;L∗), is close to zero across values of L∗. Therefore,
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Table 2 Average explained
variation EV(L;L∗) based on
100 samples from (4.1), across
number of dynamic basis
functions used in the estimation
L and the true L∗

EV(L;L∗) L∗
2 3 4

L 1 0.86 0.75 0.71

2 0.99 0.90 0.89

3 0.99 0.99 0.97

4 0.99 0.99 0.99

5 0.99 0.99 0.99

Table 3 Number of basis
functions and explained
variation

L 1 2 3 4 5

EV(L) 0.77 0.97 0.98 0.98 0.98

for DSFM estimation, we select the smallest L such that EV(L − 1) < EV(L) ≈
EV(L + 1).

4.2 Results

The implied volatility and RN surfaces are estimated with DSFM as in (3.6) with
L = 3. Table 3 shows that the addition of the fourth or fifth dynamic basis function
results in negligible increase in EV(L).

Following Fengler et al. (2007) and Park et al. (2009), the estimated Ẑt and m̂

are respectively transformed and orthonormalized so that {Ẑ�
lt m̂l} has a larger con-

tribution than {Ẑ�
(l+1)t m̂l+1}, l = 1, . . . ,L − 1, to the total variation

∑T
t=1

∫
Ẑ�

t m̂.
This transformation aims to improve the interpretation of the basis functions in the
analysis of the dynamics of implied volatility surfaces. In the analysis of risk neutral
surfaces dynamics, however, it does not present a clear advantage. The covariance
structures from {Ẑt } and {Zt } are then asymptotically equivalent up to orthogonal
transformations.

Figures 3 and 4 depict the estimated loading factors series {Ẑt } and basis func-
tions m̂l . The upward and downward peaks observed in Ẑ2t occur on days 6 Feb.
2001 and 5 Nov. 2001 and are caused respectively by extremely unbalanced design
and low price levels. The first day has Jt = 1697 observations concentrated on short
maturities, while the latter has Jt = 3268 with very low prices at high maturities.

From (3.5), we obtain a sequence of RN surfaces {Ĥt }, t = 1, . . . ,253. We define
Ĥt (κ, τ ) as H(κ, τ ; st , r, V̂t ) where κ = erτK/st . Figure 5 shows Ĥt (κ, τ ) across
moneyness κ and maturity τ at t corresponding to 10 Jul. 2001.

In a first step, we investigate the covariance structure of {Ẑt } by means of VAR
analysis. Table 4 presents the parameters from the VAR(2) model fitted on {Ẑt }. The
order 2 is selected based on Akaike (AIC), Schwarz (SC) and Hannan–Quinn (HQ)
criteria, see Table 5. Moreover, the VAR(2) model is stationary as the roots of the
characteristic polynomial lie inside of the unit circle.

A natural issue is to analyze the dependences between {Zt } and the shape of the
RN surfaces {Ĥt }. In order to investigate this relation, we compute the skewness
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Fig. 3 Estimated {Ẑlt },
l = 1,2,3 (top to bottom)

Fig. 4 Estimated basis functions m̂l , l = 0, . . . ,3, clockwise

γ and excess kurtosis η of q̂t,T (·|st ) across t for a maturity τ where q̂t,T (·|st ) =
Ĥt (·, τ ). Figure 6 displays the skewness {γt } and excess kurtosis {ηt } associated with
q̂t,T for maturity τ = 18 days together with {Ẑ1t } and {Ẑ3t }, motivating the investi-
gation of their joint autocovariance structure.

The dynamic structure of the pairs {(Ẑ1t , ηt )} and {(Ẑ3t , γt )} for τ = 18 is mod-
eled by VAR(2) models. The choice of the VAR order is again based on AIC, SC,
and HQ selection criteria. Portmanteau and LM tests on VAR residuals reject auto-
correlations up to lag 12 and the roots of the characteristic polynomial lie inside of
the unit circle.
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Fig. 5 Estimated RN surface, Ĥt at t corresponding to 10 Jul. 2001

Table 4 Estimated parameters
for the VAR(2) model on {Ẑt } VAR(2)

Const Ẑ1,t−1 Ẑ1,t−2 Ẑ2,t−1 Ẑ2,t−2 Ẑ3,t−1 Ẑ3,t−2

Ẑ1t 0.01 1.09 −0.16 0.10 −0.36 0.32 −0.23

Ẑ2t 0.01 −0.27 0.26 0.31 0.12 −1.14 0.33

Ẑ3t 0.01 −0.08 0.62 −0.05 −0.04 0.41 0.35

Table 5 Lag selection criteria
for VAR models on {Ẑt }. The
asterisks denote the smallest
value for each criterion

Order AIC SC HQ

1 −11.03 −10.99 −11.01

2 −15.71 −15.54* −15.64*

3 −15.77* −15.46 −15.64

4 −15.76 −15.32 −15.58

5 −15.72 −15.16 −15.45

Modeling the dynamics of risk neutral densities using DSFM allows quantifying
the mechanisms governing risk perceptions from agents acting in a market. Insights
are obtained in two directions, concerning the autocovariance structure of {Ẑt }, i.e.,
the time behavior of the RN surfaces and their cross-correlation with the skewness
and excess kurtosis from the estimated risk neutral densities, i.e., the relation between
the dynamics and shape of the obtained RN surfaces. As seen in Tables 6 and 7 the
excess kurtosis and skewness from q̂t,T at maturity τ = 18 are determined by the
corresponding lagged values of Ẑt .
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Fig. 6 Left: RN excess kurtosis {ηt }, τ = 18 (top), {Ẑ1t } (bottom). Right: RN skewness {γt }, τ = 18
(top), {Ẑ2t } (bottom)

Table 6 Estimated parameters
for the VAR(2) model on
{(Ẑ1t , ηt )}

VAR(2)

Const Ẑ1,t−1 Ẑ1,t−2 ηt−1 ηt−2

Ẑ1t 0.04 0.86 0.08 0.01 0.00

ηt −0.51 2.63 −1.75 0.67 0.19

Table 7 Estimated parameters
for the VAR(2) model on
{(Ẑ3t , γt )}

VAR(2)

Const Ẑ3,t−1 Ẑ3,t−2 γt−1 γt−2

Ẑ3t 0.00 0.20 0.27 0.01 −0.02

γt 0.00 −1.69 0.68 0.81 0.24

The presented methodology allows the investigation of the dynamics from risk
neutral skewness and excess kurtosis based on statistical inference on {Ẑt }. A natural
further step is to perform econometric analysis on the cointegration between the lower
dimensional time series and macroeconomic and financial indicators. This could pro-
vide deeper insights into the relation between risk assessments from investors acting
in a market and the flow of economic information at which they are exposed.
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Appendix: Assumptions

The results from Theorems 2.1 and 2.2, see Park et al. (2009), rely on the following
assumptions:

(A1) The variables X11, . . . ,XJT , ε11, . . . , εJT and Z1, . . . ,ZT are independent.
The process Zt is allowed to be nonrandom.

(A2) For t = 1, . . . , T , the variables X1t , . . . ,XJ t are identically distributed, have
support [0,1]d and a density ft that is bounded from below and above on
[0,1]d , uniformly over t = 1, . . . , T .
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(A3) We assume that E[εjt ] = 0 for t = 1, . . . , T and j = 1, . . . , J, and

sup
t=1,...,T ,j=1,...,J

E exp
[
cε2

j t

]
< ∞

for c > 0 small enough.
(A4) The functions ψk may depend on the increasing indices T and J and

are normed so that
∫
[0,1]d ψ2

k (x) dx = 1 for k = 1, . . . ,K . Furthermore,

supx∈[0,1] ‖ψ(x)‖ = O(K1/2).

(A5) The components m0, . . . ,mL can be approximated by ψ1, . . . ,ψK , i.e.,

δK = sup
x∈[0,1]d

inf
Γ ∈G

∣∣m(x) − Γ ψ(x)
∣∣ → 0 (A.1)

for l = 0, . . . ,L and K → ∞. We denote by Γ ∗ the matrix that fulfills

sup
x∈[0,1]d

∣∣m(x) − Γ ψ(x)
∣∣ ≤ 2δK.

(A6) There exist constants 0 < CL < CU < ∞ such that all eigenvalues of the ran-
dom matrix T −1 ∑T

t=1 ZtZ
�
t lie in the interval [CL,CU ] with probability tend-

ing to one.
(A7) The minimization (2.2) runs over all values of (Γ, z) with

sup
x∈[0,1]

max
1≤t≤T

∥∥Z�
t Γ ψ(x)

∥∥ ≤ MT ,

where MT fulfills max1≤t≤T ‖Zt‖ ≤ MT /Cm (with probability tending to one)
for a constant Cm > supx∈[0,1] ‖m(x)‖.

(A8) It holds that

ξ2 = (K + T )M2
T log(JT MT )(JT )−1 → 0, (A.2)

where the dimension L is fixed.
(A9) Zt is a martingale difference with E[Zt |Z1, . . . ,Zt1 ] = 0 and for some C > 0

E[‖Zt‖2|Z1, . . . ,Zt1] < C (a.s.). The matrix E[ZtZ
�
t ] has full rank. The

process Zt is independent of X11, . . . ,XT J and ε11, . . . , εT J .
(A10) The functions m0, . . . ,mL are linearly independent. In particular, no function

is equal to 0.
(A11) It holds that (K1/2MT + T 1/4)(ξ + δK) = O(1).
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Measuring dependence in multivariate time series is tantamount to modeling its dynamic structure in

space and time. In risk management, the nonnormal behavior of most financial time series calls for non-

Gaussian dependences. The correct modeling of non-Gaussian dependences is, therefore, a key issue in

the analysis of multivariate time series. In this article we use copula functions with adaptively estimated

time-varying parameters for modeling the distribution of returns. Furthermore, we apply copulae to the

estimation of value-at-risk of portfolios and show their better performance over the RiskMetrics approach.

KEY WORDS: Adaptive estimation; Nonparametric estimation; Value-at-risk.

1. INTRODUCTION

Time series of financial data are high dimensional and typ-
ically have a non-Gaussian behavior. The standard modeling
approach based on properties of the multivariate normal dis-
tribution therefore often fails to reproduce the stylized facts
(i.e., fat tails, asymmetry) observed in returns from financial
assets.

A correct understanding of the time-varying multivariate
(conditional) distribution of returns is vital to many standard
applications in finance such as portfolio selection, asset pric-
ing, and value-at-risk (var) calculation. Empirical evidence
from asymmetric return distributions have been reported in the
recent literature. Longin and Solnik (2001) investigate the
distribution of joint extremes from international equity returns
and reject multivariate normality in their lower orthant; Ang
and Chen (2002) test for conditional correlation asymmetries
in U.S. equity data, rejecting multivariate normality at daily,
weekly, and monthly frequencies; and Hu (2006) models the
distribution of index returns with mixtures of copulae, finding
asymmetries in the dependence structure across markets. For
a concise survey on stylized empirical facts from financial
returns see Cont (2001) and Granger (2003).

Modeling distributions with copulae has drawn attention
from many researchers because it avoids the ‘‘procrustean bed’’
of normality assumptions, producing better fits of the empirical
characteristics of financial returns. A natural extension is to
apply copulae in a dynamic framework with conditional dis-
tributions modeled by copulae with time-varying parameters.
The question, though, is how to steer the time-varying copulae
parameters. This question is the focus of this article.

A possible approach is to estimate the parameter from
structurally invariant periods. There is a broad field of econo-
metric literature on structural breaks. Tests for unit root in
macroeconomic series against stationarity with a structural

break at a known change point have been investigated by
Perron (1989), and for an unknown change point by Zivot and
Andrews (1992), Stock (1994) and Hansen (2001); Andrews
(1993) tests for parameter instability in nonlinear models;
Andrews and Ploberger (1994) construct asymptotic optimal
tests for multiple structural breaks. In a different set up,
Quintos, Fan, and Philips (2001) test for a constant tail index
coefficient in Asian equity data against a break at an unknown
point.

Time-varying copulae and structural breaks are combined in
Patton (2006). The dependence structure across exchange rates
is modeled with time-varying copulae with a parameter
specified to evolve as an ARMA AU2-type process. Tests for a
structural break in the ARMA coefficients at a known change
point have been performed, and strong evidence of a break
was found. In a similar fashion, Rodriguez (2007) models the
dependence across sets of Asian and Latin American stock
indexes using time-varying copula where the parameter follows
regime-switching dynamics. Common to these articles is that
they use a fixed (parametric) structure for the pattern of
changes in the copula parameter.

In this article we follow a semiparametric approach, because
we are not specifying the parameter changing scheme. Rather,
we select locally the time-varying copula parameter. The
choice is performed via an adaptive estimation under the
assumption of local homogeneity: For every time point there
exists an interval of time homogeneity in which the copula
parameter can be well approximated by a constant. This
interval is recovered from the data using local change point
analysis. This does not imply that the model follows a change

1
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point structure. The adaptive estimation also applies when the
parameter varies smoothly from one value to another (see
Spokoiny 2008).

Figure 1F1 shows the time-varying copula parameter determined
by our procedure for a portfolio composed of daily prices of six
German equities and the ‘‘global’’ copula parameter, shown by
a constant horizontal line. The absence of parametric specifi-
cation for time variations in the dependence structure (its
dynamics is obtained adaptively from the data) allows for
flexibility in estimating dependence shifts across time.

The obtained time-varying dependence structure can be used
in financial engineering applications, the most prominent being
the calculation of the var of a portfolio. Using copulae with
adaptively estimated dependence parameters we estimate the
var from DAXAU3 portfolios over time. As a benchmark procedure
we choose RiskMetrics, a widely used methodology based on
conditional normal distributions with a GARCH specification
for the covariance matrix. Backtesting underlines the improved
performance of the proposed adaptive time-varying copulae
fitting.

This article is organized as follows: Section 2 presents the
basic copulae definitions, Section 3 discusses the var and its
estimation procedure. The adaptive copula estimation is ex-
posed in Section 4 and is applied to simulated data in Section 5.
In Section 6, the var from DAX portfolios is estimated based on
adaptive time-varying copulae. The estimation performance is
compared with the RiskMetrics approach by means of back-
testing. Section 7 concludes.

2. COPULAE

Copulae merge marginally into joint distributions, providing
a natural way for measuring the dependence structure between
random variables. Copulae are present in the literature since
Sklar (1959), although related concepts originate in Hoeffding
(1940) and Fréchet (1951), and have been widely studied in the
statistical literature (see Joe 1997, Nelsen 1998, and Mari and
Kotz 2001). Applications of copulae in finance, insurance, and
econometrics have been investigated in Embrechts, McNeil,
and Straumann (2002); Embrechts, Hoeing, and Juri (2003a);
Franke, Härdle, and Hafner (2004); and Patton (2004) among
others. Cherubini, Luciano, and Vecchiato (2004) and McNeil,
Frey, and Embrechts (2005) provide an overview of copulae for
practical problems in finance and insurance.

Assuming absolutely continuous distributions and con-
tinuous marginals throughout this article, we have from Sklar’s

theorem that for a d-dimensional distribution function F with
marginal cdf’s AU4F1, . . . , Fd there exists a unique copula C : [0,
1]d ! [0, 1] satisfying

Fðx1; . . . ; xdÞ ¼ CfF1ðx1Þ; . . . ;FdðxdÞg ð2:1Þ

for every x ¼ (x1, . . . , xd)T 2 R
d. Conversely, for a random

vector X ¼ (X1, . . . , Xd)T with cdf FX, the copula of X may
be written as CXðu1; . . . ; udÞ ¼ FXfF�1

1 ðu1Þ; . . . ;F�1
d ðudÞg,

where uj ¼ Fj(xj), Fj is the cdf of Xj, and F�1
j ðaÞ ¼ inffxj :

FjðxjÞ $ ag its generalized inverse, j ¼ 1, . . . , d. A prominent
copula is the Gaussian

CGa
C ðu1; . . . ; udÞ ¼ FYfF�1ðu1Þ; . . . ;F�1ðudÞg ð2:2Þ

where F(s), s 2 R stands for the one-dimensional standard
normal cdf, FY is the cdf of Y¼ (Y1, . . . , Yd)> ; Nd(0, C), 0 is
the (d 3 1) vector of zeros, and C is a correlation matrix. The
Gaussian copula represents the dependence structure of the
multivariate normal distribution. In contrast, the Clayton cop-
ula given by

Cuðu1; . . . ; udÞ ¼
Xd

j¼1

u�u
j

 !
� d þ 1

( )�u�1

ð2:3Þ

for u > 0, expresses asymmetric dependence structures.
The dependence at upper and lower orthants of a copula C

may be expressed by the upper and lower tail dependence
coefficients lU ¼ limu!0

bCðu; . . . ; uÞ=u and lL ¼ limu!0

Cðu; . . . ; uÞ=u, where u 2 (0, 1] and bC is the survival copula of
C (see Joe 1997 and Embrechts, Lindskog, and McNeil 2003b).
Although Gaussian copulae are asymptotically independent at
the tails (lL ¼ lU ¼ 0), the d-dimensional Clayton copulae
exhibit lower tail dependence (lL ¼ d�1/u) but are asymptoti-
cally independent at the upper tail (lU ¼ 0). Joe (1997) pro-
vides a summary of diverse copula families and detailed
description of their properties.

For estimating the copula parameter, consider a sample
fxtgT

t¼1 of realizations from X where the copula of X belongs to
a parametric family C ¼ fCu; u 2 Qg: Using Equation (2.1),
the log-likelihood reads as Lðu; x1; . . . ; xTÞ ¼

PT
t¼1½log c

F1ðxt;1Þ; . . . ;Fdðxt;dÞ; ug þ
Pd

j¼1 logf jðxt;jÞ�; where c(u1, . . . ,
ud) ¼ @dC(u1, . . . , ud)/@u1. . . @ud is the density of the copula C
and fj is the probability density function of Fj. The canonical
maximum likelihood estimator û maximizes the pseudo log-
likelihood with empirical marginal cdf’s ~LðuÞ ¼

PT
t¼1 log c

f bF1ðxt;1Þ; . . . ; bFdðxt;dÞ; u; where

Figure 1. Time-varying dependence. Time-varying dependence parameter and global parameter (horizontal line) estimated with Clayton
copula, stock returns from Allianz, Münchener Rückversicherung, BASF, Bayer, DaimlerChrysler, and Volkswagen.
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bFjðsÞ ¼
1

T þ 1

XT

k¼1

1fxk j#sg ð2:4Þ

for j ¼ 1, . . . , d. Note that bFj differs from the usual empirical
cdf by the denominator T þ 1. This ensures that f bF1ðxt;1Þ; . . . ;bFdðxt;dÞg> 2 ð0; 1Þd and avoids infinite values the copula
density may take on the boundary of the unit cube (see McNeil,
Frey, and Embrechts 2005). Joe (1997); Cherubini, Luciano,
and Vecchiato (2004); and Chen and Fan (2006) provide a
detailed exposition of inference methods for copulae.

3. VALUE-AT-RISK AND COPULAE

The dependence (over time) between asset returns is espe-
cially important in risk management, because the profit and
loss (P&L) function determines the var. More precisely, the var
of a portfolio is determined by the multivariate distribution of
risk factor increments. If w ¼ ðw1; . . . ;wdÞ> 2 R

d denotes a
portfolio of positions on d assets and St ¼ ðSt;1; . . . ; St;dÞ> a
nonnegative random vector representing the prices of the assets
at time t, the value Vt of the portfolio w is given by
Vt ¼

Pd
j¼1 wjSt;j. The random variable

Lt ¼ Vt � Vt�1ð Þ; ð3:1Þ

called the profit and loss (P&L) function, expresses the change
in the portfolio value between two subsequent time points.
Defining the log-returns Xt ¼ ðXt;1; . . . ;Xt;dÞ>; where Xt, j ¼
log St,j� log St�1, j and log S0, j¼ 0, j¼ 1, . . . , d, Equation (3.1)
can be written as

Lt ¼
Xd

j¼1

wjSt�1; j expðXt;jÞ � 1
� �

: ð3:2Þ

The cdf of Lt is given by Ft;Lt
ðxÞ ¼ PtðLt # xÞ. The var at level

a from a portfolio w is defined as the a quantile from Ft;Lt
:

vartðaÞ ¼ F�1
t;Lt
ðaÞ: ð3:3Þ

It follows from Equation (3.2) that Ft;Lt
depends on the spec-

ification of the d-dimensional distribution of the risk factors Xt.
Thus, modeling their distribution over time is essential for
obtaining the quantiles (Eq. 3.3).

The RiskMetrics technique, a widely used methodology for
var estimation, assumes that risk factors Xt follow a conditional
multivariate normal distribution LðXtjF t�1Þ¼ Nð0;StÞ; where
F t�1 ¼ sðX1; . . . ;Xt�1Þ is the s field generated by the first t�
1 observations, and estimates the covariance matrix St for one
period return as

bSt ¼ lbSt�1 þ ð1� lÞXt�1X>t�1; ð3:4Þ

where the parameter l is the so-called decay factor. l ¼ 0.94
provides the best backtesting results for daily returns according
to Morgan (1996). Using the copulae-based approach, one first
corrects the contemporaneous mean and volatility in the log-
returns process:

Xt; j ¼ mt; j þ st; jet; j; ð3:5Þ

where mt; j ¼ E½Xt; jjF t�1� is the conditional mean and s2
t; j ¼

E½ðXt; j � mt; jÞ
2jF t�1� is the conditional variance of Xt, j. The

standardized innovations et ¼ ðet;1; . . . ; et;dÞ> have joint cdf Fet

given by

Fet
ðx1; . . . ; xdÞ ¼ CufFt;1ðx1Þ; . . . ;Ft;dðxdÞg; ð3:6Þ

where Ft, j is the cdf of et, j and Cu is a copula belonging to a
parametric family C ¼ Cu; u 2 Qg: For details on the previous
model specification, see Chen and Fan (2006) and Chen, Fan,
and Tsyrennikov (2006). For the Gaussian copula with Gaussian
marginals, we recover the conditional Gaussian RiskMetrics
framework.

To obtain the var in this setup, the dependence parameter and
cdf’s from residuals are estimated from a sample of log-returns
and are used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the var (see
Embrechts, McNeil, and Straumann 2002).

The whole procedure can be summarized as follows (see
Härdle, Kleinow, and Stahl 2002; and Giacomini and Härdle
2005): For a portfolio w 2 R

d and a sample fxt; jgT
t¼1; j ¼

1; . . . ; d of log-returns, the var at level a is estimated according
to the following steps:

1. Determination of innovations fêtgT
t¼1 by, for example,

‘‘deGARCHing’’
2. Specification and estimation of marginal cdf’s FjðêjÞ
3. Specification of a parametric copula family C and esti-

mation of the dependence parameter u

4. Generation of Monte Carlo sample of innovations e and
losses L

5. Estimation of cvarðaÞ, the empirical a quantile of FL

4. MODELING WITH TIME-VARYING COPULAE

Similar to the RiskMetrics procedure, one can perform a
moving (fixed-length) window estimation of the copula
parameter. This procedure, though, does not fine-tune local
changes in dependences. In fact, the cdf Fet

from Equation (3.6)
is modeled as Ft;et

¼ Cut
fFt;1ð�Þ; . . . ;Ft;dð�Þg with probability

measure Put
. The moving window of fixed width will estimate a

ut for each t, but it has clear limitations. The choice of a small
window results in a high pass filtering and, hence, in a very
unstable estimate with huge variability. The choice of a large
window leads to a poor sensitivity of the estimation procedure

Figure 2. Local change point procedure. Choice of intervals Ik and Ik:
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and to a high delay in the reaction to changes in dependence
measured by the parameter ut.

To choose an interval of homogeneity, we use a local para-
metric fitting approach as introduced by Polzehl and Spokoiny
(2006), Belomestny and Spokoiny (2007) and Spokoiny
(2008). The basic idea is to select for each time point t0 an
interval It0

¼ ½t0 � mt0
; t0� of length mt0

in such a way that the
time-varying copula parameter ut can be well approximated
by a constant value u. The question is, of course, how to select
mt0

in an online situation from historical data. The aim should be
to select It0

as close as possible to the so-called ‘‘oracle’’ choice
interval. The oracle choice is defined as the largest interval
I ¼ ½t0 � m�t0

; t0�, for which the small modeling bias condition

DIðuÞ ¼
X
t2I

KðPut
;PuÞ# D ð4:1Þ

for some D $ 0 holds. Here, u is constant and KðPq;Pq9Þ ¼
Eq logfpðy;qÞ=pðy;q9Þg denotes the Kullback-Leibler diver-
gence. In such an oracle choice interval, the parameter ut0

¼
utjt¼t0

can be ‘‘optimally’’ estimated from I ¼ ½t0 � m�t0
; t0�.

The error and risk bounds are calculated in Spokoiny (2008). It
is important to mention that the concept of local parametric
approximation allows one to treat in a unified way the case
of ‘‘switching regime’’ models with spontaneous changes
of parameters and the ‘‘smooth transition’’ case when the
parameter varies smoothly in time.

The oracle choice of the interval of homogeneity depends on
the unknown time-varying copula parameter ut. The next sec-
tion presents an adaptive (data-driven) procedure that mimics
the oracle in the sense that it delivers the same accuracy of
estimation as the oracle one. The trick is to find the largest
interval in which the hypothesis of a local constant copula

parameter is supported. The local change point (LCP) detection
procedure originates from Mercurio and Spokoiny (2004) and
sequentially tests the hypothesis: ut is constant (i.e., ut ¼ u)
within some interval I (local parametric assumption).

The LCP procedure for a given point t0 starts with a family of
nested intervals I0� I1� I2� . . . � IK¼ IKþ1 of the form Ik¼
[t0 � mk, t0]. The sequence mk determines the length of these
interval ‘‘candidates’’ (see Section 4.2). Every interval Ik leads
to an estimate ~uk of the copula parameter ut0

. The procedure
selects one interval Î out of the given family and, therefore, the
corresponding estimate û ¼ ~uÎ .

The idea of the procedure is to screen each interval Ik ¼
½t0 � mk; t0 � mk�1� sequentially and check each point t 2 Ik

as a possible change point location (see Section 4.1 for more
details). The family of intervals Ik and Ik are illustrated in
Figure 2. The interval Ik is accepted if F2no change point is
detected within I1; . . . ; Ik. If the hypothesis of homogeneity is
rejected for an interval candidate Ik, the procedure stops and
selects the latest accepted interval. The formal description
reads as follows:

Start the AU5procedure with k ¼ 1 and test the hypothesis H0,k

of no structural changes within Ik using the larger testing
interval Ikþ1. If no change points were found in Ik, then Ik is
accepted. Take the next interval Ikþ1 and repeat the previous
step until homogeneity is rejected or the largest possible
interval IK¼ [t0�mK, t0] is accepted. If H0,k is rejected for Ik,
the estimated interval of homogeneity is the last accepted
interval Î ¼ Ik�1. If the largest possible interval IK is accepted,
we take Î ¼ IK . We estimate the copula dependence parameter
u at time instant t0 from observations in Î, assuming the
homogeneous model within Î (i.e., we define ût0

¼ ~uÎ). We
also denote by Îk the largest accepted interval after k steps of

Figure 3. Homogeneity test. Testing interval I, tested interval I, and subintervals J and Jc for a point t 2 I:

Table 1. Critical values zk (r; u*)

k

u* ¼ 0.5 u* ¼ 1.0 u* ¼ 1.5

r ¼ 0.2 r ¼ 0.5 r ¼ 1.0 r ¼0.2 r ¼ 0.5 r ¼ 1.0 r ¼ 0.2 r ¼ 0.5 r ¼ 1.0

1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00

10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00

NOTE: Critical values are obtained according to Equation (4.2), based on 5,000 simulations. Clayton copula, m0 ¼ 20 and
c ¼ 1.25.
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the algorithm and, by ûk the corresponding estimate of the
copula parameter.

It is worth mentioning that the objective of the described
estimation algorithm is not to detect the points of change for
the copula parameter, but rather to determine the current
dependence structure from historical data by selecting an
interval of time homogeneity. This distinguishes our approach
from other procedures for estimating a time-varying parameter
by change point detection. A visible advantage of our approach
is that it equally applies to the case of spontaneous changes in
the dependence structure and in the case of smooth transition in
the copula parameter. The obtained dependence structure can
be used for different purposes in financial engineering, the
most prominent being the calculation of the var (see also
Section 6).

The theoretical results from Spokoiny and Chen (2007) and
Spokoiny (2008) indicate that the proposed procedure provides
the rate optimal estimation of the underlying parameter when
this varies smoothly with time. It has also been shown that the
procedure is very sensitive to structural breaks and provides the
minimal possible delay in detection of changes, where the
delay depends on the size of change in terms of Kullback-
Leibler divergence.

4.1 Test of Homogeneity Against a Change
Point Alternative

In the homogeneity test against a change point alternative we
want to check every point of an interval I (recall Fig. 2), here
called the ‘‘tested interval,’’ on a possible change in the
dependence structure at this moment. To perform this check,
we assume a larger testing interval I of form I ¼ [t0�m, t0], so
that I is an internal subset within I. The null hypothesis H0

means that "t 2 I, ut ¼ u (i.e., the observations in I follow the

model with dependence parameter u). The alternative hypoth-
esis H1 claims that 9 t 2 I such that ut ¼ u1 for t 2 J ¼ [t, t0]
and ut ¼ u2 6¼ u1 for t 2 Jc ¼ [t0 � m, t) (i.e., the parameter
u changes spontaneously in some point t 2 I). F3Figure 3 depicts
I, I, and the subintervals J and Jc determined by the point t 2 I.

Let LI(u) be the log-likelihood and ~uI the maximum like-
lihood estimate for the interval I. The log-likelihood functions
corresponding to H0 and H1 are LI(u) and LJðu1Þ þ LJcðu2Þ;
respectively. The likelihood ratio test for the single change
point with known fixed location t can be written as

Figure 4. LCP and sudden jump in copula parameter. Pointwise median (full), and 0.25 and 0.75 quantiles (dotted) from ût. True parameter ut

(dashed) with qa¼ 0.10, qb¼ 0.50, 0.75, and 1.00 (left, top to bottom); and qb¼ 0.10, qa¼ 0.50, 0.75, and 1.00 (right, top to bottom). Based on
100 simulations from Clayton copula, estimated with LCP, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Table 2. Detection delay statistics

(qa, qb) r Mean SD Max Min

0.25 9.06 7.28 56 0
(0.50, 0.10) 0.50 13.64 9.80 60 0

0.75 21.87 14.52 89 3
0.25 5.16 4.24 21 0

(0.75, 0.10) 0.50 8.85 5.55 25 0
0.75 16.72 10.37 64 3
0.25 4.47 2.94 12 0

(1.00, 0.10) 0.50 7.94 4.28 22 0
0.75 14.79 7.38 62 5
0.25 8.94 6.65 36 0

(0.10, 0.50) 0.50 14.21 9.06 53 0
0.75 21.43 12.15 68 0
0.25 9.00 4.80 25 0

(0.10, 0.75) 0.50 14.30 5.96 40 3
0.75 21.00 10.97 75 6
0.25 7.39 3.67 19 0

(0.10, 1.00) 0.50 13.10 4.13 22 2
0.75 20.13 7.34 55 10

NOTE: The detection delays d are calculated as in Equation (5.1), with the statistics
based on 100 simulations. Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ .5. SD, standard
deviation.
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TI;t ¼ max
u1;u2

LJðu1Þ þ LJcðu2Þf g �max
u

LIðuÞ

¼ LJð~uJÞ þ LJcð~uJcÞ � LIð~uIÞ:

The test statistic for an unknown change point location is
defined as TI ¼ maxt2I TI;t. The change point test compares
this test statistic with a critical value I ; which may depend on
the interval I. One rejects the hypothesis of homogeneity if
TI > zI .

4.2 Parameters of the LCP Procedure

To apply the LCP testing procedure for local homogeneity,
we have to specify some parameters. This includes selecting
interval candidates Ik or, equivalently, of the tested intervals
Ik and choosing respective critical values zk: One possible
parameter set that has been used successfully in simulations is
presented in the following section.

4.2.1 Selection of interval candidates Ik and internal points
Ik. It is useful to take the set of numbers mk defining the
length of Ik and Ik in the form of a geometric grid. We fix the

value m0 and define mk ¼ [m0ck] for k ¼ 1, 2, . . . , K and c > 1
where [x] means the integer part of x. We set Ik ¼ [t0 � mk, t0]
and Ik ¼ ½t0 � mk; t0 � mk�1� for k ¼ 1, 2, . . . , K (see Fig. 2).

4.2.2 Choice of the critical values zk: The algorithm is in
fact a multiple testing procedure. Mercurio and Spokoiny
(2004) suggested selecting the critical value zk to provide the
overall first type error probability of rejecting the hypothesis
of homogeneity in the homogeneous situation. Here we follow
another proposal from Spokoiny and Chen (2007), which
focuses on estimation losses caused by the ‘‘false alarm’’—in
our case obtaining a homogeneity interval that is too
small—rather than on its probability.

In the homogeneous situation with ut [ u* for all t 2 Ikþ1,
the desirable behavior of the procedure is that after the first k
steps the selected interval Îk coincides with Ik and the corre-
sponding estimate ûk coincides with ~uk, which means there is
no false alarm. On the contrary, in the case of a false alarm, the
selected interval Îk is smaller than Ik and, hence, the corre-
sponding estimate ûk has larger variability than ~uk. This means
that the false alarm during the early steps of the procedure is
more critical than during the final steps, because it may lead to
selecting an estimate with very high variance. The difference
between ûk and ~uk can naturally be measured by the value
LIk
ð~uk; ûkÞ ¼ LIk

ð~ukÞ � LIk
ðûkÞ normalized by the risk of the

nonadaptive estimate ~uk, Rðu�Þ ¼ maxk$1 Eu� LIk
ð~uk; u

�Þ
�� ��1=2

.
The conditions we impose read as

Eu� LIk
ð~uk; ûkÞ

�� ��1=2
# rRðu�Þ; k ¼ 1; . . . ;K; u� 2 Q:

ð4:2Þ

The critical values zk are selected as minimal values providing
these constraints. In total we have K conditions to select K
critical values z1; . . . ; zK : The values zk can be selected
sequentially by Monte Carlo simulation, where one simulates
under H0 : ut ¼ u*, "t 2 IK. The parameter r defines how
conservative the procedure is. A small r value leads to larger
critical values and hence to a conservative and nonsensitive
procedure, whereas an increase in r results in more sensitive-
ness at cost of stability. For details, see Spokoiny and Chen
(2007) or Spokoiny (2008).

Figure 5. Divergences for upward and downward jumps. Kullback-
Leibler divergences Kð0:10;qÞ (full) and Kðq; 0:10Þ (dashed) for
Clayton copula.

Figure 6. Mean detection delay and parameter jumps. Mean detection delays (dots) at rule r ¼ 0.75, 0.50, and 0.25 from top to bottom. Left:
qb ¼ 0.10 (upward jump). Right: qa ¼ 0.10 (downward jump), based on 100 simulations from Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.
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5. SIMULATED EXAMPLES

In this section we apply the LCP procedure on simulated
data with a dependence structure given by the Clayton copula.
We generate sets of six-dimensional data with a sudden jump in
the dependence parameter given by

ut ¼
qa if � 390 # t # 10

qb if 10 < t # 210

�
for different values of (qa, qb): One of them is fixed at .1 (close
to independence) and the other is set to larger values.

The LCP procedure is implemented with the family of
interval candidates in form of a geometric grid defined by m0¼
20 and c ¼ 1.25. The critical values, selected according to
Equation (4.2) for different r and u*, are displayed inT1 Table 1.
The choice of u* has negligible influence in the critical values
for fixed r, therefore we use z1; . . . ; zK obtained with u* ¼ 1.0.
Based on our experience, see Spokoiny and Chen (2007) and
Spokoiny (2008), the default choice for r is 0.5.

Figure 4F4 shows the pointwise median and quantiles of the
estimated parameter ût for distinct values of (qa,qb) based on
100 simulations. The detection delay d at rule r 2 [0, 1] to jump
of size g ¼ ut � ut�1 at t is expressed by

dðt; g; rÞ ¼ minfu $ t : ûu ¼ ut�1 þ rgg � t ð5:1Þ

and represents the number of steps necessary for the estimated
parameter to reach the r fraction of a jump in the true
parameter.

Detection delays are proportional to the probability of error
of type II (i.e., the probability of accepting homogeneity in case
of a jump). Thus, tests with higher power correspond to lower
delays d. Moreover, because the Kullback-Leibler divergences
for upward and downward jumps are proportional to the power
of the respective homogeneity tests, larger divergences result in
faster jump detections.

The descriptive statistics for detection delays to jumps at t ¼
11 for different values of (qa,qb) are inT2 Table 2. The mean
detection delay decreases with g ¼ qb � qa and are higher for
downward jumps than for upward jumps.F5 Figure 5 shows that
for Clayton copulae the Kullback-Leibler divergence is higher
for upward jumps than for downward jumps.F6 Figure 6 displays
the mean detection delays against jump size for upward and
downward jumps.

The LCP procedure is also applied on simulated data with
smooth transition in the dependence parameter given by

ut ¼
qa if � 350 # t # 50

qa þt � 50
100 ðqb � qaÞ if 50 < t # 150

qb if 150 < t # 350:

8><>:
Figure 7 F7depicts the pointwise median and quantiles of the
estimated parameter ût and the true parameter ut for (qa, qb) set
to (0.10, 1.00) and (1.00, 0.10).

6. EMPIRICAL RESULTS

In this section the var from German stock portfolios is
estimated based on time-varying copulae and RiskMetrics
approaches. The time-varying copula parameters are selected
by local change point (LCP) and moving window procedures.
Backtesting is used to evaluate the performances of the three
methods in var estimation.

Two groups of six stocks listed on DAX are used to compose
the portfolios. Stocks from group 1 belong to three different
industries: automotive (Volkswagen and DaimlerChrysler),
insurance (Allianz and Münchener Rückversicherung), and
chemical (Bayer and BASF). Group 2 is composed of stocks
from six industries: electrical (Siemens), energy (E.ON), metal-
lurgical (ThyssenKrupp), airlines (Lufthansa), pharmaceutical
(Schering), and chemical (Henkel). The portfolio values are
calculated using 1,270 observations, from January 1, 2000 to
December 31, 2004, of the daily stock prices (data available at
http://sfb649.wiwi.hu-berlin.de/fedc).

The selected copula belongs to the Clayton family (Eq. 2.3).
Clayton copulae have a natural interpretation and are well
advocated in risk management applications. In line with the
stylized facts for financial returns, Clayton copulae are asym-
metric and present lower tail dependence, modeling joint

Figure 7. LCP and smooth change in copula parameter. Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from ût and true parameter ut

(dashed) with qa ¼ 0.10 and qb ¼ 1.00 (left), and qa ¼ 1.00 and qb ¼ 0.10 (right). Based on 100 simulations from Clayton copula, estimated
with LCP, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Table 3. p Values from tests on residuals êt; j

j

Ljung-Box ARCH

Group 1 Group 2 Group 1 Group 2

1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
5 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94
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extreme events at lower orthants with higher probability than
Gaussian copulae for the same correlation, see McNeil, Frey,
and Embrechts (2005). This fact is essential for var calculations
and is illustrated by the ratio between Equations (2.2) and (2.3)
for off-diagonal elements of C set to 0.25 and u ¼ 0.5. For the
quantiles ui ¼ 0.05, i ¼ 1, . . . , 6 the ratio
CGa

C ðu1; . . .; u6Þ=Cuðu1; . . .; u6Þ equals 2.3 3 10�2, whereas for
the 0.01 quantiles it equals 1.3 3 10�3.

The var estimation follows the steps described in Section 3.
Using the RiskMetrics approach, the log-returns Xt are assumed
conditionally normal distributed with zero mean and covari-
ance matrix following a GARCH specification with fixed decay
factor l ¼ 0.94 as in Equation (3.4).

In the time-varying copulae estimation, the log-returns are
modeled as in Equation (3.5), where the innovations et have
cdf Ft;et

ðx1; . . .; xdÞ ¼ Cut
fFt;1ðx1Þ; . . .;Ft;dðxdÞg and Cu is the

Clayton copula. The univariate log-returns Xt, j corresponding
to stock j are devolatized according to RiskMetrics (i.e., with
zero conditional means and conditional variances s2

t;j estimated
by the univariate version of Equation (3.4) with a decay factor
equal to 0.94). We note that this choice sets the same specifi-
cation for the dynamics of the univariate returns across all
methods (RiskMetrics, moving windows, and LCP), making
their performances in var estimation comparable. Moreover, as
the means from daily returns are clearly dominated by the
variances and are approximately independent on the available
information sets (see Jorion 1995; Fleming, Kirby, and Ostdiek
2001; and Christoffersen and Diebold 2006), their specification
is very unlikely to cause a perceptible bias in the estimated
variances and dependence parameters. Therefore, the zero
mean assumption is, as pointed out by Kim, Malz, and Mina
(1999), as good as any other choice. Daily returns are also
modeled with zero conditional means in Fan and Gu (2003) and
Härdle, Herwartz, and Spokoiny (2003) among others.

The GARCH specification (Eq. 3.4) with l ¼ .94 optimizes
variance forecasts across a large number of assets (Morgan
1996), and is widely used in the financial industry. Different
choices for the decay factor (like 0.85 or 0.98) result in negligible
changes (about 3%) in the estimated dependence parameter.

The p values from the Ljung-Box test for serial correlation
and from ARCH test for heteroscedasticity effects in the
obtained residuals êt; j are in T3Table 3. Normality is rejected by
Jarque-Bera test, with p values approximately 0.00 for all
residuals in both groups. The empirical cdf’s of residuals as
defined in Equation (2.4) are used for the copula estimation.

With the moving windows approach, the size of the esti-
mating window is fixed as 250 days corresponding to 1 busi-
ness year (the same size is used in, for example, Fan and Gu
(2003)). For the LCP procedure, following Section 4.2, we set
the family of interval candidates as a geometric grid with m0 ¼
20, c ¼ 1.25, and r ¼ 0.5. We have chosen these parameters
from our experience in simulations (for details on robustness of
the reported results with respect to the choice of m0 and c, refer
to Spokoiny (2008)).

The performance of the var estimation is evaluated based on
backtesting. At each time t, the estimated var at level a for a
portfolio w is compared with the realization lt of the corre-
sponding P&L function (see Eq. 3.2), with an exceedance
occurring for each lt less than cvartðaÞ: The ratio of the number
of exceedances to the number of observations gives the
exceedance ratio

âwðaÞ ¼
1

T

XT

t¼1

1flt <cvartðaÞg
:

Because the first 250 observations are used for estimation, T ¼
1,020. The difference between â and the desired level a is
expressed by the relative exceedance error

Figure 8. Time-varying dependence, group 1. Copula parameter ût estimated with LCP method, Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Figure 9. Time-varying dependence, group 2. Copula parameter ût estimated with LCP method, Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.
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ew ¼ ðâ� aÞ=a:

We compute exceedance ratios and relative exceedance errors
to levels a ¼ 0.05 and 0.01 for a set W ¼ {w*,wn; n ¼ 1, . . . ,
100} of portfolios, where each wn ¼ ðwn;1; . . . ;wn;6Þ> is a rea-
lization of a random vector uniformly distributed on S ¼
fðx1; . . . ; x6Þ 2 R

6 :
P6

i¼1 xi ¼ 1; xi $ :1g; and w� ¼ 1=6 I6,
with Id denoting the (d 3 1) vector of ones, is the equally
weighted portfolio. The degree of diversification of a portfolio
can be measured based on the majorization preordering on S
(see Marshall and Olkin 1979). In other words, a portfolio wa is
more diversified than portfolio wb if wa � wb: Under the
majorization preordering the vector w* satisfies w� � w for all
w 2 S; therefore, the equally weighted portfolio is the most
diversified portfolio from W, see Ibragimov and Walden (2007).

The average relative exceedance error over portfolios and
the corresponding standard deviation

AW ¼
1

jWj
X
w2W

ew

DW ¼
1

jWj
X
w2W
ðew � AWÞ2

( )1
2

are used to evaluate the performances of the time-varying
copulae and RiskMetrics methods in var estimation.

The dependence parameter estimated with LCP for stocks
from groups 1 and 2 are shown in F8Figures 8 and F99. The different
industry concentrations in each group are reflected in the
higher parameter values obtained for group 1. The P&L and the
var at level 0.05 estimated with LCP, moving windows, and

Figure 10. Estimated var across methods, group 1. P&L realizations lt (dots), cvartðaÞ (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level a ¼ 0.05.

Figure 11. Estimated var across methods, group 2. P&L realizations lt (dots), cvartðaÞ (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level a ¼ 0.05.
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RiskMetrics methods for the equally weighted portfolio w* are
in Figures 10 (group 1) andF10; 11 11 (group 2). Exceedance ratios for
portfolios w*, w1, and w2; average relative exceedance errors;
and corresponding standard deviations across methods and
levels are shown inT4;T5 Tables 4 (group 1) and 5 (group 2).

Based on the exceedance errors, the LCP procedure out-
performs the moving windows (second best) and RiskMetrics
methods in var estimation in group 1. At level 0.05, the
average error associated with copula methods is about half
the error from RiskMetrics estimation for nearly the same
standard deviation. At level 0.01, the LCP average error is the
smallest in absolute value, and copula methods present less
standard deviations. At this level, copula methods over-
estimate var, and RiskMetrics underestimates it. Although
overestimation of var means that a financial institution would
be requested to keep more capital aside than necessary to
guarantee the desired confidence level, underestimation
means that less capital is reserved and the desired level is not
guaranteed. Therefore, from the regulatory point of view,
overestimation is preferred to underestimation. In the less con-
centrated group 2, LCP outperforms moving windows and
RiskMetrics at the level 0.05, presenting the smallest average
error in magnitude for nearly the same value of DW. At level
0.01, copula methods overestimate and RiskMetrics under-
estimates the var by about 60%.

It is interesting to note the effect of portfolio diversification
on the exceedance errors for group 1 and level 0.01. The errors
decrease with increasing portfolio diversification for copulae
methods but become larger under the RiskMetrics estimation.
For other groups and levels, the diversification effects are not
clear. Refer to Ibragimov (2007) and Ibragimov and Walden

(2007) for details on the effects of portfolio diversification
under heavy-tailed distributions in risk management.

7. CONCLUSION

In this article we modeled the dependence structure from
German equity returns using time-varying copulae with adap-
tively estimated parameters. In contrast to Patton (2006) and
Rodriguez (2007), we neither specified the dynamics nor
assumed regime switching models for the copula parameter.
The parameter choice was performed under the local homo-
geneity assumption with homogeneity intervals recovered from
the data through local change point analysis.

We used time-varying Clayton copulae, which are asym-
metric and present lower tail dependence, to estimate the var
from portfolios of two groups of German securities, presenting
different levels of industry concentration. RiskMetrics, a widely
used methodology based on multivariate normal distributions,
was chosen as a benchmark for comparison. Based on back-
testing, the adaptive copula achieved the best var estimation
performance in both groups, with average exceedance errors
mostly small in magnitude and corresponding to sufficient
capital reserve for covering losses at the desired levels.

The better var estimates provided by Clayton copulae indi-
cate that the dependence structure from German equities may
contain nonlinearities and asymmetries, such as stronger
dependence at lower tails than at upper tails, that cannot be
captured by the multivariate normal distribution. This asym-
metry translates into extremely negative returns being more
correlated than extremely positive returns. Thus, our results for
the German equities resemble those from Longin and Solnik
(2001), Ang and Chen (2002) and Patton (2006) for interna-
tional markets, U.S. equities, and Deutsch mark/Japanese yen
exchange rates, where empirical evidence for asymmetric
dependences with increasing correlations in market downturns
were found.

Furthermore, in the non-Gaussian framework, with non-
linearities and asymmetries taken into consideration through
the use of Clayton copulae, the adaptive estimation produces
better var fits than the moving window estimation. The high
sensitive adaptive procedure can capture local changes in the
dependence parameter that are not detected by the estimation
with a scrolling window of fixed size.

The main advantage of using time-varying copulae to model
dependence dynamics is that the normality assumption is not
needed. With the proposed adaptively estimated time-varying
copulae, neither normality assumption nor specification for the
dependence dynamics are necessary. Hence, the method pro-
vides more flexibility in modeling dependences between
markets and economies over time.

ACKNOWLEDGMENTS

Financial support from the Deutsche Forschungsgemeinschaft
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Table 4. Exceedance ratios and errors, group 1AU8

RiskMetrics Moving windows LCP

a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00

âw� 6.11 1.48 5.62 0.59 5.52 0.69
âw1

5.91 1.38 5.42 0.49 5.42 0.69
âw2

6.40 1.28 5.91 0.49 5.71 0.59
AW 0.23 0.45 0.11 �0.49 0.11 �0.36
DW 0.04 0.14 0.06 0.08 0.06 0.10

NOTE: Exceedance ratios for portfolios w*, w1, and w2, and average and standard
deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.

Table 5. Exceedance ratios and errors, group 2AU9

RiskMetrics Moving windows LCP

a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00

âw� 5.42 1.58 4.53 0.39 4.53 0.30
âw1

5.81 1.77 5.02 0.39 5.02 0.39
âw2

5.62 1.58 5.12 0.39 5.22 0.30
AW 0.16 0.57 �0.10 �0.65 �0.09 �0.65
DW 0.04 0.16 0.06 0.09 0.06 0.08

NOTE: Exceedance ratios for portfolios w*, w1, and w2, and average and standard
deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.
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State price densities (SPDs) are an important element in applied quantitative finance. In a Black–Scholes
world they are lognormal distributions, but in practice volatility changes and the distribution deviates
from log-normality. In order to study the degree of this deviation, we estimate SPDs using EUREX option
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pricing function. The estimator is constrained so as to satisfy no-arbitrage constraints and corrects for
the intraday covariance structure in option prices. In contrast to existing methods, we do not use any
parametric or smoothness assumptions.
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1. Introduction

The dynamics of option prices carries information on changes
in state price densities (SPDs). The SPD contains important
information on the behavior and expectations of the market and
is used for pricing and hedging. The most important application
of an SPD is that it allows one to price options with complicated
payoff functions simply by (numerical) integration of the payoff
with respect to this density.
Prices Ct(K , T ) of European optionswith strike priceK observed

at time t and expiring at time T allow one to deduce the state
price density f (.)using the relationship (Breeden and Litzenberger,
1978)

f (K) = exp{r(T − t)}
∂2Ct(K , T )
∂K 2

. (1)

Eq. (1) can be used to estimate the SPD f (K) from the observed
option prices. An extensive overview of parametric and other
estimation techniques can be found, for example, in Jackwerth
(1999). An application to option pricing is given in Buehler (2006).
Kernel smoothers were in this framework proposed and suc-

cessfully applied by, for example, Aït-Sahalia and Lo (1998), Aït-
Sahalia and Lo (2000), Aït-Sahalia et al. (2000), or Huynh et al.
(2002). Aït-Sahalia and Duarte (2003) proposed a method for
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nonparametric estimation of the SPD under constraints like pos-
itivity, convexity, and boundedness of the first derivative. Bon-
darenko (2003) calculates arbitrage-free SPD estimates using posi-
tive convolution approximation (PCA) methodology and demon-
strates its properties in a Monte Carlo studied based on closing
prices of the S&P 500 options. Another sophisticated approach
based on smoothing splines allowing one to include these con-
straints is described and applied on simulated data in Yatchew
and Härdle (2006). In the majority of these papers, the focus was
more on the smoothing techniques rather than on a no-arbitrage
argument, although a crucial element of local volatility models is
the absence of arbitrage (Dupire, 1994). Highly numerically effi-
cient pricing algorithms, for example, byAndersen andBrotherton-
Ratcliffe (1997), rely heavily on no-arbitrage properties. Kahalé
(2004) proposed a procedure that requires solving a set of nonlin-
ear equationswith no guarantee of a unique solution.Moreover, for
that algorithm the data feed is already (unrealistically) expected
to be arbitrage free (Fengler, 2005; Fengler et al., 2007). In addi-
tion, the covariance structure of the quoted option prices (Renault,
1997) is rarely incorporated into the estimation procedure.
In Table 1, we give an overview of selected properties of

different estimation techniques. The parametric approach may
be used to estimate parameters of a probability density lying in
some preselected family. The parametric models may be further
extended by considering more flexible probability densities or
mixtures of distributions. Approaches based on nonparametric
smoothing techniques are more flexible since the shape of a
nonparametric SPD estimate is not fixed in advance and the
method controls only the smoothness of the estimate. For example,

http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:haerdle@wiwi.hu-berlin.de
mailto:hlavka@karlin.mff.cuni.cz
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Table 1
Summary of properties of parametric and nonparametric estimators.

Methods
Parametric Standard smoothing method Nonparametric under constraints This paper

Shape Fixed Flexible Flexible Flexible
Control Choice of family Smoothness Smoothness None
SPD support Infinite Restricted Restricted Restricted
Constraints By design Local Yes Yes
the smoothness of a kernel regression estimator depends mostly
on the choice of the bandwidth parameter, the smoothness of the
PCA estimator (Bondarenko, 2003) depends on the choice of the
kernel, and the smoothness of the NNLS estimator (Yatchew and
Härdle, 2006) is controlled by constraining the Sobolev norm of
the SPD; using these nonparametric estimators, systematic bias
may typically occur in the case of oversmoothing. Constraints
on estimators are more easily implemented for globally valid
parametric models than for local (nonparametric) models. The use
of a standard smoothing technique which does not account for
the constraints is not advisable. The value of the nonparametric
estimate cannot be calculated in regions without any data and,
therefore, the support of nonparametrically estimated SPDs is
limited by the range of the observed strike prices even for
nonparametric-under-constraints techniques.
Most of the commonly used estimation techniques do not

specify explicitly the source of randomerror in the observed option
prices; see Renault (1997) for an extensive review of this subject.
A common approach in SPD estimation is to use either the closing
option prices or to correct the intraday option prices by the current
value of the underlying asset. Both approaches lack interpretation
if the shape of the SPD changes rapidly. This can bemade clear by a
gedankenexperiment: if the shape of the SPD changes dramatically
during the day, correcting the observed option prices by the value
of the underlying asset and then estimating the SPD would lead to
an estimate of some (nonexisting) daily average of the true SPDs.
We try to circumvent this problem by introducing a simple model
for the intraday covariance structure of option prices which allows
us to estimate the value of the true SPD at an arbitrarily chosen
fixed time; see also Hlávka and Svojík (2008). Most often, we are
interested in the estimation of the current SPD.
We develop a simple estimation technique in order to construct

constrained SPD estimates from the observed intraday option
prices which are treated as repeated observations collected
during a certain time period. The proposed technique involves
constrained LS-estimation, it enables us to construct confidence
intervals for the current value of the SPD and prediction intervals
for its future development, and it does not depend on any
tuning (smoothness) parameter. The construction of a simple
approximation of the covariance structure of the observed option
prices follows naturally from the derivation of our nonparametric
constrained estimator. This covariance structure is interesting in
itself; it separates two sources of randomerrors, and it is applicable
to other SPD estimators.
We study the development of the estimated SPDs in Germany

over 8 years. A no-arbitrage argument is imposed at each
time point, leading (mathematically) to the above-mentioned
no-arbitrage constraints. This, of course, is a vital feature for
trading purposeswhere the derived (implied) volatility surfaces for
different strikes and maturities are needed for proper judgment of
risk and return.
The resulting SPDs and implied volatility surfaces are not

smooth per se. In most applications, this is not a disadvantage
though, since, first, we may smooth the resulting SPD estimates
(Hlávka and Svojík, 2008) and, second, we are mostly interested
in functionals of the estimated SPD like, for example, the expected
payoff or the forward price. Another important feature that can be
easily estimated from the nonsmooth SPDs are the quantiles; see
Section 6.2 for an application.
In Section 2, we introduce the notation, discuss constraints that

are necessary for estimating SPDs, and we construct a very simple
unconstrained SPD estimator using simple linear regression. In
Section 3, this estimator is modified so that it satisfies the
shape constraints given in Section 2.1. We demonstrate that the
covariance structure of the option prices exhibits correlations
depending both on the strike price and time of the trade in
Section 4. In Section 5, we apply our estimation technique on
option prices observed in the year 1995, and we show that the
proposed approximation of the covariance structure removes the
dependency and heteroscedasticity of the residuals. The dynamics
of the estimated SPDs in years 1995–2003 is studied in Section 6.

2. Construction of the estimate

The fair price of a European call option with payoff (ST −K)+ =
max(ST − K , 0), with ST denoting the price of the stock at time T , t
the current time, K the strike price, and r the risk-free interest rate,
can be written as

Ct(K , T ) = exp{−r(T − t)}
∫
∞

0
(ST − K)+f (ST )dST , (2)

i.e., as the discounted expected value of the payoff with respect
to the SPD f (.). For the sake of simplicity of the following
presentation, we assume in the rest of the paper that the discount
factor exp{−r(T − t)} = 1. In applications, this is achieved
by correcting the observed option prices by the known risk-free
interest rate r and the time to maturity (T − t) in (2). At the time
of the trade, the current index price and volatility are common to
all options and, hence, do not appear explicitly in Eq. (2).
Let us denote the i-th observation of the strike price by Ki

and the corresponding option price, divided by the discount factor
exp{−r(T − t)} from (2), by Ci = Ct,i(Ki, T ). In practice, on any
given day t , one observes option prices repeatedly for a small
number of distinct strike prices. Therefore, it is useful to adopt the
following notation. Let C = (C1, . . . , Cn)> be the vector of the
observed option prices on day t sorted by strike price. Then, the
vector of strike prices has the following structure:

K =


K1
K2
...
Kn

 =

k11n1
k21n2
...

kp1np

 ,
where k1 < k2 < · · · < kp, nj =

∑n
i=1 I(Ki = kj), with I(.)

denoting the indicator function and 1n a vector of ones of length n.

2.1. Assumptions and constraints

Let us now concentrate on options corresponding to a single
maturity T observed at fixed time t . Let us assume that the i-th
observed option price (corresponding to strike price Ki) follows the
model
Ct,i(Ki, T ) = µ(Ki)+ εi, (3)
where εi are iid random variables with zeromean and variance σ 2.
In practice, one might expect that the errors exhibit correlations
depending on the strike price and time. Heteroscedasticity can
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be incorporated in model (3) if we assume that the random
errors εi have variance Var εi = σ 2Ki , leading to weighted least
squares. The assumptions on the distribution of random errors will
be investigated in more detail in Section 5.3. Following Renault
(1997), we interpret the observed option price as the price given by
a pricing formula plus an error term, and in Section 4 we suggest
a covariance structure for the observed option prices taking into
account the dependencies across strike prices and times of trade.
Harrison and Pliska (1981) characterized the absence of

arbitrage by the existence of a unique risk neutral SPD f (.). From
formula (2) and the properties of a probability density it follows
that, in a continuous setting, the function µ(.), defined on R+, has
to satisfy the following no-arbitrage constraints:
1’: it is positive,
2’: it is decreasing in K ,
3’: it is convex,
4’: its second derivative exists and it is a density (i.e., nonnegative
and it integrates to one).

Let us now have a look at functions satisfying Constraints 1’–4’.

Lemma 1. Suppose that µ : R+ → R+ satisfies Constraints 1’–4’.
Then the first derivative, µ(1)(.), is nondecreasing and such that
limx→0 µ(1)(x) = −1 and limx→+∞ µ(1)(x) = 0.

Proof. Constraint 4’ implies that the first derivative, µ(1), exists
and that it is differentiable. limx→+∞ µ(1)(x) exists since the
function µ(1) is nondecreasing (Constraint 3’) and bounded
(Constraint 2’). Next, limx→∞ µ(1)(x) = 0 since a negative
limit would violate Constraint 1’ for large x (µ(1)(x) cannot be
positive since µ(x) is decreasing). Finally, Constraint 4’, 1 =∫
∞

0 µ(2)(x)dx = limx→+∞ µ(1)(x) − limx→0 µ(1)(x), implies that
limx→0 µ(1)(x) = −1. �

Remark 1. Lemma 1 allows us to restate Constraints 3’ and 4’
in terms of µ(1)(.) by assuming that µ(1)(.) is differentiable,
nondecreasing, and such that limx→0 µ(1)(x) = −1 and
limx→+∞ µ(1)(x) = 0.

In this section, we stated only constrains guaranteeing that
the SPD estimate will be a probability density. Constraints for the
expected value of the SPD estimate are discussed in Section 3.6.

2.2. Existence and uniqueness

In this subsection we address the issue of existence and
uniqueness of a regression function, Ĉ(.), satisfying the required
assumptions and constraints. In practice, we do not deal with
a continuous function. Hence, we restate Constraints 1’–4’ for
discrete functions, defined only on a finite set of distinct points,
say k1 < · · · < kp, in terms of their function values, C(ki), and
their scaled first differences, C (1)ki,kj = {C(ki)− C(kj)}/{ki − kj}.

1: C(ki) ≥ 0, i = 1, . . . , p,
2: ki < kj implies that C(ki) ≥ C(kj),
3: ki < kj < kl implies that−1 ≤ C

(1)
ki,kj
≤ C (1)kj,kl ≤ 0.

It is easy to see that Constraints 1–2 are discrete versions
of Constraints 1’ and 2’. Constraint 3 is a discrete version of
Constraints 3’ and 4’; see Remark 1.
From now on, similarly as in Robertson et al. (1988), we think

of the collection, C, of functions satisfying Constraints 1–3 as a
subset of a p-dimensional Euclidean space, where p is the number
of distinct ki’s. The constrained regression, Ĉ , is in this setting the
closest point ofC to the vector C of the observed option priceswith
distances measured by the usual Euclidean distance

d(f , C) = (f − C)>(f − C) =
n∑
i=1

{f (Ki)− C(Ki)}2. (4)
From this point of view, the regression function, Ĉ , consists only
of the values of the function in the points k1, . . . , kp. The first and
seconddifferences are used to approximate the first and the second
derivatives, respectively.
We claim that the set, C, of functions satisfying Constraints 1–3

is closed in the topology induced by the metric given by Euclidean
distance and it is convex, i.e., if f , g ∈ C and 0 ≤ a ≤ 1, then
af + (1− a)g ∈ C.

Lemma 2. If Ĉ ∈ C is the regression of C(Ki), i = 1, . . . , n, on
k1 < · · · < kp under Constraints 1–3 and if a and b are constants
such that a ≤ C(Ki) ≤ b, ∀i, then a ≤ Ĉ(ki) ≤ b+ (kp − k1).

Proof. It is not possible that Ĉ(ki) lies above b for all ki’s (otherwise
we would get a better fit only by shifting Ĉ(ki)). The upper bound
now follows from Constraint 3.
The validity of the lower boundmay be demonstrated similarly.

Clearly, it is not possible that Ĉ(ki) lie below a for all ki’s. Moreover,
it is not possible that Ĉ(k1) ≥ · · · ≥ Ĉ(ki) ≥ a > Ĉ(ki+1) ≥
· · · ≥ Ĉ(kp) for any i, since in such a situation the fit could be
trivially improved by increasing Ĉ(ki+1), . . . , Ĉ(kp) by some small
amount, for example, by a − Ĉ(ki+1), without violating any of the
Constraints 1–3. �

Theorem 1. A regression, Ĉ = argminf∈C d(f , C), satisfying
Constraints 1–3, exists and it is unique.

Proof. Lemma2 implies that Ĉ belongs to a subset,S, ofC bounded
below by a and above by b+ (kp− k1). Thinking of the functions as
points in Euclidean space, it is clear that the continuous function
d(f , C) attains its minimum on the closed and bounded set S. The
uniqueness of Ĉ follows from the convexity of S using, for example,
Robertson et al. (1988, Theorem 1.3.1). �

2.3. Linear model

With the given option data, Constraints 1–3 of Section 2.2 can
be reformulated using linear regression models with constraints.
In the following, we fix the time t and the expiry date T and we

omit these symbols from the notation. In Section 2.2we have noted
that the option prices are repeatedly observed for a small number p
of distinct strike prices. Defining the expected values of the option
prices for a given strike price,µj = µ(kj) = E{C(kj)}, we can write

µp = β0,

µp−1 = β0 + β1,

µp−2 = β0 + 2β1 + β2,
µp−3 = β0 + 3β1 + 2β2 + β3,
...

µ1 = β0 + (p− 1)β1 + (p− 2)β2 + · · · + βp−1.

Thus, we fit our data using coefficients βj, j = 1, . . . , p. The
conditional means µi, i = 1, . . . , p are replaced by the same
number of parameters βj, j = 0, . . . , p − 1, which allow us to
impose the shape constraints in a more natural way.
The interpretation of the coefficients βj can be seen in Fig. 1,

which shows a simple situation with only four distinct strike
prices (p = 4). β0 is the mean option price at point 4.
Constraint 1’, Section 2.1, implies that it has to be positive. β1 is the
difference between the mean option prices at point 4 and point 3;
Constraint 2’ implies that it has to be positive. The next coefficient,
β2, approximates the change in first derivative in point 3 and it
can be interpreted as an approximation of the second derivative in
point 3. Constraint 3’ implies that β2 has to be positive. Similarly,
β3 is an estimate of the (positive) second derivative in point 2.
Constraint 4’ can be rewritten as β2 + β3 ≤ 1.
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Fig. 1. Illustration of the dummy variables for call options.

In practice, we start with the construction of a design matrix
which allows us to write the above model in the following linear
form. For simplicity of presentation, we again set p = 4:µ1µ2µ3
µ4

 =
1 3 2 1
1 2 1 0
1 1 0 0
1 0 0 0


β0β1β2
β3

 . (5)

Ignoring the constraints on the coefficients would lead to a simple
linear regression problem. Unfortunately, this approach does not
have to lead, and usually does not, to interpretable and stable
results.
Model (5) in the above form can be reasonably interpreted only

if the observed strike prices are equidistant and if the distances
between the neighboring observed strike prices are equal to one.
If we want to keep the interpretation of the parameters βj as the
derivatives of the estimated function, we should use the design
matrix

∆ =



1 ∆1p ∆1p−1 ∆1p−2 · · · ∆13 ∆12
1 ∆2p ∆2p−1 ∆2p−2 · · · ∆23 0
...

...

1 ∆p−2p ∆
p−2
p−1 0 · · · 0 0

1 ∆p−1p 0 0 · · · 0 0
1 0 0 0 · · · 0 0


, (6)

where ∆ij = max(kj − ki, 0) denotes the positive part of the
distance between ki and kj, the i-th and the j-th (1 ≤ i ≤ j ≤ p)
sorted distinct observed values of the strike price.
The vector of conditional means µ can be written in terms of

the parameters β as follows:
µ1
µ2
...
µp

 = µ = ∆β = ∆

β0
β1
...

βp−1

 . (7)

The constraints on the conditional meansµj can now be expressed
as conditions on the parameters of the model (7). Namely, it
suffices to request that βi > 0, i = 0, . . . , p − 1 and that∑p−1
j=2 βj ≤ 1.
The model for the option prices can now be written as

C(K) = X∆β + ε, (8)

whereX∆ is the design matrix obtained by repeating each row of
matrix∆ ni times, i = 1, . . . , p.

3. Implementing the constraints

In order to impose Constraints 1–3 on parameters βi, i =
0, . . . , p − 1, we propose the following reparameterization of the
model in terms of parameters θ = (θ0, . . . , θp−1)>:

β0(θ) = exp(θ0),
β1(θ) = exp(θ1),
...

βp−1(θ) = exp(θp−1),

under the constraint that
∑p−1
j=2 exp(θj) < 1. Clearly, the

parameters βi(θ) satisfy the constraints

βi(θ) > 0, i = 0, . . . , p− 1,
p−1∑
j=2

βj(θ) < 1.

This means that the parameters β2(θ), . . . , βp−1(θ) can be
considered as point estimates of the state price density (the
estimates have to be positive and integrate to less than one).
Furthermore, in view of Lemma 1, it is worthwhile to note that the
parameters also satisfy

−

k∑
j=1

βj ∈ (−1, 0), for k = 1, . . . , p− 1.

Themodel (8) rewritten in terms of parameters θi, i = 0, . . . , p,
is a nonlinear regression model which can be estimated using
standard nonlinear least squares or maximum likelihood methods
(Seber and Wild, 2003). The main advantage of these methods
is that the asymptotic distribution is well known and that the
asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

3.1. Reparameterization

The following reparameterization of the model in terms of
parameters ξ = (ξ0, . . . , ξp)

> simplifies the calculation of
the estimates because it guarantees that all constraints are
automatically satisfied:

β0(ξ) = exp(ξ0),

β1(ξ) =
exp(ξ1)
p∑
j=1
exp(ξj)

,

...

βp−1(ξ) =
exp(ξp−1)
p∑
j=1
exp(ξj)

.

This property simplifies the numerical minimization algorithm
needed for the calculation of the estimates.
The equality

1
p−1∑
j=1
βj(ξ)

= 1+
exp(ξp)

p−1∑
j=1
exp(ξj)

shows the meaning of the additional parameter ξp. Setting
this parameter to −∞ would be the same as requiring that∑p−1
j=1 βj(ξ) = 1. Large values of the parameter ξp indicate that the

estimated coefficients sum to less than one or, in other words, the
observed strike prices do not cover the support of the estimated
SPD. Notice that, by setting ξp = −∞, we could easily modify our
procedure and impose the equality constraint

∑p−1
j=1 βj(ξ) = 1.
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3.2. Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to
calculate ξ ’s from given β ’s. This is needed, for example, to obtain
reasonable starting points for the iterative procedure maximizing
the likelihood.

Lemma 3. Given β = (β1, . . . , βp)>, where βp = 1−
∑p−1
i=1 βi, the

parameters ξ = (ξ1, . . . , ξp)> satisfy the system of equations(
β1>p − Ip

)
exp ξ> = A exp ξ> = 0, (9)

where Ip is the (p× p) identity matrix. Furthermore,

rankA = p− 1. (10)

The system of Eq. (9) has infinitely many solutions, which can be
expressed as

exp(ξ) =
(
A−A− Ip

)
z, (11)

where A− denotes a generalized inverse of A and where z is an
arbitrary vector inRp such that the right-hand side of (11) is positive.

Proof. Parts (9) and (10) follow from the definition of β(ξ)
and from simple algebra (notice that the sum of rows of A is
equal to zero). Part (11) follows, for example, from Anděl (1985,
Theorem IV.18). �

It remains to choose the vector z in (11) so that the solution of
the system of Eq. (9) is positive.

Proposition 1. The rank of the matrix A−A − Ip is 1. Hence, any
solution of the system of Eq. (9) is a multiple of the first column of the
matrix A−A − Ip. The vector z in (11) can be chosen, for example,
as z = ±1p, where the sign is chosen so that the resulting solution is
positive.

Proof. The definition of a generalized inverse is

AA−A−A = A(A−A− Ip) = 0. (12)

Lemma 3 says that rankA = p − 1 and, hence, Eq. (12) implies
that rank(A−A − Ip) ≤ 1. Noticing that A−A 6= Ip means that
rank(A−A− Ip) > 0, and concludes the proof. �

3.3. The algorithm

The proposed algorithm consists of the following steps:

1: obtain a reasonable initial estimate β̂ , for example, by
running the Pool-Adjacent-Violators algorithm (Robertson
et al., 1988, Chapter 1) on the unconstrained least squares
estimates of the first derivative of the curve,

2: transform the initial estimate β̂ into the estimate ξ̂ using the
method described in Section 3.2,

3: estimate the parameters of the model (8) by minimizing the
sum of squares {C(K)−X∆β(ξ)}

>
{C(K)−X∆β(ξ)} in terms

of ξ (see Section 3.1) using numerical methods.

An application of this simple algorithm on real data is given in
Section 5.1.

3.4. Asymptotic confidence intervals

We construct confidence intervals based on the parameteriza-
tion β(θ) introduced at the beginning of this section. The confi-
dence limits for parameters θi are exponentiated in order to obtain
valid pointwise confidence bounds for the true SPD. The main ad-
vantage of this approach is that such confidence bounds are always
positive.
Analternative approachwould be to construct confidence inter-
vals based on the parameterizations in terms ofβi (Section 2.3) or ξi
(Section 3.1). However, the limits of confidence intervals forβimay
be negative and confidence intervals for the SPD based on param-
eters ξi would have very complicated shapes in high-dimensional
space and could not be easily calculated and interpreted.
Another approach to the construction of the asymptotic

confidence intervals can be based on the maximum likelihood
theory. Assuming normality, the log-likelihood for the model (8)
can be written as

l(C,X∆, θ, σ ) = −n log σ −
1
2σ 2
{C −X∆β(θ)}

>

×{C −X∆β(θ)}, (13)

where X∆ is the design matrix given in (8). This normality
assumption is justified later by a residual analysis. The maximum
likelihood estimator is defined as

θ̂ = argmax
θ
l(C,X∆, θ, σ ), (14)

and it has asymptotically a p-dimensional normal distribution
with mean θ and the variance given by the inverse of the Fisher
information matrix:

F −1n =

{
−E

(
∂2

∂θ∂θ>
l(C,X∆, θ, σ )

)}−1
. (15)

More precisely,n1/2(θ̂−θ)
L
−→ Np(0,F −1n ). In this framework, the

Fisher information matrix can be estimated by using the numeri-
cally differentiated Hessianmatrix of the log-likelihood. For details
we refer, for example, to Serfling (1980, Chapter 4). The confidence
intervals calculated for parameters θ may be transformed (expo-
nentiated) to a confidence intervals for the SPD (β). We have not
pursued the maximum likelihood approach since it was numeri-
cally less stable in this situation.
Note that, under the assumptions of normality, the maximum

likelihood estimate is equal to the nonlinear least squares es-
timate (Seber and Wild, 2003, Section 2.2), and the asymptotic
variance of θ̂ = exp(β) may be approximated by Var θ̂ =
{diag(exp θ̂ )X>∆X∆diag(exp θ̂ )}−1σ̂ 2. Hence, asymptotic confi-
dence intervals for θi may be calculated as (̂θi ± u1−α/2̂sii), where
u1−α/2 is the 1− α/2 quantile of the standard Normal distribution
and ŝii denotes the i-th diagonal element of Var θ̂ . By exponentiat-
ing both limits of this confidence interval, we immediately obtain
the 1− α confidence interval for βi = exp θi.
The construction of the estimator guarantees that the matrix

X∆ has full rank—this implies that X>∆X∆ is invertible and the
asymptotic variance matrix Var θ̂ always exists. If the number of
observations is equal to thenumber of distinct strike prices (if there
is only one option price for each strike price), it may happen that
σ̂ 2 = 0 and the confidence intervals degenerate to a single point.

3.5. Put–Call parity

The prices of put options can be easily included in our
estimation technique by applying the Put–Call parity of the option
prices. Assuming that there are no dividends or costs connected
with the ownership of the stock, each put option with price
Pt(K , T ) corresponds to a call option with price

Ct(K , T ) = Pt(K , T )+ St − Ke−r(T−t).

In this way, the prices of the put options can be converted into
the prices of call options and used in our model (Stoll, 1969).
Statistically speaking, these additional observations will increase
the precision of the SPD and will lead to more stable results.
In Germany, the Put–Call parity might be biased by an effect of

the DAX index calculation which is based on the assumption that
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Fig. 2. Illustration of the dummy variables for both call (β) and put (α) options.

the dividends are reinvested after deduction of corporate income
tax. As the income tax of some investors might be different, the
value of the DAX has to be corrected before using Put–Call parity
in subsequent analysis. For the exact description of this correction
we refer to Hafner and Wallmeier (2000) who were analyzing the
same data set.
The construction of our estimates allows us to include the

put option prices in a more direct way by fitting the two curves
separately using two sets of parameters. The situation is displayed
in Fig. 2. Our assumption that the same SPD drives both the put and
call option prices is naturally translated in terms of the coefficients
αi and βi:

αi = βp−i+1, for i = 2, . . . , p− 1

α1 = 1−
p−1∑
i=1

βi.

The problem of estimating regression functions under such linear
equality constraints is solved, for example, in Rao (1973). In
Section 4.3, we will also investigate the covariance of the observed
call and put option prices, and the suggested model will be
presented in detail.

3.6. Expected value constraints

In Section 2.3, we have explained that the parameters
β2, . . . , βp−1 can be interpreted as estimates of the state price
density in points k2, . . . , kp−1. From the construction of the
estimator, see also Fig. 1, it follows that parameter β1 can be
interpreted as the mass of the SPD lying to the right of kp−1.
Assuming that the observed strike prices entirely cover the support
of the SPD, the mass β1 could be attributed to the point kp. Notice
that the reparameterization introduced in Section 3 guarantees
that

∑p−1
i=1 βi(ξ) < 1, and it immediately follows that interpreting

β1 as the estimate of the SPD in point kp does not violate any
constraints described in Section 2.2.
Referring to Section 3.5, it is clear that the parameter βp ≡

α1 = 1 −
∑p−1
i=1 βi can be interpreted as the estimator of the SPD

in k1. The parameterization of the problem now guarantees that∑p
i=1 βi = 1.
The expected value of the underlying stock under the risk-

neutral measure can now be estimated as ÊSPD =
∑p
i=1 kiβp−i+1.

From economic theory it follows that ÊSPD has to be equal to
the forward price of the stock. This constraint can be easily
implemented by using the fact that β1 and βp estimate the mass
of the SPD respectively to the right of kp−1 and to the left of k2.
If ÊSPD is smaller than the forward price exp{r(T − t)}St of the

stock, it suffices to move the mass β1 further to the right. If ÊSPD is
too large, we move the mass βp to the left. More precisely, setting

k̃1 = k1 − I(ÊSPD > exp{r(T − t)}St)(ÊSPD − exp{r(T − t)}St)/βp,

k̃p = kp + I(ÊSPD < exp{r(T − t)}St)(exp{r(T − t)}St − ÊSPD)/β1,
we get

exp{r(T − t)}St = k̃1βp +
p−1∑
i=2

kiβp−i+1 + k̃pβ1.

This choice of k̃1 and k̃p guarantees that the expected value
corresponding to the estimator β1, . . . , βp is equal to the forward
price St of the stock; see the beginning of Section 6 for an
application of this technique.
In Sections 4 and 5, we will concentrate on the properties

of β2, . . . , βp−1 and further improvements in the estimation
procedure.

4. Covariance structure

In this section, we use a model for the SPD development
throughout the day to derive the covariance structure of the
observed option prices depending on the strike prices and time of
the trade. Considering the covariance structure in the estimation
procedure solves the problems with heteroscedasticity and
correlation of residuals that will be demonstrated in Section 5.3.
In this model, most recent option prices have the smallest

variance and thus the largest weight in the estimation procedure.
Similarly, the covariance of two option prices with the same strike
price at approximately the same time is larger than the covariances
of prices of some more dissimilar options.
We start by rewriting the model with iid error terms so that it

can be more easily generalized. In Section 4.1, we present a model
that accounts for heteroscedasticity and which is further devel-
oped in Sections 4.2 and 4.3,where an approximation of the covari-
ance is calculated for any two options prices using only their strike
prices and time of the trade. In Section 4.4, we suggest decompos-
ing the error term into two parts, and we show how to estimate
these additional parameters by the maximum likelihood method.
The analysis of the resulting standardized residuals in Section 5.4
suggests that this covariance structure is applicable to our dataset.
Until now, we have assumed that the i-th option price (on a

fixed day t) satisfies

Ci(kj) = ∆jβ̃ + εi (16)
or
Ci(kj) = ∆jβ̃i + εi,

β̃i = β̃i−1, (17)
where εi are iid random errors with zero mean and constant
variance σ 2, β̃ = β̃1 = · · · = β̃i denotes the column vector of the
unknown parameters, and∆j denotes the j-th row of the matrix∆
defined in (6), i.e.,

∆j = (1,∆jp,∆
j
p−1, . . . ,∆

j
j+1, 0, . . . , 0︸ ︷︷ ︸

(j−1)

).

The residual analysis in Section 5.3 clearly demonstrates that the
random errors εi are not independent and homoscedastic, and we
have to consider some generalizations that lead to a better fit of the
data set.

4.1. Heteroscedasticity

Assume that the i-th observation, corresponding to the j-th
smallest exercise price kj, can be written as

Ci(kj) = ∆jβ̃i, (18)

β̃i = β̃ + εi, (19)
i.e., there are iid random vectors εi having iid components with
zero mean and variances σ 2 in the state price density β̃i. Clearly,
the variance matrix of the vector of the observed option prices C is
then

Var C = σ 2diag(X∆X>∆), (20)
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whereX∆ is the design matrix in which each row of the matrix∆
is repeated nj times, j = 1, . . . , p.

Remark 2. Assuming that the observed option prices have the
covariance structure (20), the least squares estimates do not
change, and

Var β̂ = σ 2{X>∆diag(X∆X>∆)
−1X∆}.

Another possible model for the heteroscedasticity would
assume that the changes are multiplicative rather than additive.
Ci(kj) = ∆jβ̃i
log β̃i = log β̃ + εi.
This model leads to a variance of Ci(kj) that depends on the value
of the SPD:
Var Ci(kj) = σ 2{β20 + (∆

j
p)
2β21 + (∆

j
p−1)

2β22 + (∆
j
p−2)

2β23

+ · · · + (∆
j
j+1)

2β2j }.

It is straightforward that Remark 2 also applies in this situation.

4.2. Covariance

Let us now assume that there are random changes in the state
price density coefficients β̃i over time so that we have
Ci(kj) = ∆jβ̃i,

β̃i = β̃i−1 + εi, (21)
where, for fixed i, β̃i is the parameter vector and εk, k = i, i−1, . . .,
are iid random vectors having iid components with zero mean and
variances σ 2. For nonequidistant time points, let δi denote the time
between the i-th and (i− 1)-th observation. The model is
Ci(kj) = ∆jβ̃i,

β̃i = β̃i−1 + δ
1/2
i εi, (22)

and it leads to the covariance matrix with elements
Cov{Ci−u(kj), Ci−v(ki)} = Cov(∆jβ̃i−u,∆iβ̃i−v)

= σ 2∆j∆
>

i

min(u,v)∑
l=1

δi+1−l. (23)

Whenwe observe the i-th observation, we are usually interested in
the estimation of the current value of the vector of parameters β̃i.

4.3. Including put options

Similarly, we obtain the covariance for the price of the
put options, Pi(kj). Using the relations between the α and β
parameters, αk = βp−k+1, for k = 2, . . . , p − 1, and after some
simplifications, we can write the model for the price of the put
options, Pi(kj), as
Pi(kj) = ∆jα̃i,

α̃i = α̃i−1 + δ
1/2
i εi, (24)

where α̃ = (α0, α1, βp−1, βp−2, . . . , β2)
> and ∆Pj denotes the

corresponding row of the design matrix, i.e.,

∆Pj = (1,∆
1
j ,∆

2
j , . . . ,∆

j−1
j , 0, . . . , 0︸ ︷︷ ︸

(p−j)

).

In this way, we obtain a joint estimation strategy for both the call
and put option prices:
Ci(kj) = ∆jβ̃i,

Pi(kj) = ∆Pj α̃i,(
β̃i
α̃i

)
=

(
β̃i−1
α̃i−1

)
+ δ

1/2
i εi, (25)
which directly leads to covariances

Cov{Pi−u(kj), Pi−v(ki)} = Cov(∆Pj α̃i−u,∆
P
i α̃i−v)

= σ 2∆Pj (∆
P
i )
>

min(u,v)∑
l=1

δi+1−l (26)

and

Cov{Ci−u(kj), Pi−v(ki)} = Cov(∆jβ̃i−u,∆Pi α̃i−v)

= σ 2
min(u,v)∑
l=1

δi+1−l

p−1∑
k=2

∆
j
p+1−k∆

p+1−k
i . (27)

Together with (23), Eq. (26) and (27) allow us to calculate the
covariance matrix of all observed option prices using only their
strike prices and the times between the transactions.

4.4. Error term for option prices

Using the model (25) would mean that all changes observed
in the option prices are due only to changes in the SPD. It seems
natural to add another error term, ηi, as a description of the error
in the option price:

Ci(kj) = ∆jβ̃i + ηi,

Pi(kj) = ∆Pj α̃i + ηi,(
β̃i
α̃i

)
=

(
β̃i−1
α̃i−1

)
+ δ

1/2
i εi, (28)

where ηi ∼ N(0, ν2) are iid random variables independent of the
random vectors εi. Here, normality assumptions are added both for
ηi and εi so that the variance components parameters ν2 and σ 2
may be estimated by the maximum likelihood method.
Next, in order to simplify the notation, let us fix the index

i, and let Y denote the vector of observed call and put option
prices, X∆ the corresponding design matrix consisting of the
corresponding rows ∆j and ∆Pj , and γ̃ the combined vector
of unknown parameters. Denoting by Σi the matrix containing
the covariances defined in (23), (26) and (27), we can rewrite
model (25) as

Y = X∆γ̃ + ξ, (29)

where Var ξ = Var Y = σ 2Σi + ν2In = σ 2(Σi + ψ2In) = σ 2V ,
where ψ2 = ν2/σ 2. Differentiating the log-likelihood

l(β, σ 2, ψ2) = −
n
2
log(2π)−

1
2
log |σ 2V |

−
1
2σ 2

(Y −X∆γ̃ )
>V−1(Y −X∆γ̃ ),

we obtain

∂ l(β, σ 2, ψ2)
∂ψ2

= −
1
2
tr(V−1)+

1
2σ 2

(Y −X∆γ̃ )
>V−2(Y −X∆γ̃ ). (30)

For any fixed value of the parameter ψ2, it is straightforward
to calculate the optimal σ 2 and γ̃ . Hence, the numerical
maximization of the log-likelihood can be based on a search for
a root (zero) of the one-dimensional function (30).
Moreover, the variance components parameters σ 2 and ν2 =

ψ2σ 2 have a very natural econometric interpretation:σ 2 describes
the speed of change of the SPD and ν2 the error in observed option
prices.
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Fig. 3. Option prices plotted against strike price and time to maturity with a two-dimensional kernel regression surface (left) in January 1995 and the ensemble of the call
option prices with shortest time to expiry against strike price (right) on 16 January 1995. SFB and CASE data base: sfb649.wiwi.hu-berlin.de.
Fig. 4. On 16 January 1995, the unconstrained estimate satisfies the constraints.
Hence, it is equal to the constrained estimate. The top panel shows the original
data with the fitted call pricing functions. The second and the third panels show
the estimates of the first and second derivatives, respectively.

5. Application to DAX data

We analyze a data set containing observed option prices for
various strike prices andmaturities. Other variables are the interest
rate, date, and time. In 1995, one observed every day about 500
trades; in today’s more liquid option markets this number has
increased approximately 10 times. In our empirical study we will
consider the time period from 1995 to 2003, thus also covering
more recent liquid option market.
Fig. 3 displays the observed prices of European call options

written on the DAX for the 16 January 1995. The left panel
shows the ensemble of call option prices for different strikes and
maturities as a free structure together with a smooth surface. The
typical shape of dependency of the option price on the strike price
can be observed in the right panel, containing the option prices
only for the shortest time to expiry, τ = T − t = 4 days.
In order to illustrate the method, we apply it to DAX option

prices on two consecutive days. These days (16 and 17 January
1995) were selected since they provide a nice insight into the
behavior of the presented methods.

5.1. Estimator with iid random errors

We start by a comparison of the unconstrained and constrained
estimator described respectively in Sections 2.3 and 3.1.
For the European call option prices displayed in the right-hand

plot in Fig. 3, we obtain the estimates plotted in Fig. 4. The top
plot displays the original data, the second plot shows the estimate
of the first derivative, and the third plot shows the estimate of
the second derivative, i.e., the state price density. Actually, all
plots contain two curves, both obtained using model (8). The thick
line is calculated using the parameters βi without constraints,
whereas the thin line uses the reparameterization βi(ξ) given in
Section 3.1. In Fig. 4, these two estimates coincide since the model
maximizing the likelihood without constraints, by chance, fulfills
the constraints (∃ξ : βi = βi(ξ), i = 0, . . . , p − 1), and hence it
is clear that the same parameters also maximize the constrained
likelihood.
The situation, in which the call pricing functions fitted with and

without constraints differ, is displayed in Fig. 5. Notice that the
difference between the two regression curves is small, whereas
the difference between the estimates of the state price density
(i.e., the second derivative of the curve) is surprisingly large.
The unconstrained estimate shows very unstable behavior on the
left-hand side of the plot. The constrained version behaves more
reasonably. Very small differences between the fitted call pricing
functions in the top plot in Fig. 5 lead to huge differences in the
estimates of the second derivative.
We therefore conclude that a small error in the estimate of the

call pricing function may lead to large scale error in the estimates
of the first and second derivatives. The scale of this type of error
seems to be limited by imposing the shape constraints given in
Section 2.2.

5.2. Confidence intervals

In Figs. 6 and 7, we plot both estimates together with the 95%
confidence intervals. Notice that, in the unconstrained model, the
estimates of the values of the SPD are just the parameters of the
linear regression model. Hence, the confidence intervals for the
parameters are, at the same time, also confidence intervals for the
SPD. These confidence intervals for 16 and 17 January 1995 are
displayed in the upper plots in Figs. 6 and 7. The drawbacks of
this method are clearly visible. In Fig. 6, the lower bounds of the
confidence intervals only asymptotically satisfy the condition of
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Fig. 5. On 17 January 1995, the unconstrained estimate, displayed using the thin
line, does not satisfy the constraints. The top panel shows the original data with the
two fitted call pricing functions. The estimates of the first derivative in the second
panel look rather different. The constrained estimate of the second derivative in the
bottom panel is clearly much more stable than the unconstrained estimate.

Fig. 6. The unconstrained and constrained confidence intervals for the SPD on 16
January 1995. The description on the x-axis shows the number of observations in
each point.

positivity. In Fig. 7, we observe large variability on the left-hand
side of the plot (the region with low number of observations).
Again, some of the lower bounds are not positive. Clearly, the
confidence intervals based on the unconstrained model make
sense only if the constraints are, by chance, satisfied. Even if
this is the case, there is no guarantee that the lower bounds
will be positive. The lower panels in Figs. 6 and 7 display the
nonnegative asymptotic confidence intervals calculated according
to Section 3.4.
In Fig. 6, both types of confidence interval provide very similar

results. The only difference is at theminimumandmaximumvalue
Fig. 7. Confidence intervals for SPD on 17 January 1995. The description on the
x-axis shows the number of observations in each point.

Fig. 8. The time dependency and the heteroscedasticity of the residuals during
one day. The circle, square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols denotes the number
of residuals.

of the independent variable (strike price),where the unconstrained
method provides negative lower bounds and the conditional
method leads to very large upper bounds of the confidence
intervals.
In Fig. 7, we plot the confidence intervals for 17 January 1995.

In the central region of the graphics, both types of confidence
interval are quite similar. On the left-hand and right-hand sides,
both methods tend to provide confidence intervals that seem to
be overly wide. For the constrained method, we observe that the
length of the confidence intervals explodes when the estimated
value of the SPD is very close to zero and, at the same time, the
number of observation in that region (see the description of the
horizontal axis) is small.

5.3. Residual analysis

The residuals on 17 January 1995 are plotted in Fig. 8. The time
of trade (in hours) is denoted by the plotting symbol. The circle,
square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols
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Fig. 9. Estimate using the covariance structure (28) on 17 January 1995. The upper
plot shows the observed option prices and the constrained estimate. The size of
the plotting symbols corresponds to the weight of the observations. The lower plot
shows the estimated SPD with confidence intervals.

corresponds to the number of residuals lying in the respective
areas.
The majority of the residuals correspond to the strike prices of

2075DEM and 2100DEM. The variance of the residuals is very low
on the right-hand side of the plot and it rapidly increases when
moving towards smaller strike prices. On the left-hand side of the
plot, for strike prices smaller than 2000, we have only very few
observations, and cannot judge the residual variability reliably.
Apart from the obvious heteroscedasticity we also observe a

very strong systematic movement in the SPD throughout the day:
the circles, corresponding to the first third of the day, are positive,
and all stars, denoting the afternoon residuals, are negative. Similar
patterns can be observed every day—residuals corresponding to
the same time have the same sign.
We conclude that the assumption of iid random errors is

obviously not fulfilled as the option prices tend to follow the
changes of the market during the day.

5.4. Application of the covariance structure

In Fig. 9, we present the estimator combining both put and
call option prices and using the covariance structure proposed in
Section 4.4. In comparison with the results plotted in Fig. 7, we
observe shorter length of the confidence intervals.
The estimates of the variance components parameters are ψ̂2 =

17.77, σ̂ 2 = 0.0041, and ν̂2 = 0.0722. For interpretation, it ismore
natural to consider ν̂ = 0.2687, suggesting that 95% of the option
prices were on 17 January 1995 not further than 0.5DEM from the
correct option price implied by the current (unobserved) SPD.
Fig. 10. The development of the standardized residuals resulting from the model
with the covariance structure (28) on 17 January 1995 during the day, where circles,
squares, and stars denote the residuals from morning, midday, and afternoon, and
a histogram of the standardized residuals.

Fig. 11. SPD estimate on 17 January 1995 with prediction intervals for the next 5 h
calculated for every 30 min.

The standardized residuals in the top panel of Fig. 10 were
plotted using the same technique as the residuals in Fig. 8.Whereas
the residuals for the iid model showed strong correlations and
heteroscedasticity, the structure of the standardized residuals
looks much better. It is natural that the residuals are larger in the
central part since more than 90% of observations have strike price
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Fig. 12. Daily development of the expected value of the uncorrected SPD from
January to March 1995. The circles denote the corresponding closing value of the
DAX.

Fig. 13. Daily development of the SPD variance from January to March 1995.

between 2050 and 2100. The largest residuals were omitted in
the residual plot so that the structure in the central part is more
visible, but the lower panel of Fig. 10 displays the histogram of all
residuals. The distribution of the residuals seems to be symmetric,
and its shape is not too far from Normal distribution. However,
the kurtosis of this distribution is too large, and formal tests reject
normality.
In Fig. 11, we plot prediction intervals for the SPD obtained only

by recalculating the covariance structure (28)with respect to some
future time. More precisely, the prediction intervals are obtained
from option prices observed until i. Then, using the notation of
Section 4.4, we have, for the future β̃i+1 and α̃i+1,

Ci(kj) = ∆jβ̃i + ηi,

Pi(kj) = ∆Pj α̃i + ηi,(
β̃i+1
α̃i+1

)
=

(
β̃i
α̃i

)
+ δ

1/2
i+1εi+1. (31)

It is now easy to see that the only modification that has to be
done for estimating β̃i+1 is to add the length of the forecasting
horizon δi+1 to the sum in (23), (26) and (27), and to recalculate
the confidence regions using this variance matrix with the same
estimates of the variance parameters σ 2 and ν2. In Fig. 11, the
95% confidence intervals for the true SPD are denoted by the black
dashed line. The grey dashed lines denote the prediction intervals
calculated for each 30 min for the next 5 h. In this way, we can
obtain a simple approximation for future short-term fluctuations
of the SPD. In the long run, the prediction intervals become too
wide to be informative.

6. Dynamics of the SPD

In order to study the dynamics of SPDs, we calculated the
basic moment characteristics of the estimated SPDs. Note that the
estimator does not allow one to estimate the SPD in the tails of the
distribution. We can only estimate the probability mass lying to
the left (1 −

∑p−1
i=1 βi) and to the right (β1) of the available strike

price range. Hence, the moments calculated in this section are
only approximations which cannot be calculated more precisely
without additional assumptions, for example, on the tail behavior
or parametric shape of the SPD.
The estimated mean and variance in the first quarter of 1995

are plotted as lines in Figs. 12–13. Note that the SPDs in this
periodwere always estimated using the optionswith shortest time
to maturity. This means that the time to maturity is decreasing
linearly in both plots, but it jumps upwhenever the optionwith the
shortest time tomaturity expires. These jumps occurred at days 16,
36, and 56.
From no-arbitrage considerations, it follows that the mean of

the SPD should correspond to the value of the DAX,

ÊSPD =
∫
ST f (ST )dST = exp{r(T − t)}St .

See also the discussion in Section 3.6. In Fig. 12, the observed values
of the DAX multiplied by the factor exp{r(T − t)} are plotted as
circles for the first 65 trading days in 1995, andwe observe that the
estimatedmeans of the SPD estimates, displayed as the line, follow
the theoretical value very closely. A small difference is mainly due
to the fact that, in 1995, the observed strike prices do not entirely
cover the support of the SPD. For example, on day 16, the difference
between the SPD mean (2018.7) and the DAX multiplied by the
discount factor (2012.1) is equal to 6.6. The fact that there are not
any trades for strike prices smaller than 1925 means that we only
know that the probability mass lying to the left from 1950 is equal
to 0.25. In the calculation of the estimate of the SPD mean plotted
in Fig. 12, this probability mass is assigned to the value 1925, as
this is the leftmost observed strike price. Obviously, assigning this
probability mass rather to the value 1925 − (6.6/0.25) = 1898.6
leads amore realistic estimate of the SPD and to the equality of the
SPD mean and the discounted DAX.
In Fig. 13, we see that the variance of the SPD decreases

linearly as the optionmoves closer to itsmaturity. This observation
suggests that SPD estimates calculated for neighboring maturities
can be linearly interpolated in order to obtain an SPD estimate
with arbitrary time to maturity. Such an estimate is important
for making the SPD estimates comparable and for studying the
development of the market expectations.

6.1. Estimate with the fixed time to expiry

The variances displayed in Fig. 13 suggest that the variance of
the SPD estimates changes approximately linearly in time when
moving closer to the date of expiry.
Hence, from the estimates fτ1(.) and fτ2(.) of centered SPDs

corresponding to the times of expiry τ1 < τ2, we construct an
estimate fτ (.) for any time of expiry τ ∈ (τ1, τ2) as

fτ (.) =
(τ2 − τ)fτ1(.)+ (τ − τ1)fτ2(.)

τ2 − τ1
. (32)



12 W. Härdle, Z. Hlávka / Journal of Econometrics 150 (2009) 1–15
Fig. 14. Prediction intervals for the DAX based on SPDs and historical simulation from January 1995 to March 2003.
Fig. 15. Histograms for the SPDs (full line) and historical simulation (dashed line).



W. Härdle, Z. Hlávka / Journal of Econometrics 150 (2009) 1–15 13
Fig. 16. Integral transformation for estimated SPDs.
In this way, the variance, Vτ , of the centered SPD with time to
expiry equal to τ can be expressed as

Vτ =
∫
x2fτ (x)dx

=

∫
x2
(τ2 − τ)fτ1(x)+ (τ − τ1)fτ2(x)

τ2 − τ1
dx

=
(τ2 − τ)Vτ1 + (τ − τ1)Vτ2

τ2 − τ1
.

We argue that such an estimate is reasonable since we observed in
Fig. 13 that the SPD variances change linearly in time.

6.2. Verification of the market’s expectations

Under the risk neutral (equivalent martingale) measure, the
SPD reflects the market’s expectation of the behavior of the value
of the DAX in 45 days. Hence, it is interesting to use our data set
to verify how these expectations compare with reality. In the left
plot in Fig. 14, we plot intervals based on the SPD together with the
true future value of the DAX: the black lines display the 2.5% and
97.5% quantiles of the estimated SPD; the future value of the DAX is
displayed as a grey line. In the right plot, we show in the sameway
the 45-day ahead predictions based on the historical distribution
of the 45-day absolute returns in the last 100 trading days; the 2.5%
and 97.5% quantiles of this distribution are plotted as black lines.
Fig. 14 suggests that the method works well and that the

DAX mostly stays well within the quantiles calculated from the
estimated SPDs. The DAX was sometimes rising faster than the
market expected from 1995 to mid-1998. After a fast decrease
in the second half of 1998, the market increased again till the
beginning of year 2000. Since then, the market has decreased.
However, the changes stay mostly within or very close to the
bounds predicted by our SPD estimates. The only exception is the
large shock observed in September 2001, caused by the terrorist
attack on the World Trade Center.
The upper quantiles, 97.5%, of the historical distribution

of the 45-day absolute returns mostly agree with the upper
quantiles of the SPD. The lower quantiles, 2.5%, of the SPDs
seem to be much more variable than the same quantiles of the
historical distribution. Both the lower and the upper quantiles
of the historical distribution lie mostly above the corresponding
quantiles of the estimated SPD, respectively in 69.44% and 81.75%.
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Fig. 17. Integral transformation for historical simulation.
Table 2
Fraction of the year that the DAX stays in the prediction corridor.

Year 1996 1997 1998 1999 2000 2001 2002

SPD (%) 84.40 66.13 75.30 74.60 97.22 85.66 94.84
Historical (%) 82.00 79.44 76.89 77.38 93.25 86.06 80.56
This observation just confirms the fact that the observed SPD
includes effects of risk aversion.
In Table 2, we show the fraction of the year that the DAX stays in

the prediction corridor. This suggests that the coverage is slightly
better for the historical simulation if the DAX is increasing and
better for the SPD based prediction if the DAX is decreasing (years
2000 and 2002).

6.3. Evaluation of the quality of the forecasts

The quality of the forecasts can be evaluated by comparing
the true future observation with its predicted distribution (the
SPD). Diebold et al. (1998) propose to evaluate density forecasts
using the probability integral transformed observations zh,t , where
t denotes the time and h the forecasting horizon. More precisely,
we define

zh,t =
∫ Xt+h

−∞

f̂h,t(u)du,

where f̂h,t(.) denotes our estimate of the SPD h days ahead at
time t and Xt+h is the future observation. In other words, zh,t
is the probability value of Xt+h with respect to f̂h,t(.). Clearly,
the zh,t should be uniformly U(0, 1) distributed if the estimated
SPD f̂h,t(.) is equal to the true density of Xt+h. In Fig. 15, we
display the histograms of zh,t ’s for each year for the estimated
SPDs and historical simulation using full and dashed histograms,
respectively. Clearly, in the ideal case, the histograms should not
be too far from a Uniform U(0, 1) distribution. In our data, for the
prediction horizon h = 45 days, we observe that the histograms
look quite different from what we would expect. Especially in
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years 1995–1999, the DAX was moving mainly in the upper
quantiles of the predicted SPD. The forecasts based on the historical
distribution of the 45-day returns behave similarly.
In order to account for the overlapping forecasting periods,

we calculate the confidence limits for the empirical distribution
function

F̂(u) =
1
T

T∑
t=1

I(zh,t ≤ u)

of zh,t ’s that take into account the autocorrelation structure.

V̂ar{̂F(u)} =
1
T

{
γ̂u(0)+ 2

h∑
j=1

(
1−

j
T

)
γ̂u(j)

}
, (33)

where γu(j) is the sample autocovariance of order j:

γu(j) =
1
T

T∑
t=j+1

{
I(zh,t ≤ u)− F̂(u)

} {
I(zh,t−j ≤ u)− F̂(u)

}
.

The empirical distribution functions F̂(.) are plotted separately
for years 1995–2002 in Fig. 16. The distribution function of U(0, 1)
and the limits following from (33) are displayed as dotted lines. The
year 2003 was not included since our dataset contains only two
months of the year 2003, which did not leave enough observations
to confirm the forecasts.
In 1996 and 1997, the market was growing much faster than

the SPDs were indicating. In 1996, it never happened that the DAX
fell below the 10% quantile of the SPD, and there were only a few
days when this value was below 20%. The situation in 1998 and
1999 was less extreme even though the fast growth of the DAX
continued. The distribution given by the SPD estimate f̂t,h(.) for the
horizon h = 45 days does not differ significantly from the true
distribution of Xt+h in 2000–2001, but in 2002 we again observe
significant differences. Thus, the DAX was growing faster than the
option market expected in 1996, 1997, and 1999 and it was falling
faster in 2002.
Fig. 17 shows the same graphics for the forecast based on

the historical distribution of the returns. The deviations are more
clearly visible but the overall picture is very similar; the only
difference arises in 2001 when the predictions did not stay
between the limits.

7. Conclusion

Wehave proposed a simple nonparametricmodel for arbitrage-
free estimation of the SPD. Our procedure takes care of the daily
changing covariance structure and involves both types of European
option. Moreover, the covariance structure allows us to calculate
prediction intervals capturing future behavior of the SPD. We
analyze the moment dynamics of the SPD from 1995–2003. An
application to DAX EUREX data for the years 1995–2003 produces
a corridor that is compared to the future DAX index value. The
proposed technique enables us not only to price exotic options but
also to measure the risk and volatility ahead of us.
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ABSTRACT
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. 
The tool must be precise but also easily adaptable to the bank’s objectives 
regarding the relation of false acceptances (Type I error) and false rejections 
(Type II error). We explore the suitability of smooth support vector machines 
(SSVM), and investigate how important factors such as the selection of appro-
priate accounting ratios (predictors), length of training period and structure of 
the training sample infl uence the precision of prediction. Moreover, we show 
that oversampling can be employed to control the trade-off between error types, 
and we compare SSVM with both logistic and discriminant analysis. Finally, 
we illustrate graphically how different models can be used jointly to support 
the decision-making process of loan offi cers. Copyright © 2008 John Wiley 
& Sons, Ltd.

key words  insolvency prognosis; support vector machines; statistical learning 
theory; non-parametric classifi cation

INTRODUCTION

Default prediction is at the core of credit risk management and has therefore always attracted special 
attention. It has become even more important since the Basel Committee on Banking Supervision 
(Basel II) established borrowers’ rating as the crucial criterion for minimum capital requirements of 
banks. The methods for generating rating fi gures have developed signifi cantly over the last 10 years 
(Krahnen and Weber, 2001). The rationale behind the increased sophistication in predicting borrow-
ers’ default risk is the aim of banks to minimize their cost of capital and to mitigate their own 
bankruptcy risks.

* Correspondence to: Dorothea Schäfer, German Institute for Economic Research (DIW) Berlin, Mohrenstrasse 58, 10117 
Berlin, Germany. E-mail: dschaefer@diw.de

Copyright © 2008 John Wiley & Sons, Ltd. 

Journal of Forecasting
J. Forecast. 28, 512–534 (2009)
Published online 2 December 2008 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/for.1109



Variable Selection and Oversampling in the Use of SSVM  513

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

In this paper we intend to contribute to the increasing sophistication by exploring the predicting 
power of smooth support vector machines (SSVM). SSVM are a variant of the conventional support 
vector machines (SVM). The working principle of SVM in general can be described very easily. 
Imagine a group of observations in distinct classes such as balance sheet data from solvent and 
insolvent companies. Assume that the observations are such that they cannot be separated by a linear 
function. Rather than fi tting nonlinear curves to the data, SVM handle this problem by using a spe-
cifi c transformation function—the kernel function—that maps the data from the original space into 
a higher-dimensional space where a hyperplane can do the separation linearly. The constrained 
optimization calculus of SVM gives a unique optimal separating hyperplane and adjusts it in such 
a way that the elements of distinct classes possess the largest distance to the hyperplane. By re-
transforming the separating hyperplane into the original space of variables, the typical nonlinear 
separating function emerges (Vapnik, 1995). The main difference between SSVM and SVM is the 
following: the SSVM technique formulates the problem as an unconstrained minimization problem. 
This formulation has mathematical properties such as strong convexity and desirable infi nite 
differentiability.

Our aim is threefold when using SSVM. Firstly, we examine the power of the SSVM in predict-
ing company defaults; secondly, we investigate how important factors that are exogenous to the 
model, such as selecting the appropriate set of accounting ratios, length of training period and struc-
ture of the training sample, infl uence the precision; and thirdly, we explore how oversampling and 
downsampling affect the trade-off between Type I and Type II errors. In addition, we illustrate 
graphically how loan offi cers can benefi t from jointly considering the prediction results of different 
SSVM variants and different models.

There are basically three distinct approaches in predicting the risk of default: option theory-based 
approaches, parametric models and non-parametric methods. While the fi rst class relies on the rule 
of no arbitrage, the latter two are based purely on statistic principles. The popular (Merton, 1974) 
model treats the company’s equity as the underlying asset of a call option held by shareholders. In 
case of insolvency shareholders deny exercising. The probability of default is derived from an 
adapted Black–Scholes formula. Later, several authors (e.g., Longstaff and Schwartz, 1995; Mella-
Barral and Perraudin, 1997; Leland and Toft, 1996; Zhou, 2001; to name only a few) proposed 
variations to ease the strict assumptions on the structure of the data imposed by the Merton model. 
These approaches are frequently denoted as structural models. However, the most challenging 
requirement is the knowledge of market values of debt and equity. This precondition is a severe 
obstacle to using the Merton model adequately as it is only satisfi ed in a minority of cases.

Parametric statistical models can be applied to any type of data, whether they are market based 
or book based. The fi rst model introduced was discriminant analysis (DA) for univariate (Beaver, 
1966) and multivariate models (Altman, 1968). After DA usage of the logit and probit approach for 
predicting default was proposed in Martin (1977) and Ohlson (1980). These approaches rely on the 
a priori assumed functional dependence between risk of default and predictor. DA requires a linear 
functional dependence, or a pre-shaped polynomial functional dependence in advanced versions. 
Logit and probit tools work with monotonic relationships between default event and predictors such 
as accounting ratios. However, such restrictions often fail to meet the reality of observed data. This 
fact makes it clear that there is a need for an approach that, in contrast to conventional methods, 
relaxes the requirements on data and/or lowers the dependence on heuristics. Semi-parametric 
models as in Hwang et al. (2007) are between conventional linear models and non-parametric 
approaches. Nonlinear classifi cation methods such as support vector machines (SVM) or neural 
networks are even stronger candidates to meet these demands as they go beyond conventional 
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discrimination methods. Tam and Kiang (1992) and Altman et al. (1994) focus on neural networks. 
In contrast, we concentrate on SVM exclusively.

The SVM method is a relatively new technique and builds on the principles of statistical learning 
theory. It is easier to handle compared to neural networks. Furthermore, SVM have a wider scope 
of application as the class of SVM models includes neural networks (Schölkopf and Smola, 2002). 
The power of SVM technology becomes evident in a situation as depicted in Figure 1 where operat-
ing profi t margin and equity ratio are used as explanatory variables. A separating function similar 
to a parabola (in black) appears in the two-dimensional space. The accompanying light-grey lines 
represent the margin boundaries whose shape and location determine the distance of elements from 
the separating function. In contrast, the logit approach and discriminant DA yield the (white) linear 
separating function (Härdle et al., 2007a).

Selecting the best accounting ratios for executing the task of predicting is an important issue in 
practice but has not received appropriate attention in research. We address this issue of how impor-
tant the chosen set of predictors is for the outcome. For this purpose we explore the prediction 
potential of SSVM within a two-step approach. First, we derive alternative sets of accounting ratios 
that are used as predictors. The benchmark set comes from Chen et al. (2006). A second set is defi ned 
by a 1-norm SVM, and the third set is based on the principle of adding only those variables that 
contain the most contrary information with respect to an initial set that is a priori chosen. We call 
the latter procedure the incremental forward selection of variables. As a result we are working with 
three variants of SSVM. In the second step, these variants are compared with respect to their predic-
tion power. We also compare SSVM with two traditional methods: the logit model and linear dis-
criminant analysis.

The analysis is built on 28 accounting ratios of 20,000 solvent and 1000 insolvent German com-
panies. Our fi ndings show that the different SSVM types have an overall good performance with the 
means of correct predictions ranging from 70% to 78%. The SSVM on the basis of incremental 

Figure 1. SVM-separating function (black) with margin in a two-dimensional space
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forward selection clearly outperform the SSVM based on predictors selected by the 1-norm SVM. 
It is also found that oversampling infl uences the trade-off between Type I and Type II errors. Thus, 
oversampling can be used to make the relation of the two error types an issue of bank policy.

The rest of the paper is organized as follows. The following two sections describe the data, per-
formance measures and SVM methodology. In the fourth section the variable selection technique 
and outcome are explained. The fi fth section presents the experimental settings, estimation procedure 
and fi ndings, and illustrates selected results. The sixth section concludes.

DATA AND MEASURES OF ACCURACY

In this study of the potential virtues of SVM in insolvency prognosis the CreditReform database is 
employed. The database consists of 20,000 fi nancially and economically solvent and 1000 insolvent 
German companies observed once in the period from 1997 to 2002. Although the companies were 
randomly selected, accounting information dates most frequently in 2001 and 2002. Approximately 
50% of the observations come from this period. The industry distribution of the insolvent companies 
is as follows: manufacturing 25.7%, wholesale and retail trade 20.1%, real estate 9.4%, construction 
39.7% and others 5.1%. The latter includes businesses in agriculture, mining, electricity, gas and 
water supply, transport and communication, fi nancial intermediation social service activities and 
hotels and restaurants. The 20,000 solvent companies belong to manufacturing (27.4%), wholesale 
and retail trade (24.8%), real estate (16.9%), construction (13.9%) and others (17.1%). There is only 
low coincidence between the industries represented in the insolvent and the solvent group of ‘others’. 
The latter comprises many companies in industries such as publication administration and defense, 
education and health. Figure 2 shows the distribution of solvent and insolvent companies across 
industries. A set of balance sheet and income statement items describes each company. The ones we 
use for further analysis are described below:

• AD (amortization and depreciation)
• AP (accounts payable)
• AR (account receivable)
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Figure 2. The distribution of solvent and insolvent companies across industries
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• CA (current assets)
• CASH (cash and cash equivalents)
• CL (current liabilities)
• DEBT (debt)
• EBIT (earnings before interest and tax)
• EQUITY (equity)
• IDINV (growth of inventories)
• IDL (growth of liabilities)
• INTE (interest expense)
• INV (inventories)
• ITGA (intangible assets)
• LB (lands and buildings)
• NI (net income)
• OI (operating income)
• QA (quick assets)
• SALE (sales)
• TA (total assets)
• TL (total liabilities)
• WC (working capital (= CA − CL))

The companies appear in the database several times in different years; however, each year of 
balance sheet information is treated as a single observation. The data of the insolvent companies 
were collected 2 years prior to insolvency. The company sizes are measured by total assets. We 
construct 28 ratios to condense the balance sheet information (see Table I). However, before dealing 
with the CreditReform dataset, some companies whose behavior is very different from other ones 
are fi ltered out in order to make the dataset more compact. The data pre-processing procedure is 
described as follows:

1. We excluded companies whose total assets were not in the range of 105–107 EUR (remaining 
insolvent: 967; solvent: 15,834).

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA, CASH/TA, IDINV/INV, 
INV/SALE, EBIT/TA and NI/SALE, we have removed companies with zero denominators 
(remaining insolvent: 816; solvent 11,005).

3. We dropped outliers, that is, in the insolvent class companies with extreme values of fi nancial 
indices have been removed (remaining insolvent: 811; solvent: 10,468).

After pre-processing, the dataset consists of 11,279 companies (811 insolvent and 10,468 solvent). 
In the following analysis, we focus on the revised dataset.

The performance of the SSVM is evaluated on the basis of three measures of accuracy: Type I 
error rate (%), Type II error rate (%) and total error rate (%). The Type I error is the ratio of the 
number of insolvent companies predicted as solvent ones to the number of insolvent companies. The 
Type II error is the ratio of the number of solvent companies predicted as insolvent ones to the 
number of solvent companies. Accordingly, the error-type rates (in percentage) are defi ned as 
follows

• Type I error rate = FN/(FN + TP) × 100 (%);
• Type II error rate = FP/(FP+ TN) × 100 (%);
• Total error rate = (FN + FP)/(TP + TN + FP + FN) × 100 (%);
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where

True positive (TP): Predict insolvent companies as insolvent ones
False positive (FP): Predict solvent companies as insolvent ones
True negative (TN): Predict solvent companies as solvent ones
False negative (FN): Predict insolvent companies as solvent ones

The following matrix explains the terms used in the defi nition of error rates:

Table I. Defi nitions of accounting ratios used in the analysis

Variable Ratio Indicator for

X1 NI/TA Profi tability
X2 NI/SALE Profi tability
X3 OI/TA Profi tability
X4 OI/SALE Profi tability
X5 EBIT/TA Profi tability
X6 (EBIT + AD)/TA Profi tability
X7 EBIT/SALE Profi tability
X8 EQUITY/TA Leverage
X9 (EQUITY-ITGA)/ Leverage

(TA-ITGA-CASH-LB) Leverage
X10 CL/TA Leverage
X11 (CL-CASH)/TA Leverage
X12 TL/TA Leverage
X13 DEBT/TA Leverage
X14 EBIT/INTE Leverage
X15 CASH/TA Liquidity
X16 CASH/CL Liquidity
X17 QA/CL Liquidity
X18 CA/CL Liquidity
X19 WC/TA Liquidity
X20 CL/TL Liquidity
X21 TA/SALE Activity
X22 INV/SALE Activity
X23 AR/SALE Activity
X24 AP/SALE Activity
X25 Log(TA) Size
X26 IDINV/INV Growth
X27 IDL/TL Growth
X28 IDCASH/CASH Growth

Predicted class

Positive Negative 

Actual Positive True positive (TP) False negative (FN) 
Class Negative False positive (FP) True negative (TN)

SVM METHODOLOGY

In recent years, the so-called support vector machines (SVM), which have their roots in the theory 
of statistical learning (Burges, 1998; Christianini and Shawe-Taylor, 2000; Vapnik, 1995) have 
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become one of the most successful learning algorithms for classifi cation as well as for regression 
(Drucker et al., 1997; Mangasarian and Musicant, 2000; Smola and Schölkopf, 2004). Some features 
of SVM make them particularly attractive for predicting the default risk of companies. SVM are a 
non-parametric technique that learn the separating function from the data; they are based on a sound 
theoretical concept, do not require a particular distribution of the data, and deliver an optimal solu-
tion for the expected loss from misclassifi cation. SVM estimate the separating hyperplane between 
defaulting and non-defaulting companies under the constraint of a maximal margin between the two 
classes (Vapnik, 1995; Schölkopf and Smola, 2002).

SVM can be formulated differently. However, in all variants either a constrained minimization 
problem or an unconstrained minimization problem is solved. The objective function in these opti-
mization problems basically consists of two parts: a misclassifi cation penalty part which stands for 
model bias and a regularization part which controls the model variance. We briefl y introduce three 
different models: the smooth support vector machines (SSVM) (Lee and Mangasarian, 2001), the 
smooth support vector machines with reduced kernel technique (RSVM) and the 1-norm SVM. The 
SSVM will be used for classifi cation and the 1-norm SVM will be employed for variable selection. 
The RSVM are applied for oversampling in order to mitigate the computational burden due to 
increasing the number of instances in the training sample.

Smooth support vector machines
The aim of the SVM technique is to fi nd the separating hyperplane with the largest margin from the 
training data. This hyperplane is ‘optimal’ in the sense of statistical learning: it strikes a balance 
between overfi tting and underfi tting. Overfi tting means that the classifi cation boundary is too curved 
and therefore has less ability to classify unseen data correctly. Underfi tting, on the other hand, gives 
a too simple classifi cation boundary and leaves too many misclassifi ed observations (Vapnik, 1995). 
We begin with linear support vector machines. Given a training dataset S = {(x1, y1),  .  .  .  , (xn, yn)} 
� �d × �, where xi ∈ �d is the input data and yi ∈ {−1, 1} is the corresponding class label, a con-
ventional SVM separating hyperplane is generated by solving a convex optimization problem given 
as follows:
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where C is a positive parameter controlling the trade-off between the training error (model bias) and 
the part of maximizing the margin (model variance) that is achieved by minimizing w2

2. In contrast 
to the conventional SVM of (1), smooth support vector machines minimize the square of the slack 
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In a solution of (2), x is given by xi = {1 − yi(w�xi + b)}+ for all i where the plus function x+ is 
defi ned as x+ = max{0, x}. Thus, we can replace xi in (2) by {1 − yi(w�xi + b)}+. This will convert 
the problem (2) into an unconstrained minimization problem as follows:

 min
w b

i i
i

n

d

C
y w b w b

,( )∈ +
=

+
− +( ){ } + +( )∑

� 1 2
1

1

2
2

1
2
2 2�x  (3)

This formulation reduces the number of variables from d + 1 + n to d + 1. However, the 
objective function to be minimized is not twice differentiable, which precludes the use of a fast 
Newton method. In the SSVM, the plus function x+ is approximated by a smooth p-function, 

 p x x e x, log ,α
α

αα( ) = + +( ) >−1
1 0. Replacing the plus function with a very accurate smooth approx-

imation p-function gives the smooth support vector machine formulation:
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where a > 0 is the smooth parameter. The objective function in problem (4) is strongly convex and 
infi nitely differentiable. Hence, it has a unique solution and can be solved by using a fast Newton–
Armijo algorithm. For the nonlinear case, this formulation can be extended to the nonlinear SVM 
by using the kernel trick as follows:
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where K(xi, xj) is a kernel function. This kernel function represents the inner product of f(xi) and 
f(xj), where f is a certain mapping from input space �d to a feature space F. We do not need to 
know the mapping of f explicitly. This is the so-called kernel trick. The nonlinear SSVM classifi er 
can be expressed in matrix form as follows:

 u K A b K A u bj j
uj

� �, ,x x( ) + = ( ) +
≠

∑
0

 (6)

where A = [x�
1;  .  .  .  ; x�

n] and Aj = x�
j.

Reduced support vector machine
In large-scale problems, the full kernel matrix will be very large so it may not be appropriate to use 
the full kernel matrix when dealing with (5). In order to avoid facing such a big full kernel matrix, 
we brought in the reduced kernel technique (Lee and Huang, 2007). The key idea of the reduced 
kernel technique is to randomly select a portion of data and to generate a thin rectangular kernel 
matrix, then to use this much smaller rectangular kernel matrix to replace the full kernel matrix. In 
the process of replacing the full kernel matrix by a reduced kernel, we use the Nyström approxima-
tion (Smola and Schölkopf, 2000) for the full kernel matrix:

 K A A K A A K A A K A A, , , ,� � � �( ) ≈ ( ) ( ) ( )−� � � �1
 (7)
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where K(A, A�) = Kn×n, Ãñ×d is a subset of A and K(A, Ã) = K̃n×ñ is a reduced kernel. Thus, we have

 K A A u K A A K A A K A A u K A A u, , , , ,� � � � �( ) ≈ ( ) ( ) ( ) = ( )−� � � � � �
1

 (8)

where ũ ∈ �ñ is an approximated solution of u via the reduced kernel technique. The reduced kernel 
method constructs a compressed model and cuts down the computational cost from O(n3) to O(ñ3). 
It has been shown that the solution of reduced kernel matrix approximates the solution of full kernel 
matrix well. The SSVM with the reduced kernel are called RSVM.

1-Norm support vector machine
The 1-norm support vector machine replaces the regularization term w2

2
 in (1) with the �1-norm 

of w. The �1-norm regularization term is also called the LASSO penalty (Tibshirani, 1996). It tends 
to shrink the coeffi cients w’s towards zeros in particular for those coeffi cients corresponding to 
redundant noise features (Zhu et al., 2003; Williams and Seeger, 2001). This nice feature will lead 
to a way of selecting the important ratios in our prediction model. The formulation of 1-norm SVM 
is described as follows:
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The objective function of (9) is a piecewise linear convex function. We can reformulate it as the 
following linear programming problem:
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where sj is the upper bound of the absolute value of wj. In the optimal solution of (10) the sum of 
sj is equal to w1.

The 1-norm SVM can generate a very sparse solution w and lead to a parsimonious model. In a 
linear SVM classifi er, solution sparsity means that the separating function f(x) = w�x + b depends 
on very few input attributes. This characteristic can signifi cantly suppress the number of nonzero 
coeffi cient w’s, especially when there are many redundant noise features (Fung and Mangasarian, 
2004; Zhu et al., 2003). Therefore the 1-norm SVM can be a very promising tool for the variable 
selection tasks. We will use it to choose the important fi nancial indices for our bankruptcy progno-
sis model.

SELECTION OF ACCOUNTING RATIOS

In principle any possible combination of accounting ratios could be used as explanatory variables 
in a bankruptcy prognosis model. Therefore, appropriate performance measures are needed to gear 
the process of variable selection towards picking the ratios with the highest separating power. In 
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Chen et al. (2006) accuracy ratio (AR) and conditional information entropy ratio (CIER) determine 
the selection procedure’s outcome. It turned out that the ratio ‘accounts payable divided by sales’, 
X24 (AP/SALE), has the best performance values for a univariate SVM model. The second selected 
variable was the one combined with X24 that had the best performance in a bivariate SVM model. 
This is the analogue of forward selection in linear regression modeling. Typically, improvement 
declines if new variables are added consecutively. In Chen et al. (2006) the performance indicators 
started to decrease after the model included eight variables. The described selection procedure is 
quite lengthy, since there are at least 216 accounting ratio combinations to be considered. We will 
not employ the procedure here but use the chosen set of eight variables as the benchmark set V1. 
Table II presents V1 in the fi rst column.

We propose two different approaches for variable selection that will simplify the selection pro-
cedure. The fi rst one is based on 1-norm SVM introduced above. The SVM were applied to the 
period from 1997 to 1999. We selected the variables according to the size of the absolute values of 
the coeffi cients w from the solution of the 1-norm SVM. Table II displays the eight selected variables 
as V2. We obtain eight variables out of 28. Note that fi ve variables, X2, X3, X5, X15 and X24, are 
also in the benchmark set V1.

The second variable selection scheme is incremental forward variable selection. The intuition 
behind this scheme is that a new variable will be added into the already selected set, if it brings in 
the most extra information. We measure the extra information for an accounting ratio using the 
distance between this new ratio vector and the space spanned by the current selected ratio subset. 
This distance can be computed by solving a least-squares problem (Lee et al., 2008). The ratio with 
the farthest distance will be added into the selected accounting ratio set. We repeat this procedure 
until a certain stopping criterion is satisfi ed. The accounting ratio X24 (AP/SALE) is used as the 
initial selected accounting ratio. Then we follow the procedure seven times to select seven more 
extra accounting ratios. The variable set generated is called V3. We will use these three variable 
sets, V1, V2 and V3, for further data analysis in the next section. The symbol + denotes the variables 
that are common to all sets: X2, X3, X5 and X24.

Table II. Selected variables

Variable Defi nition V1 V2 V3

X2+ NI/SALE x x x
X3+ OI/TA x x x
X4 OI/SALE x
X5+ EBIT/TA x x x
X6 (EBIT + AD)/TA x
X7 EBIT/SALE x
X8 EQUITY/TA x
X12 TL/TA x
X13 DEBT/TA x
X15 CASH/TA x x
X21 TA/SALE x
X22 INV/SALE x
X23 AR/SALE x
X24+ AP/SALE x x x
X26 IDINV/INV x
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EXPERIMENTAL SETTING AND RESULTS

In this section we present our experimental setting and results. We compare the performance of three 
sets of accounting ratios, V1, V2 and V3, in our SSVM-based insolvency prognosis model. The 
performance is measured by Type I error rate, Type II error rate and total error rate. Fortunately, in 
reality, there is only a small number of insolvent companies compared to the number of solvent 
companies. Due to the small share in a sample that refl ects reality, a simple classifi cation such as 
naive Bayesian or a decision tree tends to classify every company as solvent. Such a classifi cation 
would imply accepting all companies’ loan applications and would thus lead to a very high Type I 
error rate while the total error rate and the Type II error rate are very small. Such models are useless 
in practice.

Our cleaned dataset consists of around 10% of insolvent companies. Thus, the sample is fairly 
unbalanced although the share of insolvent companies is higher than in reality. In order to deal with 
this problem, insolvency prognosis models usually start off with more balanced training and testing 
samples than reality can provide. For example, Härdle et al. (2007b) employ a downsampling strat-
egy and work with balanced (50%/50%) samples. The chosen bootstrap procedure repeatedly ran-
domly selects a fi xed number of insolvent companies from the training set and adds the same number 
of randomly selected solvent companies. However, in this paper we adopt an oversampling strategy, 
to balance the size between the solvent and the insolvent companies, and refer to the downsampling 
procedure primarily for reasons of reference.

Oversampling duplicates the number of insolvent companies a certain number of times. In this 
experiment, we duplicate in each scenario the number of insolvent companies as many times as 
necessary to reach a balanced sample. Note that in our oversampling scheme every solvent and 
insolvent company’s information is utilized. This increases the computational burden due to increas-
ing the number of training instances. We employ the reduced kernel technique introduced above to 
mediate this problem.

All classifi ers we need in these experiments are reduced SSVM with the Gaussian kernel, which 
is defi ned as

 K ex z x z,( ) = − −γ 2
2

where g is the width parameter. In nonlinear SSVM, we need to determine two parameters: the 
penalty term C and g . The 2D grid search will consume a lot of time. In order to cut down the search 
time, we adopt the uniform design model selection method (Huang et al., 2007) to search an appro-
priate pair of parameters.

Performance of SSVM
We conduct the experiments in a scenario in which we always train the SSVM bankruptcy progno-
sis model from the data at hand and then use the trained SSVM to predict the following year’s cases. 
This strategy simulates the real task of prediction which binds the analyst to use past data for fore-
casting future outcomes. The experimental setting is described in Table III. The number of periods 
which enter the training set changes from 1 year (S1) to 5 years (S5).

In Tables IV and V we report the results for the oversampling and downsampling strategy respec-
tively. Mean and standard deviation of Type I, Type II and total error rates (misclassifi cation rates) 
are shown. We perform these experiments for the three variable sets, V1 to V3, and compare the 
oversampling and downsampling scheme in each experiment. All experiments are repeated 30 times 
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Table III. The scenario of our experiments

Scenario Observation period of training set Observation period of testing set

S1 1997 1998
S2 1997–1998 1999
S3 1997–1999 2000
S4 1997–2000 2001
S5 1997–2001 2002

Table IV. Results of oversampling for three variable sets (RSVM)

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 33.16 0.55 26.15 0.13 26.75 0.12
S2 31.58 0.01 29.10 0.07 29.35 0.07
S3 28.11 0.73 26.73 0.16 26.83 0.16
S4 30.14 0.62 25.66 0.17 25.93 0.15
S5 24.24 0.56 23.44 0.13 23.48 0.13

V2 S1 29.28 0.92 27.20 0.24 27.38 0.23
S2 28.20 0.29 30.18 0.18 29.98 0.16
S3 27.41 0.61 29.67 0.19 29.50 0.17
S4 28.12 0.74 28.32 0.19 28.31 0.15
S5 23.91 0.62 24.99 0.10 24.94 0.10

V3 S1 29.28 0.83 25.11 0.25 25.46 0.21
S2 31.27 0.62 29.79 0.34 29.94 0.35
S3 30.91 0.13 27.21 0.19 27.48 0.18
S4 32.00 0.54 25.19 0.17 25.61 0.14
S5 26.98 0.42 22.90 0.11 23.08 0.11

Table V. Results of downsampling for three variable sets (SSVM with Gaussian kernel) 

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 32.20 3.12 28.98 1.70 29.26 1.46
S2 29.74 2.29 28.77 1.97 28.87 1.57
S3 30.46 1.88 26.23 1.33 26.54 1.17
S4 31.55 1.52 23.89 0.97 24.37 0.87
S5 28.81 1.53 23.09 0.73 23.34 0.69

V2 S1 29.94 2.91 28.07 2.15 28.23 1.79
S2 28.77 2.58 29.80 1.89 29.70 1.52
S3 29.88 1.88 27.19 1.32 27.39 1.19
S4 29.06 1.68 26.26 1.00 26.43 0.86
S5 26.92 1.94 25.30 1.17 25.37 1.06

V3 S1 30.87 3.25 26.61 2.45 26.98 2.11
S2 33.31 2.16 28.60 2.01 29.08 1.65
S3 31.82 1.52 26.41 1.45 26.80 1.31
S4 35.0 2.13 24.29 0.77 24.96 0.68
S5 30.66 1.60 21.92 0.96 22.30 0.92
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because of the randomness in the experiments. The randomness is very obvious in the downsampling 
scheme (see Table V). Each time we only choose negative instances with the same size of the whole 
positive instances. The observed randomness in our oversampling scheme (Table IV) is due to apply-
ing the reduced kernel technique to solving the problem. We use the training set in the downsampling 
scheme as the reduced set. That is, we use all the insolvent instances and the equal number of solvent 
instances as our reduced set in generating the reduced kernel. Then we duplicate the insolvent part 
of the kernel matrix to balance the size of insolvent and solvent companies.

Both tables reveal that different variable selection schemes produce dissimilar results with respect 
to both precision and deviation of predicting. The oversampling scheme shows better results in the 
Type I error rate but has slightly bigger total error rates. It is also obvious that in almost all models 
a longer training period works in favor of accuracy of prediction. Clearly, the oversampling schemes 
have much smaller standard deviations in the Type I error rate, Type II error rate, and total error 
rate than the downsampling one. According to this observation, we conclude that the oversampling 
scheme will generate a more robust model than the downsampling scheme.

Figure 3 illustrates the development (learning curve) of the Type I error rate and total error rate 
with regard to variable set V3 for both oversampling and downsampling. The bullets on the lines 
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mark the different training scenarios. For example, the fi rst bullets from the left represent S1 (train-
ing set from 1997, testing set from 1998), the second bullets illustrate S2 (training set from 1997 to 
1998, testing set from 1999) etc. For the purpose of better visibility, the Type I error rate is only 
indirectly displayed as 100 − Type I error rate. The upper solid line in gray represents the oversam-
pling scheme and the black solid line the downsampling one. Note that the performance in terms of 
the Type I error rate is worse the higher the distance between the upper end of the diagram and the 
solid lines. The learning curve over the time frame the training sample covers shows an upward 
tendency between S1 and S5 for the number 100 − Type 1 error rate. However, the curves are non-
monotonic. There is a disturbance for the forecast of year 1999 that is based on training samples 
that cover 1997 to 1998, and also one for the forecast of year 2001 based on training samples cov-
ering 1997 to 2000. Both disturbances may have been caused by the reform of the German insolvency 
code that came into force in 1999. The most important objective of the reform was to allow for more 
company restructuring and less liquidation than before. This reform considerably changed the behav-
ior of German companies towards declaring insolvency, and thus most likely the nature of balance 
sheets that are associated with insolvent companies.

The disturbances are less visible with respect to the overall performance. The dashed lines near 
the lower edge of the diagram box show total error rates, gray for the oversampling and black for 
the downsampling scheme. There is a clear tendency towards a lower total error rate from S2 to S5 
for both schemes. The downsampling line is slightly below the oversampling one, representing a 
slightly better performance in terms of the mean of the total error rate. However, this result has to 
be seen in the light of the trade-off between magnitude and stability of results, as oversampling 
yields much more stable results. The standard deviations for V3 are only a small portion of the 
numbers generated by the downsampling procedure across all training scenarios (Tables IV and 
V).

Table VI presents the comparison between the sets by focusing on the total error rate. It indicates 
by an asterisk whether the differences in means are signifi cant at the 10% level via t-test and, in 
addition, gives the set which is superior in the dual comparison. Variable set V2 is nearly absent in 
Table VI. Thus V2 is clearly outperformed by both sets V1 and V3. There is no clear distinction 
between V1 and V3 except for Scenario S5. Given the long training period V3 is superior in both 
the downsampling and oversampling scenarios and generates the lowest total error rate in absolute 
terms.

In order to investigate the effect of the oversampling versus the downsampling scheme we follow 
the setting as above, but we use the V3 variable set. For each training–test pair, we carry out over-
sampling for positive instances from 6 to 15 times. We show the trend and effect in Figure 4. It is 

Table VI. Statistical signifi cance in differences in means (10% level) 
between the three variable sets: total error 

Sets S1 S2 S3 S4 S5

Oversampling
V1 vs. V2 V1* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V1* V3* V3*
V2 vs. V3 V3* V3* V3* V3*
Downsampling
V1 vs. V2 V2* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V3*
V2 vs. V3 V3* V3* V3* V3*
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easy to see that the Type I (II) error rate decreases (increases) as the oversampling times increase. 
This feature implies that the machine would have a tendency of classifying all companies as solvent 
if the training sample had realistic shares of insolvent and solvent companies. Such behavior would 
produce a Type I error rate of 100%. The more balanced the sample is, the higher the penalty for 
classifying insolvent companies as solvent. This fact is illustrated in Figure 4 by the decreasing curve 
with respect to the number of duplications of insolvent companies.

Often banks favor a strategy that allows them to minimize the Type II errors for a given number 
of Type I errors. The impact of oversampling on the trade-off between the two types of errors—
shown in Figure 4—implies that the number of oversampling times is a strategic variable in training 
the machine. This number can be determined by the bank’s aim regarding the relation of Type I and 
Type II errors.
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Figure 4. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3
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Comparison with logit and linear discriminant analysis
The examination of SSVM is incomplete without comparing it to highly used traditional methods 
such as the logistic model (LM) and linear discriminant analysis (DA). Therefore, we replicate the 
research design of the previous section with both traditional models. In addition, we test whether 
the difference in means in the total error rate is statistically signifi cant. The comparison of means 
with regard to the total error rate is presented in Tables VII and VIII for the oversampling and 
downsampling strategy respectively. Table IX summarizes the comparison of the approaches and 
displays the statistical signifi cance of their mean differences. Asterisks indicate the out-performance 

Table VII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: oversampling for three variable sets

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 26.75 26.50 25.60
S2 29.35 28.96 27.22
S3 26.83 28.94 27.42
S4 25.93 26.20 25.55
S5 23.48 26.95 28.23

V2 S1 27.38 26.80 26.20
S2 29.98 28.63 28.70
S3 29.50 29.52 29.46
S4 28.31 28.43 28.08
S5 24.94 29.22 31.42

V3 S1 25.46 25.07 23.65
S2 29.94 28.29 27.02
S3 27.48 27.89 25.84
S4 25.61 26.60 24.85
S5 23.08 25.32 26.15

Table VIII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: downsampling for three variable sets 

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 29.26 26.86 27.34
S2 28.87 28.62 28.26
S3 26.54 27.54 28.22
S4 24.37 24.80 25.47
S5 23.34 24.81 25.86

V2 S1 28.23 27.28 28.62
S2 29.70 29.29 29.65
S3 27.39 28.56 29.58
S4 26.43 26.41 27.96
S5 25.37 26.52 29.69

V3 S1 26.98 26.03 25.47
S2 29.08 28.04 27.22
S3 26.80 26.60 26.51
S4 24.96 25.25 25.44
S5 22.30 23.96 24.31
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of the logistic model or discriminant analysis by SSVMs at the 10% level via t-test. It is obvious 
that the SSVM technique yields the better results, the longer the period is from which the training 
observations are taken. In fact, the results show that the SSVM works signifi cantly better than LM 
and DA in most cases in S3 to S5, with the clearest advantage for testing sets S4 and S5, where the 
accounting information of the predicted companies dates most frequently in 2001 and 2002.

We also investigate the effect of oversampling on LM and DA. We follow the same setting in the 
previous section, doing oversampling for positive instances from 6 to 15 times. Unlike the SSVM-
based insolvency prognosis model, the DA approach is insensitive in both Type I and Type II error 
rates to the replication of positive instances. The result for DA is illustrated in Figure 5. The LM 
approach has very similar results to the SSVM model. We will not show the result here.

More data visualization
Each SSVM model has its own output value. We use this output to construct 2D coordinate systems. 
Figure 6 shows an example for scenario S5 where the scores of the SSVMV3 model (SSVMV1 model) 
are represented by the horizontal (vertical) line. A positive (negative) value indicates predicted 
insolvency (solvency). We then map all insolvent companies in the testing set onto the coordinate 
systems. There are 132 insolvent companies and 2866 solvent companies in this testing set. We also 
randomly choose the same amount of solvent companies from the testing set.

The plus points in the lower left quadrant and the circle points in the upper right quadrant show 
the number of Type I errors and Type II errors, respectively, in both models. Plus points in the upper 
right quadrant and circle points in the lower left quadrant refl ect those companies that are predicted 

Table IX. Statistical signifi cance in differences of means (10% level) 
between SSVM and LM and SSVM and DA, respectively, for the sets V1 
to V3: total error rate

V1 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA * *
Downsampling
SSVM vs. LM * * *
SSVM vs. DA * * *

V2 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * *
SSVM vs. DA *
Downsampling
SSVM vs. LM * *
SSVM vs. DA * * *

V3 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA *
Downsampling
SSVM vs. LM *
SSVM vs. DA * *
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correctly by both models. Circles and plus points in the lower right quadrant (upper left quadrant) 
represent confl icting prognoses. We also report the number of insolvent companies and the number 
of solvent companies in each quadrant of Figure 6. The two different insolvency prognosis models 
based on V1 and V3, respectively, can be considered as alternative experts. The two forecasts for 
each instance in the testing set is plotted in the diagram. The proposed visualization scheme could 
be used to support loan offi cers in their fi nal decision on accepting or rejecting a client’s application. 
Furthermore, this data visualization scheme can also be applied to two different learning algorithms, 
such as SSVMV3 vs. LMV3 and SSVMV3 vs. DAV3. We show these data visualization plots in Figures 
7 and 8. If the loan application has been classifi ed as solvent or insolvent by alternative machines, 
it is most likely that the prognosis meets reality (the plus points in the upper right quadrant and the 
circle points in the lower left quadrant). Opposing forecasts, however, should be taken as a hint to 
evaluate the particular company more thoroughly, for example by employing an expert team, or even 
by using a third model.
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Figure 5. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3 
in DA
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CONCLUSION

In this paper we apply different variants of support vector machines to a unique dataset of German 
solvent and insolvent companies. We use a priori a given set of predictors as a benchmark, and 
suggest two further variable selection procedures; the fi rst procedure uses the 1-norm SVM and the 
second, incremental way consecutively selects the variable that is the farthest one from the column 
space of the current variable set. Given the three SSVM based on distinct variable sets, the relative 
performance of the types of smooth support vector machines is tested. The performance is measured 
by error rates. The two sets of variables newly created here lead to a dissimilar performance of 
SSVM. The selection of variables by the 1-norm SVM clearly underperforms compared to the 
incremental selection scheme. This difference in accuracy hints at the need for further research with 
respect to the variable selection. The training period makes a clear difference, though. Results 
improve considerably if more years of observation are used in training the machine. The SSVM 
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with V1) in scenario S5
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model benefi ts more from longer training periods than traditional methods do. As a consequence the 
logit model and discriminant analysis are both outperformed by the SSVM in long-term training 
scenarios. Moreover, the oversampling scheme works very well in dealing with unbalanced datasets. 
It provides fl exibility to control the trade-off between Type I and Type II errors, and is therefore a 
strategic instrument in a bank’s hand. The results generated are very stable in terms of small devia-
tions of Type I, Type II and total error rates.

Finally, we want to stress that SSVM should be considered not as a substitute for traditional 
methods but rather as a complement which, when employed side by side with either the logit model 
or discriminant analysis, can generate new information that helps practitioners select those compa-
nies that are diffi cult to predict and, therefore, need more attention and further treatment.
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Time Series Modelling With Semiparametric
Factor Dynamics

Byeong U. PARK, Enno MAMMEN, Wolfgang HÄRDLE, and Szymon BORAK

High-dimensional regression problems, which reveal dynamic behavior, are typically analyzed by time propagation of a few number of
factors. The inference on the whole system is then based on the low-dimensional time series analysis. Such high-dimensional problems
occur frequently in many different fields of science. In this article we address the problem of inference when the factors and factor loadings
are estimated by semiparametric methods. This more flexible modeling approach poses an important question: Is it justified, from an
inferential point of view, to base statistical inference on the estimated times series factors? We show that the difference of the inference
based on the estimated time series and ‘‘true’’ unobserved time series is asymptotically negligible. Our results justify fitting vector
autoregressive processes to the estimated factors, which allows one to study the dynamics of the whole high-dimensional system with a low-
dimensional representation. We illustrate the theory with a simulation study. Also, we apply the method to a study of the dynamic behavior
of implied volatilities and to the analysis of functional magnetic resonance imaging (fMRI) data.

KEY WORDS: Asymptotic inference; Factor models; Implied volatility surface; Semiparametric models; Vector autoregressive process.

1 INTRODUCTION

Modeling for high-dimensional data is a challenging task in
statistics especially when the data comes in a dynamic context
and is observed at changing locations with different sample
sizes. Such modeling challenges appear in many different
fields. Examples are Stock and Watson (2005) in empirical
macroeconomics, Lee and Carter (1992) in mortality analysis,
Nelson and Siegel (1987) and Diebold and Li (2006) in bond
portfolio risk management or derivative pricing, Martinussen
and Scheike (2000) in biomedical research. Other examples
include the studies of radiation treatment of prostate cancer
by Kauermann (2000) and evoked potentials in Electroence-
phalogram (EEG) analysis by Gasser, Möcks, and Verleger
(1983). In financial engineering, it is common to analyze the
dynamics of implied volatility surface for risk management.
For functional magnetic resonance imaging data (fMRI), one
may be interested in analyzing the brain’s response over time as
well as identifying its activation area, see Worsley et al. (2002).

A successful modeling approach utilizes factor type models,
which allow low-dimensional representation of the data. In an
orthogonal L-factor model an observable J-dimensional ran-
dom vector Yt ¼ (Yt,1, . . ., Yt,J)

T can be represented as

Yt; j ¼ m0; j þ Zt;1m1; j þ # # # þ Zt;LmL; j þ et; j; ð1Þ
where Zt,l are common factors, !t,j are errors or specific factors,
and the coefficients ml,j are factor loadings. In most applica-
tions, the index t ¼ 1, . . ., T reflects the time evolution of the
whole system, and Yt can be considered as a multidimensional
time series. For a method to identify common factors in this
model we refer to Peña and Box (1987). The study of high-
dimensional Yt is then simplified to the modeling of Zt ¼ (Zt,1,

. . ., Zt,L)
T, which is a more feasible task when L & J. The

model (1) reduces to a special case of the generalized dynamic
factor model considered by Forni, Hallin, Lippi, and Reichlin
(2000), Forni and Lippi (2001) and Hallin and Liska (2007),
when Zt,l¼ al,1(B)Ut,1þ ### þ al,q(B)Ut,qwhere the q-dimensional
vector process Ut ¼ (Ut,1, . . ., Ut,q)

T is an orthonormal white
noise and B stands for the lag operator. In this case, the model
(1) is expressed as Yt; j ¼ m0; j þ

Pq
k¼1 bk; jðBÞUt;k þ et; j; where

bk; jðBÞ ¼
PL

l¼1 al;kðBÞml; j:
In a variety of applications, one has explanatory variables

Xt, j 2 Rd at hand that may influence the factor loadings ml. An
important refinement of the model (1) is to incorporate the
existence of observable covariates Xt, j. The factor loadings are
now generalized to functions of Xt, j, so that the model (1) is
generalized to

Yt; j ¼ m0ðXt; jÞ þ
XL

l¼1

Zt;lmlðXt;jÞ þ et; j; 1 # j # Jt: ð2Þ

In this model, Zt,l for each l: 1 # l # L enters into all Yt, j for j
such that ml(Xt, j) 6¼ 0. Note that the probability of the event that
ml(Xt, j) ¼ 0 for some 1 # j # J equals zero if m1(x) ¼ 0 at
countably many points of x and the density ft of Xt, j is supported
on an interval with nonempty interior, as we assume at (A2) in
Section 5.

The model (2) can be interpreted as a discrete version of the
following functional extension of the model (1):

YtðxÞ ¼ m0ðxÞ þ
XL

l¼1

Zt; lmlðxÞ þ etðxÞ; ð3Þ

where et(#) is a mean zero stochastic process, and also regarded
as a regression model with embedded time evolution. It is
different from varying-coefficient models, such as in Fan, Yao,
and Cai (2003) and Yang, Park, Xue, and Härdle (2006),
because Zt is unobservable. Our model also has some sim-
ilarities to the one considered in Connor and Linton (2007) and
Connor, Hagmann, and Linton (2007), which generalized the
study of Fama and French (1992) on the common movements
of stock price returns. There, the covariates, denoted by Xl,j, are
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time-invariant and are different for different ml, which allows a
direct application of backfitting procedures and makes the
problem quite different from our setting. Some linear models,
which allow time-varying coefficients, as considered in Hansen,
Nielsen, and Nielsen (2004) and Brumback and Rice (1998),
may be recognized as a special case of (2).

In this article we consider the model (2) with unknown
nonparametric functions ml. We call this model a dynamic
semiparametric factor model (DSFM). The evolution of com-
plex high-dimensional objects may be described by (2), so that
their analysis can be reduced to the study of a low-dimensional
vector of factors Zt. In the present article, we consider an
efficient nonparametric method of fitting the model. We pro-
vide relevant theory for the method as well as illustrate its
empirical aspects through a simulation and a real data appli-
cation. Fengler, Härdle, and Mammen (2007) used a kernel
smoothing approach for the same model, but it was focused on
a particular data application without offering any discussion of
numerical issues, statistical theory, and simulation analysis.

One of the main motivations for the model (2) comes from a
special structure of the implied volatility (IV) data, as is
observed in Figure 1. The IV is a volatility parameter that
matches the observed plain vanilla option prices with the theo-
retical ones given by the formula of Black and Scholes (1973).
Figure 1 shows the special ‘‘string’’ structure of the IV data
obtained from the European option prices on the German stock
index DAX (ODAX) for two different days. The volatility strings
shift toward expiry, which is indicated by the bottom line in the
figure. Moreover the shape of the IV strings is subject to sto-
chastic deformation. Fengler et al. (2007) proposed to use the
model (2) to describe the dynamics of the IV data, where Yt, j are
the values of IVor those of its transformation on the day t, and
Xt, j are the two-dimensional vectors of the moneyness and time-
to-maturity. For more details on the data design and econometric
motivation, we refer to Fengler et al. (2007).

One may find another application of the model (2) in the
analysis of functional magnetic resonance imaging (fMRI)
data. The fMRI is a noninvasive technique of recording brain’s
signals on spatial area in every particular time period (usually
1–4 sec). One obtains a series of three-dimensional images of
the blood-oxygen-level-dependent (BOLD) fMRI signals,
whereas an exercised person is subject to certain stimuli. An
example of the images in 15 different slices at one particular
time point is presented in Figure 2. For the more detailed

description on the fMRI methodology we refer to Logothetis
and Wandell (2004). The main aims of the statistical methods
in this field are identification of the brain’s activation areas and
analysis of its response over time. For this purpose the model
(2) can be applied. DSFM may be applied to many other
problems, such as modeling of yield curve evolution where the
standard approach is to use the parametric factor model pro-
posed by Nelson and Siegel (1987).

Our methods produce estimates of the true unobservable Zt,
say Ẑt; as well as estimates of the unknown functions ml. In
practice, one operates on these estimated values of Zt for fur-
ther statistical analysis of the data. In particular, for the IV
application, one needs to fit an econometric model to the
estimated factors Ẑt: For example, Hafner (2004) and Cont and
da Fonseca (2002) fitted an AR(1) process to each factor, and
Fengler et al. (2007) considered a multivariate VAR(2) model.
The main question that arises from these applications is
whether the inference based on Ẑt is equivalent to the one based
on Zt. Attempting to give an answer to this question forms the
core of this article.

It is worthwhile to note here that Zt is not identifiable in the
model (2). There are many versions of (Zt, m), where m ¼ (m0,
. . ., mL)

T, that give the same distribution of Yt. This means that
estimates of Zt and ml are not uniquely defined. We show that
for any version of {Zt} there exists a version of fẐtg whose
lagged covariances are asymptotically the same as those of
{Zt}. This justifies the inference based on fẐtg when {Zt} is a
VAR process, in particular. We confirm this theoretical result
by a Monte Carlo simulation study. We also discuss fitting the
model to the real ODAX IV and fMRI data.

The article is organized as follows. In the next section we
propose a new method of fitting DSFM and an iterative algo-
rithm that converges at a geometric rate. In Section 3 we
present the results of a simulation study that illustrate the
theoretical findings given in Section 5. In Section 4 we apply
the model to the ODAX IVand fMRI data. Section 5 is devoted
to the asymptotic analysis of the method. Technical details are
provided in the Appendix.

2. METHODOLOGY

We observe (Xt, j, Yt, j) for j ¼ 1, . . ., Jt and t ¼ 1, . . ., T such
that

Yt; j ¼ Z>
t mðXt; jÞ þ et; j: ð4Þ

Figure 1. The typical IV data design on two different days. In the maturity direction observations appear in the discrete points for each
particular day. Bottom solid lines indicate the observed maturities. Left panel: observations on 2004.07.08, Jt ¼ 5,606. Right panel: observations
on 2004.08.19, Jt ¼ 8,152.
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HereZ>
t ¼ ð1; Z>

t Þ and Zt¼ (Zt,1, . . ., Zt,L)> is an unobservable
L-dimensional process. The function m is an (L þ 1)-tuple (m0,
. . .,mL) of unknown real-valued functionsml defined on a subset
of Rd. The variables X1;1; . . . ; XT ;JT ; e1;1; . . . ; eT ; JT are inde-
pendent. The errors !t,j have zero means and finite second
moments. For simplicity of notation, we will assume that the
covariates Xt,j have support [0, 1]d, and also that Jt [ J do not
depend on t.

For the estimation of m, we use a series estimator. For an
integer K $ 1, we choose functions c1, . . ., cK: [0, 1]

d ! R,
which are normalized so that

R
½0;1(d c

2
kðxÞdx ¼ 1: For example,

one may take {ck: 1 # k # K} to be a tensor B-spline basis
(e.g., see de Boor 2001). Then, an (L þ 1)-tuple of functions
m¼ (m0, . . .,mL)

> may be approximated byAc, whereA¼ (al,k)
is an (L þ 1) 3 K matrix and c ¼ (c1, . . ., cK)

>. We define
the least squares estimators bZt ¼ ðbZt;1; . . . ; bZt;LÞ> and bA ¼ âl;k

! "
:

SðA; zÞ[
XT

t¼1

XJ

j¼1

Yt; j ) ð1; z>t ÞAcðXt; jÞ
# $2 ¼ min

A;z
! ð5Þ

where z ¼ z>1 ; . . . ;z
>
T

! ">
for L-dimensional vectors zt. With bA

at hand, we estimate m by m̂ ¼ bAc:
We note that, given z or A, the function S in (5) is quadratic

with respect to the other variables, and thus has an explicit
unique minimizer. However, minimization of S with respect to
A and z simultaneously is a fourth-order problem. The solution
is neither unique nor explicit. It is unique only up to the values
of bZ >

1
bA; . . . ; bZ >

T
bA; where bZ >

t ¼ ð1; bZ >
t Þ:We will come back

to this identifiability issue later in this section.
To find a solution ð bA; bZÞ of the minimization problem (5),

one might adopt the following iterative algorithm: (i) Given an
initial choice Z (0), minimize S(A, Z (0)) with respect toA, which
is an ordinary least squares problem and thus has an explicit
unique solution. Call it A(1). (ii) Minimize S(A(1), z) with
respect to z now, which is also an ordinary least squares

problem. (iii) Iterate (i) and (ii) until convergence. This is the
approach taken by Fengler et al. (2007). However, the proce-
dure is not guaranteed to converge to a solution of the original
problem.

We propose to use a Newton-Raphson algorithm. Let a [
a(A) denote the stack form of A ¼ (al,k) [i.e., a ¼ (a0,1, . . .,
aL,1, a0,2, . . ., aL,2, . . ., a0,K, . . ., aL,K)

>]. In a slight abuse of
notation we write S(a, z) for S(A, z). Define

F10ða; zÞ ¼ @

@a
Sða; zÞ; F01ða; zÞ ¼ @

@z
Sða; zÞ;

F20ða; zÞ ¼ @2

@a2
Sða; zÞ; F11ða; zÞ ¼ @2

@a@z
Sða; zÞ;

F02ða; zÞ ¼ @2

@z2
Sða; zÞ:

LetCt¼ [c(Xt,1), . . ., c(Xt,J)] be a K3 Jmatrix. Define A to be
the L 3 K matrix obtained by deleting the first row of A.
Writing z>t ¼ ð1; z>t Þ; it can be shown that

F10ða; zÞ ¼ 2
XT

t¼1

ðCtC
>
t Þ * ðztz>t Þ

% &
a) 2

XT

t¼1

ðCtYtÞ * zt;

F20ða; zÞ ¼ 2
XT

t¼1

ðCtC
>
t Þ * ðztz>t Þ

% &
;

F01ða; zÞ>¼2 z>1 AC1C
>
1 A

>) Y>
1 C

>
1 A

>; . . . ; z>TACTC
>
T A

>)
!

Y>
TC

>
T A

>Þ; and F02(a, z) equals a (TL) 3 (TL) matrix that
consists of T diagonal blocks ACtC

>
t A

> for t ¼ 1, . . ., T. Here
and later, 5 denotes the Kronecker product operator. Also, by
some algebraic manipulations it can be shown that

ðCtC
>
t Þ * ðztz>t Þ

% &
a ¼ ðCtC

>
t A

>ztÞ * zt: ð6Þ

Let I be an (L þ 1)3 L matrix such that IT ¼ (0, IL) and IL
denote the identity matrix of dimension L. Define
F11;tða; zÞ ¼ ðCtC

>
t A

>Þ * zt þ ðCtC
>
t A

>ztÞ * I)ðCtYtÞ*

Figure 2. Typical fMRI data in one particular time point. The figure presents 15 parallel horizontal images. The brightness corresponds to the
strength of the observed signals.
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I : Then, we get F11(a, z) ¼ 2 (F11,1(a, z), F11,2(a, z), . . .,
F11,T(a, z)). Let

Fða; zÞ ¼ F10ða; zÞ
F01ða; zÞ

' (
; F0ða; zÞ ¼ F20ða; zÞ F11ða; zÞ

F11ða; zÞ> F02ða; zÞ

' (
:

We need to solve the equation F(a, z) ¼ 0 simultaneously for
a and z. We note that the matrices ðCtC

>
t Þ * ðztz>t Þ ¼

ðCt * ztÞðCt * ztÞ
> and ACtC

>
t A

> are nonnegative defi-
nite. Thus, by Miranda’s existence theorem (for example, see
Vrahatis 1989) the nonlinear system of equations F(a, z) ¼ 0
has a solution.

Given (aOLD, ZOLD), the Newton-Raphson algorithm gives
the updating equation for (aNEW, ZNEW):

aNEW

ZNEW

' (
¼

aOLD

ZOLD

' (
) F0+ðaOLD; ZOLDÞ)1FðaOLD; ZOLDÞ;

ð7Þ

where F0+ða; zÞ for each given (a, z) is the restriction to F+ of
the linear map defined by the matrix F9(a, z) and F+ is
the linear space of values of (a, z) with

PT
t¼1 zt ¼ 0 andPT

t¼1 Z
ð0Þ
t ðzt ) Zð0Þ

t Þ> ¼ 0: We denote the initial value of the
algorithm by (a(0), Z(0)). We will argue later that under mild
conditions, ðâ; bZÞ can be chosen as an element of F+.

The algorithm (7) is shown to converge to a solution of (5) at
a geometric rate under some weak conditions on the initial
choice (a(0), Z(0)), as is demonstrated by Theorem 1 later. We
collect the conditions for the theorem.

(C1) It holds that
PT

t¼1 Z
ð0Þ
t ¼ 0: The matrix

PT
t¼1 Z

ð0Þ
t Zð0Þ>

t

and the map F+9(a
(0), Z(0)) are invertible.

(C2) There exists a version ðâ; bZÞ with
PT

t¼1
bZt ¼ 0 such

that
PT

t¼1
bZtZ

ð0Þ>
t is invertible. Also, âl ¼ ðâl1; . . .; âlKÞ>

for l ¼ 0, . . ., L are linearly independent.

Let a(k) and Z(k) denote the kth updated vectors in the iter-
ation with the algorithm (7). Also, we write AðkÞ for the matrix
that corresponds to a(k), and ZðkÞ>

t ¼ ð1; ZðkÞ>
t Þ.

Theorem 1. Let T, J and K be held fixed. Suppose that the
initial choice (a(0), Z (0)) satisfies (C1) and (C2). Then, for any
constant 0 < g < 1 there exist r > 0 and C > 0, which are random

variables depending on {(Xt,j, Yt,j)}, such that, if
PT

t¼1 kZ
ð0Þ>
t

Að0Þ ) bZ >
t
bA k2 # r, then

XT

t¼1

k ZðkÞ>
t AðkÞ ) bZ>

t
bA k2 # C2)2ðk)1Þg2ð2k)1Þ:

We now argue that under (C1) and (C2), ðâ; bZÞ can be
chosen as an element of F+. Note first that one can always
take Zt

(0) and bZt so that
PT

t¼1 Z
ð0Þ
t ¼ 0 and

PT
t¼1
bZt ¼ 0: This

is because, for any version ðâ; bZÞ, one has

bZ >
t
bA ¼ â>

0 þ
XL

l¼1

bZt;lâ>
l ¼ â>

0 þ
XL

l¼1

bZlâ>
l

 !

þ
XL

l¼1

ðbZt;l ) bZlÞâ>
l ¼let â+>

0 þ
XL

l¼1

bZ+
t;lâ

>
l ¼ bZt

+> bA
+
;

where bZl ¼ T)1
PT

t¼1
bZt;l; bZ+>

t ¼ ð1; bZ+>
t Þ and bA+ is the ma-

trix obtained from bA by replacing its first row by â+>
0 . Fur-

thermore, the minimization problem (5) has no unique solution.
If ðbZt; bAÞ or ðbZt; m̂ ¼ bAcÞ is a minimizer, then also ðB> bZt;
eB)1m̂Þ is a minimizer. Here

eB ¼ 1 0
0 B

' (
ð8Þ

and B is an arbitrary invertible matrix. The special structure of
eB assures that the first component of eB> bZt equals 1. In par-
ticular, with the choice B ¼ ð

PT
t¼1 Z

ð0Þ
t
bZ >
t Þ)1PT

t¼1 Z
ð0Þ
t Z ð0Þ>

t

we get for bZ+
t ¼ B> bZt that

PT
t¼1 Z

0ð Þ
t ðbZ+

t ) Z 0ð Þ
t Þ> ¼ 0:

In Section 5, we will show that, for any solution bZt and for
any version of true Zt, there exists a random matrix B such that
eZt ¼ B> bZt has asymptotically the same covariance structure as
Zt. This means that the difference of the inferences based on eZt
and Zt is asymptotically negligible.

We also note that one can always choose m̂ ¼ bAc such that
the components m̂1; . . . ; m̂L are orthonormal in L2([0, 1]

d) or in
other L2 [e.g., in L2ðT)1

PT
t¼1
bftÞ where bft is a kernel estimate

of the density of Xt, j]. If one selects m̂ in this way, then the
matrix B should be an orthogonal matrix and the underlying
time series Zt is estimated up to such transformations.

In practice one needs to choose an initial estimate (a(0), Z(0))
to run the algorithm. One may generate normal random variates
for Zð0Þ

t;l ; and then find the initial a(0) by solving the equation
F10(a, Z

(0)). This initial choice was found to work well in our
numerical study presented in Sections 3 and 4.

As an alternative way of fitting the model (2), one may
extend the idea of the principal component method that is used
to fit the orthogonal factor model (1). In this way, the data {Yt,j:
1 # j # J} are viewed as the values of a functional datum Yt(#)
observed at x ¼ Xt, j, 1# j# J, and the functional factor model
given at (3) may be fitted with smooth approximations of Yt
obtained from the original dataset. If one assumes EZt ¼ 0,
var(Zt) ¼ IL, as is typically the case with the orthogonal factor
model (1), then one can estimate ml and Zt by performing
functional principal component analysis with the sample
covariance function

bKðx; x0Þ ¼ T)1
XT

t¼1

fYtðxÞ ) YðxÞgfYtðx0Þ ) Yðx0Þg;

where YðxÞ ¼ T)1
PT

t¼1 YtðxÞ: There are some limitations for
this approach. First, it requires initial fits to get smooth
approximations of Yt(#), which may be difficult when the de-
sign points Xt, j are sparse as is the case with the IVapplication.
Our method avoids the preliminary estimation and shifts the
discrete representation directly to the functions ml. Second, for
the method to work one needs at least stationarity of Zt and et,
whereas our theory does not rely on these assumptions.

3. SIMULATION STUDY

In Theorem 3 we will argue that the inference based on the
covariances of the unobserved factors Zt is asymptotically
equivalent to the one based on B> bZt for some invertible B. In
this section we illustrate the equivalence by a simulation study.
We compare the covariances of Zt and eZt [B> bZt, where
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B ¼ T)1
XT

t¼1

Zc;t bZ >
c;t

 !)1

T)1
XT

t¼1

Zc;tZ
>
c;t; ð9Þ

Zc;t ¼ Zt ) T)1
PT

s¼1 Zs and bZc;t ¼ bZt ) T)1
PT

s¼1
bZs: Note

that B at (9) minimizes
PT

t¼1 k bZc;t ) ðB>Þ)1Zc;t k2 : In the
Appendix we will prove that Theorem 3 holds with the choice
at (9).

We took T¼ 500, 1,000, 2,000, J¼ 100, 250, 1,000 and K¼
36, 49, 64. We considered d ¼ 2, L ¼ 3 and the following tuple
of 2-dimensional functions:

m0ðx1; x2Þ ¼ 1; m1ðx1; x2Þ ¼ 3:46ðx1 ) :5Þ;

m2ðx1; x2Þ ¼ 9:45 ðx1 ) :5Þ2 þ ðx2 ) :5Þ2
n o

) 1:6;

m3ðx1; x2Þ ¼ 1:41 sinð2px2Þ:

The coefficients in these functions were chosen so that m1,
m2,m3 are close to orthogonal. We generated Zt from a centered
VAR(1) process Zt ¼ RZt)1 þ Ut, where Ut is N3(0, SU)
random vector, the rows ofR from the top equal (0.95,) 0.2, 0),
(0, 0.8, 0.1), (0.1, 0, 0.6), and SU ¼ 10)4I3. The design points
Xt,j were independently generated from a uniform distribution
on the unit square, et, j were iid N(0, s

2) with s ¼ 0.05, and Yt, j

were obtained according to the model (4). The simulation
experiment was repeated 250 times for each combination of (T,
J, K). For the estimation we employed, for cj, the tensor
products of linear B-splines. The one-dimensional linear B-
splines eck are defined on a consecutive equidistant knots xk,
xkþ1, xkþ2 by eckðxÞ¼ðx)xkÞ=ðxkþ1)xkÞ for
x2 ðxk; xkþ1(; eckðxÞ¼ðxkþ2)xÞ= ðxkþ2 ) xkþ1Þ for x 2 (xkþ1,
xkþ2], and eckðxÞ ¼ 0 otherwise. We chose K ¼ 8 3 8 ¼ 64.

We plotted in Figure 3 the entries of the scaled difference of
the covariance matrices

eD¼ 1ffiffiffiffi
T

p
XT

t¼1

eZt ) eZ
* +

eZt ) eZ
* +>

)
XT

t¼1

Zt ) Z
! "

Zt ) Z
! ">

( )

:

ð10Þ
Each panel of Figure 3 corresponds to one entry of the matrix
eD, and the three boxplots in each panel represent the dis-
tributions of the 250 values of the corresponding entry for T ¼
500, 1,000, 2,000. In the figure we also depicted, by thick lines,
the upper and lower quartiles of

D ¼ 1ffiffiffiffi
T

p
XT

t¼1

Zt ) Z
! "

Zt ) Z
! ">)TG

( )

; ð11Þ

Figure 3. The boxplots based on 250 values of the entries of the scaled difference of the covariance matrices given at (10). The lengths of the
series Zt and ~Zt were 500, 1,000, 2,000. The thick lines represent the upper and lower quartiles of (11).
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where G is the true covariance matrix of the simulated VAR
process. We refer to Lütkepohl (1993) for a representation of G.

Our theory in Section 5 tells that the size of eD is of smaller
order than the normalized error D of the covariance estimator
based on Zt. It is known that the latter converges to a non-
degenerate law as T! ‘. This is well supported by the plots in
Figure 3 showing that the distance between the two thick lines
in each panel is almost invariant as T increases. The fact that
the additional error incurred by using eZt instead of Zt is neg-
ligible for large T is also confirmed. In particular, the long
stretches at tails of the distributions of eD get shorter as T
increases. Also, the upper and lower quartiles of each entry of
eD, represented by the boxes, lie within those of the corre-
sponding entry of D, represented by the thick lines, when T ¼
1,000 and 2,000.

4. APPLICATIONS

This section presents an application of DSFM. We fit the
model to the intraday IV based on ODAX prices and to fMRI
data.

For our analysis we chose the data observed from July 1,
2004 to June 29, 2005. The one year period corresponds to the
financial regulatory requirements. The data were taken from
Financial and Economic Data Center of Humboldt-Universität
zu Berlin. The IV data were regressed on the two-dimensional
space of future moneyness and time-to-maturity, denoted by
ðkt; ttÞ>. The future moneyness kt is a monotone function of
the strike price K: kt ¼ K=ðSte)rtttÞ, where St is the spot price
at time t and rt is the interest rate. We chose rt as a daily Euro
Interbank Offered Rate (EURIBOR) taken from the Ecowin
Reuters database. The time-to-maturity of the options were
measured in years. We took all trades with 10/365 < t < 0.5. We
limit also the moneyness range to k 2 [0.7, 1.2].

The structure of the IV data, described already in Section 1,
requires a careful treatment. Apart from the dynamic degen-
eration, one may also observe nonuniform frequency of the
trades with significantly greater market activities for the
options closer to expiry or at-the-money. Here, ‘‘at-the-money’’
means a condition in which the strike price of an option equals
the spot price of the underlying security (i.e., K ¼ St). To avoid
the computational problems with the highly skewed empirical
distribution of Xt ¼ (kt, tt), we transformed the initial space
[0.7, 1.2] 3 [0.03, 0.5] to [0, 1]2 by using the marginal em-
pirical distribution functions. We applied the estimation algo-
rithm to the transformed space, and then transformed back the
results to the original space.

Because the model is not nested, the number of the dynamic
functions needs to be determined in advance. For this, we used

RVðLÞ ¼

PT
t

PJt
j Yt; j ) m̂0 Xt; j

! "
)
PL

l¼1
bZt;lm̂l Xt; j

! "n o2

PT
t

PJt
j Yt; j ) Y
! "2 ;

ð12Þ
although one may construct an Akaike information (AIC) or
Bayesian information (BIC) type of criterion, where one
penalizes the number of the dynamic functions in the model, or
performs some type of cross-validation. The quantity 1) RV(L)
can be interpreted as a proportion of the variation explained by

the model among the total variation. The computed values of
RV(L) are given in Table 1 for various L. Because the third,
fourth, and fifth factor made only a small improvement in the
fit, we chose L ¼ 2.

For the series estimators of m̂l we used tensor B-splines that
are cubic in the moneyness and quadratic in the maturity
direction. In the transformed space we placed 103 5 knots, 10
in the moneyness and 5 in the maturity direction. We found that
the results were not sensitive to the choice of the number
of knots and the orders of splines. For several choices of knots
in the range 5 3 5–15 3 10 and for the spline orders (2, 1), (2,
2), (3, 2), the values of 1 ) RV(2) were between 0.949 and
0.974. Because the model is identifiable only up to the trans-
formation (8), one has a freedom for the choice of factors.
Here, we chose the approach taken by Fengler et al. (2007) with
L2[0,1]

2 norm. Specifically, we orthonormalized m̂l and
transformed bZt according to their Equation (19) with G ¼R
m̂ðxÞm̂ðxÞ> dx; where m̂ ¼ ðm̂1; . . .; m̂LÞ>. Call them m̂+

l and
bZ+
t ; respectively. Then, we transformed them further by m̂++

l ¼
p>l m̂

+ and bZ++
t;l ¼ p>l bZ+

t ; where pl were the orthonormal eigen-

vectors of the matrix
PT

t¼1
bZ+
t
bZ+>
t that correspond to the

eigenvalues l1 > l2. Note that bZ+>
t m̂+ ¼ bZ++>

t m̂++: In this way,
fbZ++

t;1m̂
++
1 gmakes a larger contribution than fbZ++

t;2m̂
++
2 g to the total

variation
PT

t¼1

R
ðbZ++>

t m̂++Þ2 because
PT

t¼1

R
ðbZ++

t;1m̂
++
1 Þ2 ¼ l1

and
PT

t¼1

R
ðbZ++>

t m̂++Þ2 ¼ l1 þ l2: Later, we continue to write
bZt and m̂ for such bZ++

t and m̂++, respectively.
The estimated functions m̂1 and m̂2 are plotted in Figure 4 in

the transformed estimation space. The intercept function m̂0

was almost flat around zero, thus is not given. By construction,
m̂0 þ bZt;1m̂1 explain the principal movements of the surface. It
was observed by Cont and da Fonseca (2002) and Fengler et al.
(2007) that most dominant innovations of the entire surface are
parallel level shifts. Note that VDAX is an estimated at-the-
money IV for an option with 45 days to maturity, and thus
indicates up-and-down shifts. The left panel of Figure 5 shows
the values of VDAX together with m̂0ðXt;0Þ þ bZt;1m̂1ðXt;0Þ,
where Xt,0 is the moneyness and maturity corresponding to an
option at-the-money with 45 days to maturity. The right panel
of Figure 5 depicts the factor bZt, where one can find that bZt
shows almost the same dynamic behavior as the index VDAX.
This similarity supports that DSFM catches leading dynamic
effects successfully. Obviously the model in its full setting
explains other effects, such as skew or term structure changes,
which are not explicitly stated here.

Statistical analysis on the evolution of a high-dimensional
system ruling the option prices can be simplified to a low-
dimensional analysis of the bZt. In particular, as our theory in
Section 5 and the simulation results in Section 3 assert, the
inference based on the bZt is well justified in the VAR context.
To select a VAR model we computed the Schwarz (SC), the
Hannan-Quinn (HQ), and the Akaike criterion, as given in

Table 1. Proportion of the explained variation by the models with
L ¼ 1, . . ., 5 dynamic factors

No. factors L ¼ 1 L ¼ 2 L ¼ 3 L ¼ 4 L ¼ 5

1 – RV(L) 0.848 0.969 0.976 0.978 0.980
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Table 2. One can find that SC and HQ suggest a VAR(1)
process, whereas AIC selects VAR(2). The parameter estimates
for each selected model are given in Table 3. The roots of the
characteristic polynomial lie inside the unit circle, so the
specified models satisfy the stationarity condition. For each of
VAR(1) and VAR(2) models, we conducted a portmanteau test
for the hypothesis that the autocorrelations of the error term at
lags up to 12 are all zero, and also a series of LM tests, each of
which tests whether the autocorrelation at a particular lag up
to 5 equals zero. Some details on selection of lags for these
tests can be found in Hosking (1980, 1981) and Brüggemann,
Lütkepohl, and Saikkonen (2006). We found that in any test the
null hypothesis was not rejected at 5% level. A closer inspec-
tion on the autocorrelations of the residuals, however, revealed
that the autocorrelation of bZt;2 residuals at lag one is slightly
significant in the VAR(1) model, see Figure 6. But, this effect
disappears in the VAR(2) case, see Figure 7. Similar analyses
of characteristic polynomials, portmanteau and Lagrange
multiplier (LM) tests supported VAR(2) as a successful model
for bZt.

As a second application of the model, we considered fitting
an fMRI dataset. The data were obtained at Max-Planck Institut
für Kognitions-und-Neurowissenschaften Leipzig by scanning
a subject’s brain using a standard head coil. The scanning was
done every two seconds on the resolution of 3 3 3 3 2 mm3

with 1 mm gap between the slices. During the experiment, the

subject was exposed to three types of objects (bench, phone and
motorbike) and rotated around randomly changing axes for
four seconds, followed by relaxation phase of six to ten sec-
onds. Each stimulus was shown 16 times in pseudo-randomized
order. As a result, a series of 290 images with 64 3 64 3 30
voxels was obtained.

To apply the model (2) to the fMRI data, we took the voxel’s
index (i1, i2, i3) as covariate Xt, j, and the BOLD signal as Yt, j.
For numerical tractability we reduced the original data to a
series of 32 3 32 3 15 voxels by taking every second slice in
each direction. Thus, Jt [ 32 3 32 3 15 and T ¼ 290. The
voxels’ indices (i1, i2, i3) for 1 # i1, i2 # 32 ;1 # i3 # 15 are
associated with 32 3 32 3 15 equidistant points in R3. The
functionm0 represents the ‘‘average’’ signal as a function of the
three-dimensional location, and ml for each l $ 1 determines
the effect of the lth common factor Zt,l on the brain’s signal. In
Figure 8, each estimated function m̂l is represented by its
sections on the 15 slices in the direction of i3 [i.e., by those
m̂lð#; #; x3Þ for which x3 are fixed at the equidistant points cor-
responding to i3 ¼ 1, . . ., 15]. We used quadratic tensor B-
splines on equidistant knots. The number of knots in each
direction was 8, 8, 4, respectively, so that K¼ 93 93 5¼ 405.
For the model identification we used the same method as in the
IV application, but normalized bZ to have mean zero.

In contrast to the IV application, there was no significant
difference between the values of 1) RV(L) for different L$ 1.

Figure 4. The estimated factor functions for the ODAX IV data in the period 20040701–20050629.

Figure 5. Left panel: VDAX in the period 20040701–20050629 (solid) and the dynamics of the corresponding IV given by the submodel
m̂0 þ bZt;1m̂1 (dashed). Right panel: The obtained time series bZt on the ODAX IV data in the period 20040701–20050629. The solid line
represents bZt;1, the dashed line bZt; 2.
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All the values for L $ 1 were around 0.871. The fMRI signals
Yt,j were explained mostly by m̂0ðXt; jÞ þ Zt;1m̂1ðXt; jÞ, and the
effects of the common factors Zt,l for l $ 2 were relatively
small. The slow increase in the value of 1 ) RV(L) as L $ 1
grows in the fMRI application, contrary to the case of the IV
application, can be explained partly by the high complexity of
human brain. Because the values of 1 ) RV(L) were similar for
L $ 1, one might choose L ¼ 1. However, we chose L ¼ 4,
which we think still allows relatively low complexity, to
demonstrate some further analysis that might be possible with
similar datasets. The estimated functions m̂l for 0 # l # 4 and
the time series bZt;l for 1 # l # 4 are plotted in Figures 8 and 9,
respectively. The function m̂0 can be recognized as a smoothed
version of the original signal. By construction the first factor
and loadings incorporate the largest variation. One may see the
strong positive trend in bZt;1 and relatively flat patterns of
bZt;2; bZt;3; bZt;4. These effects could be typically explained by the
mixture of several components, such as physiological pulsa-
tion, subtle head movement, machine noise, and so on. For a
description of different artifacts, which significantly influence
the fMRI signals, we refer to Biswal, Yetkin, Haughton, and
Hyde (1995). The function estimates m̂l for 1# l# 4 appear to
have a clear peak, and bZt;l for 2# l# 4 show rather mild mean
reverting behavior.

To see how the recovered signals interact with the given
stimuli, we plotted bZtþs;l ) bZs;l against t in Figure 10, where s is
the time when a stimulus appears. The mean changes of bZt;1 and
bZt;3 show mild similarity, up to sign change, to the hemody-
namic response (see Worsley et al. 2002). The case of bZt;4 has a
similar pattern as those of bZt;1 and bZt;3 but with larger ampli-
tude, whereas the changes in bZt;2 seem to be independent of the
stimuli. In fitting the fMRI data, we did not use any external
information on the signal. From the biological perspective it
could be hardly expected that a pure statistical procedure gives
full insight into understanding of the complex dynamics of MR
images. For the latter one needs to incorporate into the pro-
cedure the shape of hemodynamic response, for example, or
consider physiologically motivated identification of the fac-

tors. It goes however beyond the scope of this illustrative
example.

5. ASYMPTOTIC ANALYSIS

In the simulation study and the real data application in
Sections 3 and 4, we considered the case where Zt is a VAR-
process. Here, we only make some weak assumptions on the
average behavior of the process. In our first theorem we allow
that it is a deterministic sequence. In our second result we
assume that it is a mixing sequence. For the asymptotic anal-
ysis, we let K, J, T! ‘. This is a very natural assumption often
also made in cross-sectional or panel data analysis. It is
appropriate for data with many observations per data point that
are available for many dates. It allows us to study how J and T
have to grow with respect to each other for a good performance
of a procedure. The distance between m and its best approx-
imation Ac does not tend to zero unless K ! ‘, see
Assumption (A5) later. One needs to let J ! ‘ to get con-

sistency of bZ >
t
bA and m̂ ¼ bAc as estimates of Z>

t A
+ and m,

respectively, whereA+ is defined at (A5). One should let T! ‘
to describe the asymptotic equivalence between the lagged
covariances of Zt and those of eZt, see Theorem 3 below. In our
analysis the dimension L is fixed. Clearly, one could also study
our model with L growing to infinity. We treat the case where
Xit are random. However, a theory for deterministic designs can
be developed along the lines of our theory.

Our first result relies on the following assumptions.

(A1) The variables X1,1, . . ., XT,J, e1,1, . . ., eT,J, and Z1, . . ., ZT
are independent. The process Zt is allowed to be nonrandom.
(A2) For t ¼ 1, . . ., T the variables Xt,1, . . ., Xt,J are identi-
cally distributed, have support [0, 1]d and a density ft that
is bounded from below and above on [0, 1]d, uniformly over
t ¼ 1, . . ., T.
(A3) We assume that Eet, j ¼ 0 for 1 # t # T, 1 # j # J, and
for c > 0 small enough sup1#t#T, 1#j#JE expðce2t; jÞ < ‘:
(A4) The functions ck may depend on the increasing indices
T and J, but are normed so that

R
½0;1(d c

2
kðxÞdx ¼ 1 for k ¼ 1,

. . ., K. Furthermore, it holds that supx2½0;1( k cðxÞ k¼
OðK1=2Þ:
(A5) The vector of functions m ¼ ðm0; . . . ;mLÞ> can be
approximated by ck, i.e.,

dK[ sup
x2½0;1(d

inf
A2RðLþ1Þ3K

mðxÞ )AcðxÞk k ! 0

as K ! ‘. We denote A that fulfills supx2½0;1(d mðxÞ)k
AcðxÞk # 2dK by A+.
(A6) There exist constants 0 < CL < CU < ‘ such that all
eigenvalues of the matrix T)1

PT
t¼1 ZtZ>

t lie in the interval
[CL, CU] with probability tending to one.

Table 2. The VARmodel selection criteria. The smallest value for each
criterion is marked by an asterisk

Order AIC SC HQ

1 )14.06 )13.98* )14.03*
2 )14.07* )13.93 )14.02
3 )14.06 )13.86 )13.98
4 )14.06 )13.81 )13.96
5 )14.07 )13.76 )13.95

Table 3. The estimated parameters for VAR(1) and VAR(2) models. Those that are not significant at 5% level are marked by asterisk

VAR(1) VAR(2)

bZt)1;1 bZt)1;2 Const. bZt)1;1 bZt)1;2 bZt)2;1 bZt)2;2 Const.

bZt;1 0.984 )0.029* )0.001 0.913 )0.025 0.071 )0.004 )0.001
bZt;2 0.055 0.739 0.005 0.124 0.880 )0.065 )0.187* 0.006
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(A7) The minimization (5) runs over all values of ðA; zÞ with

sup
x2½0;1(

max
1# t# T

k ð1; z>t ÞAcðxÞ k # MT ;

where the constant MT fulfils max 1 #t#T ||Zt|| # MT/Cm

(with probability tending to one) for a constant Cm such
that sup x2[0, 1]||m(x)|| < Cm.

Figure 6. Cross-autocorrelogram for the VAR(1) residuals. The dashed line-bounds indicate623 (standard deviations), which correspond to
an approximate 95% confidence bound.

Figure 7. Cross-autocorrelogram for the VAR(2) residuals. The dashed line-bounds indicate623 (standard deviations), which correspond to
an approximate 95% confidence bound.
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(A8) It holds that r2 ¼ ðK þ TÞM2
T logðJTMTÞ=ðJTÞ ! 0:

The dimension L is fixed.

Assumption (A7) and the additional bound MT in the mini-
mization is introduced for purely technical reasons. We con-
jecture that to some extent the asymptoic theory of this article
could be developed under weaker conditions. The independence
assumptions in (A1) and Assumption (A3) could be relaxed to
assuming that the errors !t, j have a conditional mean zero and
have a conditional distribution with subgaussian tails, given the
past values Xs,i, Zs (1# i # J, 1 # s # t). Such a theory would

require an empirical process theory that is more explicitly
designed for our model and it would also require a lot of more
technical assumptions. We also expect that one could proceed
with the assumption of subexponential instead of subgaussian
tails, again at the cost of some additional conditions. Recall that
the number of parameters to be estimated equals TLþ K(Lþ 1).
Because L is fixed, Assumption (A8) requires basically that,
neglecting the factorMT

2 log(JTMT), the number of parameters
grows slower than the number of observations, JT.

Our first result gives rates of convergence for the least
squares estimators bZt and bA.

Figure 8. The estimated functions m̂l for the fMRI signals.

Figure 9. The estimated time series bZt;l for the fMRI signals.
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Theorem 2. Suppose that model (4) holds and that ð bZt; bAÞ
is defined by the minimization problem (5). Make the
Assumptions (A1)–(A8). Then it holds that

1

T

X

1# t#T

bZt
> bA)Z >

t A
+

,,,
,,,
2
¼ OPðr2 þ d2KÞ: ð13Þ

At this point we have made no assumptions on the sequence
Zt: 1# t# T, besides the bound in (A7). Up to now it is allowed
to be a deterministic or a random sequence. We now assume
that it is a random process. We discuss how a statistical analysis
differs if inference on Zt is based on bZt instead of using (the
unobserved) process Zt. We will show that the differences
are asymptotically negligible (except an orthogonal trans-
formation). This is the content of the following theorem, where
we consider estimators of autocovariances and show that these
estimators differ only by second order terms. This asymptotic
equivalence carries over to classical estimation and testing
procedures in the framework of fitting a vector autoregresssive
model. For the statement of the theorem we need the following
assumptions:

(A9) Zt is a strictly stationary sequence with E(Zt) ¼ 0,
E(||Zt||

g) < ‘ for some g > 2. It is strongly mixing withP‘
i¼1 aðiÞ

ðg)2Þ=g <‘. The matrix EZtZt
T has full rank. The

process Zt is independent of X11, . . ., XTJ, !11, . . ., !TJ.
(A10) The functions m0, . . ., mL are linearly independent. In
particular, no function is equal to 0.
(A11) It holds that ½logðKTÞ2fðK MT=JÞ1=2 þ T1=2M4

TJ
)2

þK3=2J)1 þ K4=3J)2=3T)1=6gþ 1(T1=2ðr2 þ d2KÞ ¼ Oð1Þ.

Assumption (A11) poses very weak conditions on the growth
of J, K, and T. Suppose, for example, that MT is of logarithmic

order and that K is of order (TJ)1/5 so that the variance and the
bias are balanced for twice differentiable functions. In this
setting, (A11) only requires that T/J2 times a logarithmic factor
converges to zero. Define eZt ¼ B> bZt;

eZc;t ¼ eZt ) T)1
XT

s¼1
eZs;

Zc;t ¼ Zt ) T)1
XT

s¼1
Zs;

eZn;t ¼ ðT)1
XT

s¼1
eZc;s eZ >

c;sÞ
)1=2 eZc;t;

and Zn;t ¼ ðT)1
XT

s¼1
Zc;sZ

>
c;sÞ

)1=2Zc;t:

Theorem 3. Suppose that model (4) holds and that ðbZt; bAÞ
is defined by the minimization problem (5). Make the
Assumptions (A1)–(A11). Then there exists a random matrix B
such that for h 6¼ 0

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(

eZc;t eZc;tþh ) eZc;t
! ">) 1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(
Zc;t

Zc;tþh ) Zc;t

! ">¼ OPðT)1=2Þ;

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(

eZn;t eZ >
n;tþh )

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(
Zn;tZ

>
n;tþh

¼ OPðT)1=2Þ:

To illustrate an implication of Theorem 3, suppose that the
factor process Zt in (4) is a stationary VAR(p) process in a mean
adjusted form:

Figure 10. The responses of bZt;l to the stimuli.
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Zt ) m ¼ Q1ðZt)1 ) mÞ þ . . .þQpðZt)p ) mÞ þ Ut; ð14Þ
where m¼ E(Zt),Qj is a L3 Lmatrix of coefficients andUt is a
white noise with a nonsingular covariance matrix. Let Gh be the
autocovariance matrix of the process Zt with the lag h $ 0,
which is estimated by bGh ¼ T)1

PT
t¼hþ1ðZt ) ZÞðZt)h ) ZÞ>.

Let Y ¼ (Zpþ1 ) m, . . ., ZT ) m), Q ¼ (Q1, . . ., Qp), and U ¼

(Upþ1, . . .,UT). DefineWt ¼ ðZt ) mÞ>; . . . ; ðZt)pþ1 ) mÞ>
* +>

andW¼ (Wp, . . .,WT)1). Then, the model (14) can be rewritten
as Y¼QWþU and the least squares estimator ofQ is given by
bQ ¼ bY bW>ð bW bW>Þ)1, where bY and bW are the same as Y and W,
respectively, except that m is replaced by Z. Likewise, fitting a
VAR(p) model with the estimated factor process eZt yields
eQ ¼ eY eW>ð eW eW>Þ)1, where eY and eW are defined as bY and bW
with Zt being replaced by eZt. Both bY and bW are matrices
composed of bGh for various h. The matrices eY and eW have the
same forms as bY and bW , respectively, but with bGh being
replaced by eGh ¼ T)1

PT
t¼hþ1ðeZt ) eZÞðeZt)h ) eZÞ>. It is well

known that
ffiffiffiffi
T

p
ðbQ)QÞ ¼ OPð1Þ, see Lütkepohl (1993). By

Theorem 3, we have
ffiffiffiffi
T

p
ðeQ) bQÞ ¼ OPð1Þ.

APPENDIX: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

We use the Newton-Kantorovich theorem to prove the the-
orem. The statement of the theorem may be found in Kant-
orovich and Akilov (1982), for example.

Suppose that
PT

t¼1 k Zð0Þ>
t Að0Þ ) bZ >

t
bA k2 # r for some r >

0, which will be chosen later. With the Frobenius norm ||M||
for a matrix M, we get

k Að0Þ ) bA k2 #

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

#

,,,,,
XT

t¼1

Zð0Þ
t Zð0Þ>

t ðAð0Þ ) bAÞ

,,,,,

2

¼

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

#

,,,,,
XT

t¼1

Zð0Þ
t Zð0Þ>

t Að0Þ

)
XT

t¼1

Zð0Þ
t
bZ>
t
bA

,,,,,

2

#

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

3

 
XT

t¼1

,,,,,Z
ð0Þ
t Zð0Þ>

t Að0Þ ) Zð0Þ
t
bZ >
t
bA

,,,,,

!2

#

r

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2 XT

t¼1

k Zð0Þ
t k2

!

[ rc21:

ðA:1Þ
For a matrix M, define Mk k2¼ sup

xk k¼1
Mxk k. It is known that

||M||2 # ||M||. We get

k bA >ðZð0Þ
t ) bZtÞk $ k bAk)1

2

# kð bA bA >Þ)1 k)1 # kZ ð0Þ
t ) bZt k;

ðA:2Þ

k ðZð0Þ
t ) bZtÞ> bA k # k Zð0Þ>

t ð bA)Að0ÞÞ kþkZ ð0Þ>
t Að0Þ)

bZ >
t
bA k # k Zð0Þ

t k # k bA)A ð0Þ k þ k Zð0Þ >
t Að0Þ ) bZ >

t
bA k :

ðA:3Þ
The two inequalities (A.2) and (A.3) together with (A.1) give

k Zð0Þ ) bZ k2 # 2 r k bA k22 # k ð bA bA >Þ)1 k2

3

 

1þ c1
XT

t¼1

k Zð0Þ
t k2

!

[ r c22:
ðA:4Þ

Because F9(a, z) is quadratic in (a, z), there exists 0 < c3 < ‘
for any compact set D in RK(L þ 1)þTL such that ||F9(a9, z9) )
F9(a, z)||2 # c3||(a9>, z9>)> ) (a>, z>)>|| for all (a>, z>)>,
(a9>, z9>)> 2 D. Let c4 ¼ jjF0

+ðað0Þ; Zð0ÞÞ)1jj2<‘. Because F
is continuous and Fðâ; bZÞ ¼ 0, there exists r9 > 0 such that, if
k að0Þ ) ba k þ k Zð0Þ ) bZ k # r0, then

k F0
+ðað0Þ; Zð0ÞÞ)1Fðað0Þ; Zð0ÞÞ k #

g

2c3c4
:

By the Newton-Kantorovich theorem,

k aðkÞ ) ba k þk ZðkÞ ) bZ k # C12
)ðk)1Þg2k)1 ðA:5Þ

for some C1 > 0. This gives that if k að0Þ ) ba k þk Zð0Þ)
bZ k # r0, then

XT

t¼1

k ZðkÞ>
t AðkÞ ) bZ >

t
bA k2 #C2ðk aðkÞ ) ba k2þ

k ZðkÞ ) bZ k2Þ# C2)2ðk)1Þg2ð2k)1Þ

for some C, C2 > 0. We take r ¼ (c1 þ c2)
)2r92. Then, by

(A.1) and (A.4), k að0Þ ) ba k þk Zð0Þ ) bZ k # r0 if
PT

t¼1 k
Zð0Þ>

t Að0Þ ) bZ >
t
bA k2 # r. This completes the proof of the

theorem.

A.2 Proof of Theorem 2

For functions g(t, x) we define the norms k g k21 ¼
ð1=TJÞ

PT
t¼1

PJ
j¼1 gðt;Xt; jÞ2; kgk22¼ð1=TÞ

PT
t¼1
R
gðt; xÞ2f tðxÞ

dx, and k g k23¼ ð1=TÞ
PT

t¼1

R
gðt; xÞ2 dx. Note that because of

Assumption (A2) the last two norms are equivalent. Thus, for
the statement of the theorem we have to show for Dðt; xÞ ¼
ð bZ >

t
bA)Z >

t A
+ÞcðxÞ that

k D k22 ¼ OPðr2 þ d2KÞ: ðA:6Þ
We start by showing that

k D k21¼ OPð½ðK þ TÞ logðJTMTÞ(=ðJTÞ þ d2KÞ: ðA:7Þ
For this aim we apply Theorem 10.11 in Van de Geer

(2000) that treats rates of convergence for least squares
estimators on sieves. In our case we have the following sieve:
G+
T ¼fg: f1; . . . ; Tg3½0; 1(d/R; gðt; xÞ¼ ð1; z>t ÞAcðxÞ for an

ðLþ 1Þ3KmatrixA and zt 2 RL with the following properties:
jð1; z>t ÞAcðxÞj # MT for 1 # t # T and x 2 ½0; 1(dg. With a
constant C the d-entropy HTðd;G+

TÞ of G
+
T with respect to the

empirical norm ||g||1 is bounded by

HTðd;G+
TÞ # CT logðMT=dÞ þ CK logðKMT=dÞ: ðA:8Þ
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For the proof of (A.8) note first that each element gðt; xÞ ¼
ð1; z>t ÞAcðxÞ of G+

T can be chosen such that T)1
PT

t¼1 ztz
>
t is

equal to the L 3 L identity matrix IL. Then the bound
jð1; z>t ÞAcðxÞj # MT implies that k AcðxÞ k # MT . For the
proof of (A.8) we use that the (d/MT)-entropy of a unit ball in
RT is of order OðT logðMT=dÞÞ and that the d-entropy with
respect to the sup-norm for functionsAcðxÞ with k AcðxÞ k #
MT is of orderOðK logðKMT=dÞÞ. In the last entropy bound we
used that for each x it holds that jjc xð Þjj # K1/2. These two
entropy bounds imply (A.8). Application of Theorem 10.11 in
Van de Geer (2000) gives (A.7).

We now show that (A.7) implies (A.6). For this aim note first
that by Bernstein’s inequality for a, d > 0, g 2 G+

T with
jjgjj22 # d

Pðjk g k21 ) k g k22 j $ aÞ # 2 exp ) a2JT

2ðaþ dÞM2
T

' (
:

ðA:9Þ
Furthermore, for g; h 2 G+

T it holds with constants C, C9 that

jk g k21 ) k h k21 j#CK

 

T)1
XT

t¼1

k et ) f t k2
!1=2

 

T)1
XT

t¼1

k et þ f t k2
!1=2

#C0K k g) h k2 ðk g k2 þ k h k2Þ;

ðA:10Þ
where et and ft are chosen such that gðx; tÞ ¼ e>t cðxÞ and
hðx; tÞ ¼ f>t cðxÞ. From (A.9) and (A.10) we get with a constant
C > 0 that for d ¼ 1, 2, . . .

Pð sup
g2G+

T ;dr
2# kgk22#ðdþ1Þr2

jk g k21 ) k g k22 j $ dr2=2Þ

# C expððC þ K þ TÞ logðdKMTÞ ) dr2JT=½20M2
T (Þ:

By summing these inequalities over d$ 1 we get jjDjj22 # r2 or

jjDjj22 # jjjDjj21 ) jjDjj22jþ jjDjj21 # jjDjj22=2 þ jjDjj21
with probability tending to one. This shows Equation (A.6) and
concludes the proof of Theorem 2.

A.3 Proof of Theorem 3

Wewill prove the first equation of the theorem for h 6¼ 0. The
second equation follows from the first equation. We first prove

that the matrix T)1
PT

t¼1 Zc;t
bZ >
c;t is invertible, where Z>

c;t ¼
ð1; Z>

c;tÞ; bZ
>
c;t ¼ ð1; bZ >

c;t Þ, and bZc;t ¼ bZt ) T)1
PT

s¼1
bZs. This

implies that T)1
PT

t¼1 Zc;t bZ >
c;t is invertible. Suppose that the

assertion is not true. We can choose a random vector e such that
||e|| ¼ 1 and e>

PT
t¼1 Zc;t

bZ >
c;t ¼ 0. Let bA and A* be the L 3 K

matrices that are obtained by deleting the first rows of
bA andA+, respectively. Let bAc andA+

c be the matrices obtained
from bA and A+ by replacing their first rows by ba>

0 þ
ðT)1

PT
t¼1
bZtÞ> bA and a+>

0 þ ðT)1
PT

t¼1 ZtÞ>A+, respectively.
By definition, it follows that

bZ >
t
bA ¼ bZ >

c;t
bAc; Z>

t A
+ ¼ Z>

c;tA
+
c : ðA:11Þ

Note that
,,,,,T

)1
XT

t¼1

Zc;t
bZ >
c;t
bAc ) T)1

XT

t¼1

Zc;tZ>
c;tA

+
c

,,,,,

# T)1
XT

t¼1

,,,,,Zc;t

 
bZ >
c;t
bAc ) Z>

c;tA
+
c

!,,,,,

#

 

T)1
XT

t¼1

,,,,,Zc;t

,,,,,

2!1=2 

T)1
XT

t¼1

,,,,,
bZ >
t
bA)Z >

t A
+

,,,,,

2!1=2

¼ OPðr þ dKÞ; ðA:12Þ
because of Assumption (A6) and Theorem 2. Thus with
f ¼ T)1

PT
t¼1 Zc;tZ>

c;te, we obtain

k f>m k¼k f>ðA+
ccÞ k þOPðT)1=2 þ dKÞ

¼

,,,,,e
>T)1

XT

t¼1

Zc;t
bZ >
c;t
bAc c

,,,,,þOPðT)1=2 þ r þ dKÞ

¼ OPðT)1=2 þ r þ dKÞ:
This implies that m0, . . ., md are linearly dependent, contra-
dicting to Assumption (A10).

Let eB be the matrix given at (8) withB defined as in (9). Define
eZc;t ¼ eB > bZc;t and eAc ¼ eB)1 bAc. Then eZ >

c;t
eAc ¼ bZ >

c;t
bAc and

T)1
PT

t¼1 Zc;t
eZ >
c;t ¼ T)1

PT
t¼1 Zc;tZ>

c;t. This gives with (A.12)

eAc )A+
c

,,,
,,, ¼ T)1

XT

t¼1

Zc;tZ>
c;tð eAc )A+

cÞ

,,,,,

,,,,,OPð1Þ

¼ T)1
XT

t¼1

Zc;t
eZ >
c;t
eAc ) T)1

XT

t¼1

Zc;tZ>
c;tA

+
c

,,,,,

,,,,,OPð1Þ

¼ OPðr þ dKÞ: ðA:13Þ
Because of Theorem 2 this implies

eA)A+
,,,

,,, ¼ OPðr þ dKÞ: ðA:14Þ

Define eZc;t by eZ >
c;t ¼ ð1; eZ >

c;t Þ. Note that eZc;t ¼ B> bZc;t . Also,
define eA ¼ B)1 bA, which equals eAc without the first row. From
(A10), (A5), (A.14), and Theorem 2, we get

T)1
XT

t¼1

,,,eZt ) Zt

,,,
2
¼ T)1

XT

t¼1

,,, eZt ) Zt

,,,
2

¼ T)1
XT

t¼1

,,, eZ >
t ðm0; . . . ;mLÞ> ) Z>

t ðm0; . . . ;mLÞ>
,,,
2
OPð1Þ

¼ T)1
XT

t¼1

,,,eZ >
t A+) eZ>

t
eA
,,,
2
OPð1Þþ T)1

XT

t¼1

,,,eZ >
t
eA) Z>

t A
+
,,,
2

3OPð1Þ þOPðd2KÞ

# T)1
XT

t¼1

k eZt ) Zt

,,,2 k eA) A+,,2OPð1Þ þ T)1
XT

t¼1

k Zt

,,2

3 k eA) A+ k2 OPð1Þ

þ T)1
XT

t¼1

k eZ >
t
eA) Z>

t A
+ k2 OPð1Þ þOPðr2 þ d2KÞ

¼ OPðr2 þ d2KÞ:
ðA:15Þ
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From Equation (A.15) one gets

T)1
XT

t¼1

eZc;t ) Zc;t

,, ,,2 ¼ OPðr2 þ d2KÞ: ðA:16Þ

We will show that for h 6¼ 0

T)1
XT

t¼hþ1

fðeZc;tþh ) Zc;tþhÞ ) ðeZc;t ) Zc;tÞgZ>
c;t ¼ OPðT)1=2Þ:

ðA:17Þ
This implies the first statement of Theorem 3, because by
(A.16)

T)1
XT

t¼)hþ1

ðeZc;t ) Zc;tÞðeZ >
c;tþh ) Z>

c;tþhÞ ¼ OPðr2 þ d2KÞ

¼ OPðT)1=2Þ:

For the proof of (A.17), let eac be the stack form of eAc and
ea>
c;0 be its first row. Using the representation (6) and the first

identity of (A.11), it can be verified that

eZc;t ¼ eS)1
t;Z J

)1
XJ

j¼1

fYt; j
eAcðXt; jÞ ) eAcðXt; jÞcðXt; jÞ>eac;0g;

ðA:18Þ

eac ¼ eS)1
a T)1J)1

XT

t¼1

XJ

j¼1

fcðXt; jÞ * eZc;tgYt; j; ðA:19Þ

where eSt;Z ¼ J)1
PJ

j¼1
eAcðXt; jÞcðXt; jÞ> eA > and eSa ¼ T)1J)1

PT
t¼1

PJ
j¼1 fcðXt; jÞ * eZc;tgfcðXt; jÞ * eZc;tg>: Define eSt;Z as

eSt;Z with eAc replacing eA. Also, define St;Z ¼ A+
cE cðXt; jÞ

#

cðXt; jÞ>gA+>
c ; St;Z ¼ A+E cðXt; jÞcðXt; jÞ>

n o
A+> and

Sa ¼ T )1
XT

t¼1

E½fcðXt; jÞ * Zc;tgfcðXt; jÞ * Zc;tg>jZt(:

Let g ¼ T)1/2(r þ dK)
)1. We argue that

sup
1 # t # T

k eSt;Z ) St;Z k¼ OPðgÞ; k eSa ) Sa k ¼ OPðgÞ:

ðA:20Þ
We show the first part of (A.20). The second part can be

shown similarly. To prove the first part it suffices to show that,
uniformly for 1 # t # T,

J)1
XJ

j¼1

A+
c ½cðXt; jÞcðXt; jÞ> ) EfcðXt; jÞcðXt; jÞ>g(ð eAc )A+

cÞ
>

¼ OPðgÞ;
ðA:21Þ

J)1
XJ

j¼1

ð eAc )A+
cÞ½cðXt; jÞcðXt; jÞ> ) EfcðXt; jÞcðXt; jÞ>g(

ð eAc )A+
cÞ

> ¼ OPðgÞ;
ðA:22Þ

J)1
XJ

j¼1

A+
c ½cðXt; jÞcðXt; jÞ>) EfcðXt; jÞcðXt; jÞ>g(A+>

c

¼ OPðgÞ;
ðA:23Þ

J)1
XJ

j¼1

A+
cEfcðXt; jÞcðXt; jÞ>gð eAc )A+

cÞ
> ¼ OPðgÞ; ðA:24Þ

J)1
XJ

j¼1

ð eAc )A+
cÞEfcðXt; jÞcðXt; jÞTgð eAc )A+

cÞ
> ¼ OPðgÞ:

ðA:25Þ
The proof of (A.23)–(A.25) follows by simple arguments.

We now show (A.21). Claim (A.22) can be shown similarly. For
the proof of (A.21) we use Bernstein’s inequality for the fol-
lowing sum:

P j
XJ

j¼1

Wjj > x

 !

# 2 exp ) 1

2

x2

V þMx=3

' (
: ðA:26Þ

Here for a value of t with 1 # t # T, the random variable Wj is
an element of the (L þ 1) 3 1-matrix S ¼ J)1A+

c ½cðXt; jÞ
cðXt; jÞ>e) EfcðXtjÞcðXtjÞ>eg( where e 2 RK with ||e||¼ 1. In
(A.26), V is an upper bound for the variance of

PJ
j¼1 Wj andM

is a bound for the absolute values of Wj (i.e. |Wj|# M for 1# j
# J, a.s.). With some constants C1 and C2 that do not depend on
t and the row number we get V # C1J

)1 and M # C2K
1/2J)1.

Application of Bernstein’s inequality gives that, uniformly for
1# t# T and e 2RKwith ||e||¼ 1, all (Lþ 1) elements of S are
of order OPðgÞ. This shows claim (A.21).

From (A.13), (A.15), (A.18), (A.19), and (A.20) it follows
that uniformly for 1 # t # T,

eZc;t ) Zc;t ¼ S)1
t;Z J

)1
XJ

j¼1

et; jA+cðXt; jÞ þ S)1
t;Z J

)1
XJ

j¼1

et; j

3 ðeA) A+ÞcðXt; jÞ
ðA:27Þ

þS)1
t;Z J

)1
XJ

j¼1

ðeA) A+ÞcðXt; jÞcðXt; jÞ>A+>
c Zc;t þ OPðT)1=2Þ

[Dt;1;Z þ Dt;2;Z þ Dt;3;Z þ OPðT)1=2Þ:
For the proof of the theorem it remains to show that for 1 # j
# 3

T)1
XT

t¼)hþ1

ðDtþh; j; Z ) Dt;j;ZÞZ>
c;t ¼ OPðT)1=2Þ: ðA:28Þ

This can be easily checked for j ¼ 1. For j ¼ 2 it follows from
k eA) A+ k¼ Oðr þ dkÞ and

E k T)1J)1
XT

t¼1

XJ

j¼1

et; jS)1
t;ZMcðXt; jÞ k2

( )

¼ OðKJ)1T)1Þ

for any L 3 K matrix M with k M k ¼ 1. For the proof of
(A.28) for j ¼ 3, it suffices to show that

T)1
XTþh

t¼1

Dt; j; ZðZc;t)h ) Zc;tÞ> ¼ OPðT)1=2Þ: ðA:29Þ

We note first that for 1 # l # L

T)1
XTþh

t¼1

Dt;3;ZðZc;t)h;l ) Zc;t;lÞ

¼ T)1J)1
XTþh

t¼1

XJ

j¼1

n*
V>
h;tA

+
ccðXt; jÞcðXt; jÞ>

+
* S)1

t;Z

o
ðea)a+Þ;
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where Vh;t ¼ ðZc;t)h;l ) Zc;t;lÞZc;t, and ea and a* denote the
stack forms of eA and A*, respectively. For the proof of (A.29) it
suffices to show

T)1J)1
XTþh

t¼1

XJ

j¼1

fðE½Vh;t(>A+
ccðXt; jÞcðXt; jÞ>Þ * S)1

t;Z g

3 ðea) a+Þ ¼ OPðT)1=2Þ;
ðA:30Þ,,,,,T

)1J)1
XTþh

t¼1

XJ

j¼1

fðfVh;t ) E½Vh;t(g>A+
ccðXt; jÞcðXt; jÞ>Þ

* S)1
t;Z g

,,,,,

2

¼ OPðKJ)1T)1Þ:

ðA:31Þ
Claim (A.31) can be easily shown by calculating the

expectation of the left hand side of (A.31) and by using the
mixing condition at Assumption (A9). For a proof of (A.30) we
remark first that by construction

0 ¼ T)1
XT

t¼1

ðeZc;t ) Zc;tÞZT
c;t:

Using (A.27) and similar arguments as in the proof of (A.28)
for j ¼ 1, 2 we get that

T)1
XT

t¼1

Dt;3;ZZ
T
c;t ¼ T)1J)1

XT

t¼1

XJ

j¼1

n
ðZc;tZ>

c;tA
+
ccðXt; jÞcðXt; jÞ>Þ

* S)1
t;Z

o
ðea) a+Þ ¼ OPðT)1=2Þ:

As in the proof of (A.31) one can show that
,,,,,T

)1J)1
XTþh

t¼1

XJ

j¼1

fðfZc;tZ>
c;t ) E½Zc;tZ>

c;t(gA
+
ccðXt; jÞcðXt; jÞ>

* S)1
t;Z g

,,,,,

2

¼ OPðK J)1T)1Þ:

The last two equalities imply that

T)1J)1
XT

t¼1

XJ

j¼1

fðE½Zc;tZ>
c;t(A

+
ccðXt; jÞcðXt; jÞ>Þ * S)1

t;Z g

3 ðea) a+Þ ¼ OPðT)1=2Þ:
Because of Assumption (A9) this implies claim (A.29) and
concludes the proof of Theorem 3.

[Received June 2007. Revised August 2008.]
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Functional principal component analysis (FPCA) based on the
Karhunen–Loève decomposition has been successfully applied in many
applications, mainly for one sample problems. In this paper we con-
sider common functional principal components for two sample prob-
lems. Our research is motivated not only by the theoretical challenge
of this data situation, but also by the actual question of dynamics
of implied volatility (IV) functions. For different maturities the log-
returns of IVs are samples of (smooth) random functions and the
methods proposed here study the similarities of their stochastic be-
havior. First we present a new method for estimation of functional
principal components from discrete noisy data. Next we present the
two sample inference for FPCA and develop the two sample theory.
We propose bootstrap tests for testing the equality of eigenvalues,
eigenfunctions, and mean functions of two functional samples, illus-
trate the test-properties by simulation study and apply the method
to the IV analysis.

1. Introduction. In many applications in biometrics, chemometrics, econo-
metrics, etc., the data come from the observation of continuous phenomenons
of time or space and can be assumed to represent a sample of i.i.d. smooth
random functions X1(t), . . . , Xn(t) ∈ L2[0,1]. Functional data analysis has
received considerable attention in the statistical literature during the last
decade. In this context functional principal component analysis (FPCA)
has proved to be a key technique. An early reference is Rao (1958), and im-
portant methodological contributions have been given by various authors.
Case studies and references, as well as methodological and algorithmical de-
tails, can be found in the books by Ramsay and Silverman (2002, 2005) or
Ferraty and Vieu (2006).
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The well-known Karhunen–Loève (KL) expansion provides a basic tool to
describe the distribution of the random functions Xi and can be seen as the
theoretical basis of FPCA. For v,w ∈ L2[0,1], let 〈v,w〉 =

∫ 1
0 v(t)w(t)dt, and

let ‖ · ‖= 〈·, ·〉1/2 denote the usual L2-norm. With λ1 ≥ λ2 ≥ · · · and γ1, γ2, . . .
denoting eigenvalues and corresponding orthonormal eigenfunctions of the
covariance operator Γ of Xi, we obtain Xi = µ +

∑∞
r=1 βriγr, i = 1, . . . , n,

where µ = E(Xi) is the mean function and βri = 〈Xi − µ,γr〉 are (scalar)
factor loadings with E(β2

ri) = λr. Structure and dynamics of the random
functions can be assessed by analyzing the “functional principal compo-
nents” γr, as well as the distribution of the factor loadings. For a given
functional sample, the unknown characteristics λr, γr are estimated by the
eigenvalues and eigenfunctions of the empirical covariance operator Γ̂n of
X1, . . . ,Xn. Note that an eigenfunction γr is identified (up to sign) only if the
corresponding eigenvalue λr has multiplicity one. This therefore establishes
a necessary regularity condition for any inference based on an estimated
functional principal component γ̂r in FPCA. Signs are arbitrary (γr and βri

can be replaced by −γr and −βri) and may be fixed by a suitable standard-
ization. More detailed discussion on this topic and precise assumptions can
be found in Section 2.

In many important applications a small number of functional principal
components will suffice to approximate the functions Xi with a high degree
of accuracy. Indeed, FPCA plays a much more central role in functional data
analysis than its well-known analogue in multivariate analysis. There are two
major reasons. First, distributions on function spaces are complex objects,
and the Karhunen–Loève expansion seems to be the only practically feasible
way to access their structure. Second, in multivariate analysis a substantial
interpretation of principal components is often difficult and has to be based
on vague arguments concerning the correlation of principal components with
original variables. Such a problem does not at all exists in the functional
context, where γ1(t), γ2(t), . . . are functions representing the major modes
of variation of Xi(t) over t.

In this paper we consider inference and tests of hypotheses on the struc-
ture of functional principal components. Motivated by an application to
implied volatility analysis, we will concentrate on the two sample case. A
central point is the use of bootstrap procedures. We will show that the
bootstrap methodology can also be applied to functional data.

In Section 2 we start by discussing one-sample inference for FPCA. Basic
results on asymptotic distributions have already been derived by
Dauxois, Pousse and Romain (1982) in situations where the functions are di-
rectly observable. Hall and Hosseini-Nasab (2006) develop asymptotic Tay-

lor expansions of estimated eigenfunctions in terms of the difference Γ̂n −Γ.
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Without deriving rigorous theoretical results, they also provide some qualita-
tive arguments as well as simulation results motivating the use of bootstrap
in order to construct confidence regions for principal components.

In practice, the functions of interest are often not directly observed, but
are regression curves which have to be reconstructed from discrete, noisy
data. In this context the standard approach is to first estimate individual
functions nonparametrically (e.g., by B-splines) and then to determine prin-
cipal components of the resulting estimated empirical covariance operator—
see Besse and Ramsay (1986), Ramsay and Dalzell (1991), among others.
Approaches incorporating a smoothing step into the eigenanalysis have been
proposed by Rice and Silverman (1991), Pezzulli and Silverman (1993) or
Silverman (1996). Robust estimation of principal components has been con-
sidered by Lacontore et al. (1999). Yao, Müller and Wang (2005) and
Hall, Müller and Wang (2006) propose techniques based on nonparametric
estimation of the covariance function E[{Xi(t)−µ(t)}{Xi(s)−µ(s)}] which
can also be applied if there are only a few scattered observations per curve.

Section 2.1 presents a new method for estimation of functional princi-
pal components. It consists in an adaptation of a technique introduced by
Kneip and Utikal (2001) for the case of density functions. The key-idea is
to represent the components of the Karhunen–Loève expansion in terms of
an (L2) scalar-product matrix of the sample. We investigate the asymptotic
properties of the proposed method. It is shown that under mild conditions
the additional error caused by estimation from discrete, noisy data is first-
order asymptotically negligible, and inference may proceed “as if” the func-
tions were directly observed. Generalizing the results of
Dauxois, Pousse and Romain (1982), we then present a theorem on the
asymptotic distributions of the empirical eigenvalues and eigenfunctions.
The structure of the asymptotic expansion derived in the theorem provides
a basis to show consistency of bootstrap procedures.

Section 3 deals with two-sample inference. We consider two independent

samples of functions {X(1)
i }n1

i=1 and {X(2)
i }n2

i=1. The problem of interest is
to test in how far the distributions of these random functions coincide. The
structure of the different distributions in function space can be accessed by
means of the respective Karhunen–Loève expansions

X
(p)
i = µ(p) +

∞∑

r=1

β
(p)
ri γ(p)

r , p = 1,2.

Differences in the distribution of these random functions will correspond to
differences in the components of the respective KL expansions above. With-

out restriction, one may require that signs are such that 〈γ(1)
r , γ

(2)
r 〉 ≥ 0.

Two sample inference for FPCA in general has not been considered in the
literature so far. In Section 3 we define bootstrap procedures for testing
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the equality of mean functions, eigenvalues, eigenfunctions and eigenspaces.
Consistency of the bootstrap is derived in Section 3.1, while Section 3.2 con-
tains a simulation study providing insight into the finite sample performance
of our tests.

It is of particular interest to compare the functional components charac-
terizing the two samples. If these factors are “common,” this means γr :=

γ
(1)
r = γ

(2)
r , then only the factor loadings β

(p)
ri may vary across samples. This

situation may be seen as a functional generalization of the concept of “com-
mon principal components” as introduced by Flury (1988) in multivariate
analysis. A weaker hypothesis may only require equality of the eigenspaces
spanned by the first L ∈ N functional principal components. [N denotes the
set of all natural numbers 1,2, . . . (0 /∈ N)]. If for both samples the common
L-dimensional eigenspaces suffice to approximate the functions with high
accuracy, then the distributions in function space are well represented by a
low-dimensional factor model, and subsequent analysis may rely on compar-

ing the multivariate distributions of the random vectors (β
(p)
r1 , . . . , β

(p)
rL )⊤.

The idea of “common functional principal components” is of considerable
importance in implied volatility (IV) dynamics. This application is discussed
in detail in Section 4. Implied volatility is obtained from the pricing model
proposed by Black and Scholes (1973) and is a key parameter for quoting
options prices. Our aim is to construct low-dimensional factor models for
the log-returns of the IV functions of options with different maturities. In

our application the first group of functional observations—{X(1)
i }n1

i=1, are
log-returns on the maturity “1 month” (1M group) and second group—

{X(2)
i }n2

i=1, are log-returns on the maturity “3 months” (3M group).
The first three eigenfunctions (ordered with respect to the correspond-

ing eigenvalues), estimated by the method described in Section 2.1, are
plotted in Figure 1. The estimated eigenfunctions for both groups are of
similar structure, which motivates a common FPCA approach. Based on
discretized vectors of functional values, a (multivariate) common principal
components analysis of implied volatilities has already been considered by
Fengler, Härdle and Villa (2003). They rely on the methodology introduced
by Flury (1988) which is based on maximum likelihood estimation under
the assumption of multivariate normality. Our analysis overcomes the lim-
itations of this approach by providing specific hypothesis tests in a fully
functional setup. It will be shown in Section 4 that for both groups L = 3
components suffice to explain 98.2% of the variability of the sample func-
tions. An application of the tests developed in Section 3 does not reject the
equality of the corresponding eigenspaces.

2. Functional principal components and one sample inference. In this
section we will focus on one sample of i.i.d. smooth random functions X1, . . . ,
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Xn ∈ L2[0,1]. We will assume a well-defined mean function µ = E(Xi), as
well as the existence of a continuous covariance function σ(t, s) = E[{Xi(t)−
µ(t)}{Xi(s)− µ(s)}]. Then E(‖Xi − µ‖2) =

∫
σ(t, t)dt < ∞, and the covari-

ance operator Γ of Xi is given by

(Γv)(t) =

∫
σ(t, s)v(s)ds, v ∈L2[0,1].

The Karhunen–Loève decomposition provides a basic tool to describe the
distribution of the random functions Xi. With λ1 ≥ λ2 ≥ · · · and γ1, γ2, . . .
denoting eigenvalues and a corresponding complete orthonormal basis of
eigenfunctions of Γ, we obtain

Xi = µ +
∞∑

r=1

βriγr, i = 1, . . . , n,(1)

where βri = 〈Xi−µ,γr〉 are uncorrelated (scalar) factor loadings with E(βri) =
0, E(β2

ri) = λr and E(βriβki) = 0 for r 6= k. Structure and dynamics of the
random functions can be assessed by analyzing the “functional principal
components” γr, as well as the distribution of the factor loadings.

A discussion of basic properties of (1) can, for example, be found in
Gihman and Skorohod (1973). Under our assumptions, the infinite sums in
(1) converge with probability 1, and

∑∞
r=1 λr = E(‖Xi −µ‖2) < ∞. Smooth-

ness of Xi carries over to a corresponding degree of smoothness of σ(t, s)
and γr. If, with probability 1, Xi(t) is twice continuously differentiable, then
σ as well as γr are also twice continuously differentiable. The particular case
of a Gaussian random function Xi implies that the βri are independent
N(0, λr)-distributed random variables.

Fig. 1. Estimated eigenfunctions for 1M group in the left plot and 3M group in the right
plot: solid—first function, dashed—second function, finely dashed—third function.
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An important property of (1) consists in the known fact that the first L
principal components provide a “best basis” for approximating the sample
functions in terms of the integrated square error; see Ramsay and Silverman
(2005), Section 6.2.3, among others. For any choice of L orthonormal basis
functions v1, . . . , vL, the mean integrated square error

ρ(v1, . . . , vL) = E

(∥∥∥∥∥Xi − µ−
L∑

r=1

〈Xi − µ, vr〉vr

∥∥∥∥∥

2)
(2)

is minimized by vr = γr.

2.1. Estimation of functional principal components. For a given sample
an empirical analog of (1) can be constructed by using eigenvalues λ̂1 ≥ λ̂2 ≥
· · · and orthonormal eigenfunctions γ̂1, γ̂2, . . . of the empirical covariance
operator Γ̂n, where

(Γ̂nv)(t) =

∫
σ̂(t, s)v(s)ds,

with X̄ = n−1∑n
i=1 Xi and σ̂(t, s) = n−1∑n

i=1{Xi(t)− X̄(t)}{Xi(s)− X̄(s)}
denoting sample mean and covariance function. Then

Xi = X̄ +
n∑

r=1

β̂riγ̂r, i = 1, . . . , n,(3)

where β̂ri = 〈γ̂r,Xi−X̄〉. We necessarily obtain n−1∑
i β̂ri = 0, n−1∑

i β̂riβ̂si =

0 for r 6= s, and n−1∑
i β̂

2
ri = λ̂r.

Analysis will have to concentrate on the leading principal components
explaining the major part of the variance. In the following we will assume
that λ1 > λ2 > · · · > λr0 > λr0+1, where r0 denotes the maximal number of
components to be considered. For all r = 1, . . . , r0, the corresponding eigen-
function γr is then uniquely defined up to sign. Signs are arbitrary, decom-
positions (1) or (3) may just as well be written in terms of −γr,−βri or

−γ̂r,−β̂ri, and any suitable standardization may be applied by the statisti-
cian. In order to ensure that γ̂r may be viewed as an estimator of γr rather
than of −γr, we will in the following only assume that signs are such that
〈γr, γ̂r〉 ≥ 0. More generally, any subsequent statement concerning differences
of two eigenfunctions will be based on the condition of a nonnegative inner
product. This does not impose any restriction and will go without saying.

The results of Dauxois, Pousse and Romain (1982) imply that, under reg-

ularity conditions, ‖γ̂r − γr‖ = Op(n
−1/2), |λ̂r − λr| = Op(n

−1/2), as well as

|β̂ri − βri| =Op(n
−1/2) for all r ≤ r0.

However, in practice, the sample functions Xi are often not directly ob-
served, but have to be reconstructed from noisy observations Yij at discrete
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design points tik:

Yik = Xi(tik) + εik, k = 1, . . . , Ti,(4)

where εik are independent noise terms with E(εik) = 0, Var(εik) = σ2
i .

Our approach for estimating principal components is motivated by the
well-known duality relation between row and column spaces of a data matrix;
see Härdle and Simar (2003), Chapter 8, among others. In a first step this
approach relies on estimating the elements of the matrix:

Mlk = 〈Xl − X̄,Xk − X̄〉, l, k = 1, . . . , n.(5)

Some simple linear algebra shows that all nonzero eigenvalues λ̂1 ≥ λ̂2 · · · of
Γ̂n and l1 ≥ l2 · · · of M are related by λ̂r = lr/n, r = 1,2, . . . . When using the
corresponding orthonormal eigenvectors p1, p2, . . . of M , the empirical scores
β̂ri, as well as the empirical eigenfunctions γ̂r, are obtained by β̂ri =

√
lrpir

and

γ̂r =
1√
lr

n∑

i=1

pir(Xi − X̄) =
1√
lr

n∑

i=1

pirXi.(6)

The elements of M are functionals which can be estimated with asym-

potically negligible bias and a parametric rate of convergence T
−1/2
i . If the

data in (4) is generated from a balanced, equidistant design, then it is easily
seen that for i 6= j this rate of convergence is achieved by the estimator

M̂ij = T−1
T∑

k=1

(Yik − Ȳ
·k)(Yjk − Ȳ

·k), i 6= j,

and

M̂ii = T−1
T∑

k=1

(Yik − Ȳ
·k)

2 − σ̂2
i ,

where σ̂2
i denotes some nonparametric estimator of variance and Ȳ

·k = n−1×∑n
j=1 Yjk.
In the case of a random design some adjustment is necessary: Define the

ordered sample ti(1) ≤ ti(2) ≤ · · · ≤ ti(Ti) of design points, and for j = 1, . . . , Ti,
let Yi(j) denote the observation belonging to ti(j). With ti(0) = −ti(1) and
ti(Ti+1) = 2− ti(Ti), set

χi(t) =
Ti∑

j=1

Yi(j)I

(
t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
, t ∈ [0,1],

where I(·) denotes the indicator function, and for i 6= j, define the estimate
of Mij by

M̂ij =

∫ 1

0
{χi(t)− χ̄(t)}{χj(t)− χ̄(t)}dt,
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where χ̄(t) = n−1∑n
i=1 χi(t). Finally, by redefining ti(1) = −ti(2) and ti(Ti+1) =

2 − ti(Ti), set χ∗
i (t) =

∑Ti

j=2 Yi(j−1)I(t ∈ [
ti(j−1)+ti(j)

2 ,
ti(j)+ti(j+1)

2 )), t ∈ [0,1].

Then construct estimators of the diagonal terms Mii by

M̂ii =

∫ 1

0
{χi(t)− χ̄(t)}{χ∗

i (t)− χ̄(t)}dt.(7)

The aim of using the estimator (7) for the diagonal terms is to avoid the
additional bias implied by Eε(Y

2
ik) = Xi(tij)

2 + σ2
i . Here Eε denotes con-

ditional expectation given tij , Xi. Alternatively, we can construct a bias
corrected estimator using some nonparametric estimation of variance σ2

i ,
for example, the difference based model-free variance estimators studied in
Hall, Kay and Titterington (1990) can be employed.

The eigenvalues l̂1 ≥ l̂2 · · · and eigenvectors p̂1, p̂2, . . . of the resulting ma-

trix M̂ then provide estimates λ̂r;T = l̂r/n and β̂ri;T =
√

l̂rp̂ir of λ̂r and β̂ri.
Estimates γ̂r;T of the empirical functional principal component γ̂r can be
determined from (6) when replacing the unknown true functions Xi by non-

parametric estimates X̂i (as, for example, local polynomial estimates) with
smoothing parameter (bandwidth) b:

γ̂r;T =
1√
l̂r

n∑

i=1

p̂irX̂i.(8)

When considering (8), it is important to note that γ̂r;T is defined as a

weighted average of all estimated sample functions. Averaging reduces vari-
ance, and efficient estimation of γ̂r therefore requires undersmoothing of
individual function estimates X̂i. Theoretical results are given in Theorem
1 below. Indeed, if, for example, n and T = mini Ti are of the same order
of magnitude, then under suitable additional regularity conditions it will be
shown that for an optimal choice of a smoothing parameter b ∼ (nT )−1/5

and twice continuously differentiable Xi, we obtain the rate of convergence
‖γ̂r − γ̂r;T‖ = Op{(nT )−2/5}. Note, however, that the bias corrected esti-
mator (7) may yield negative eigenvalues. In practice, these values will be
small and will have to be interpreted as zero. Furthermore, the eigenfunc-
tions determined by (8) may not be exactly orthogonal. Again, when using
reasonable bandwidths, this effect will be small, but of course (8) may by
followed by a suitable orthogonalization procedure.

It is of interest to compare our procedure to more standard methods
for estimating λ̂r and γ̂r as mentioned above. When evaluating eigenvalues
and eigenfunctions of the empirical covariance operator of nonparametrically
estimated curves X̂i, then for fixed r ≤ r0 the above rate of convergence for
the estimated eigenfunctions may well be achieved for a suitable choice of
smoothing parameters (e.g., number of basis functions). But as will be seen
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from Theorem 1, our approach also implies that |λ̂r − l̂r
n |= Op(T

−1 + n−1).
When using standard methods it does not seem to be possible to obtain
a corresponding rate of convergence, since any smoothing bias |E[X̂i(t)] −
Xi(t)| will invariably affect the quality of the corresponding estimate of λ̂r.

We want to emphasize that any finite sample interpretation will require
that T is sufficiently large such that our nonparametric reconstructions of
individual curves can be assumed to possess a fairly small bias. The above ar-
guments do not apply to extremely sparse designs with very few observations
per curve [see Hall, Müller and Wang (2006) for an FPCA methodology fo-
cusing on sparse data].

Note that, in addition to (8), our final estimate of the empirical mean

function µ̂ = X̄ will be given by µ̂T = n−1∑
i X̂i. A straightforward approach

to determine a suitable bandwidth b consists in a “leave-one-individual-out”
cross-validation. For the maximal number r0 of components to be considered,
let µ̂T,−i and γ̂r;T,−i, r = 1, . . . , r0, denote the estimates of µ̂ and γ̂r obtained
from the data (Ylj, tlj), l = 1, . . . , i−1, i+1, . . . , n, j = 1, . . . , Tk. By (8), these
estimates depend on b, and one may approximate an optimal smoothing
parameter by minimizing

∑

i

∑

j

{
Yij − µ̂T,−i(tij)−

r0∑

r=1

ϑ̂riγ̂r;T,−i(tij)

}2

over b, where ϑ̂ri denote ordinary least squares estimates of β̂ri. A more
sophisticated version of this method may even allow to select different band-
widths br when estimating different functional principal components by (8).
Although, under certain regularity conditions, the same qualitative rates
of convergence hold for any arbitrary fixed r ≤ r0, the quality of estimates
decreases when r becomes large. Due to 〈γs, γr〉 = 0 for s < r, the number
of zero crossings, peaks and valleys of γr has to increase with r. Hence, in
tendency γr will be less and less smooth as r increases. At the same time,
λr → 0, which means that for large r the rth eigenfunctions will only possess
a very small influence on the structure of Xi. This in turn means that the
relative importance of the error terms εik in (4) on the structure of γ̂r;T will
increase with r.

2.2. One sample inference. Clearly, in the framework described by (1)–
(4) we are faced with two sources of variability of estimated functional prin-
cipal components. Due to sampling variation, γ̂r will differ from the true
component γr, and due to (4), there will exist an additional estimation er-
ror when approximating γ̂r by γ̂r;T .

The following theorems quantify the order of magnitude of these different
types of error. Our theoretical results are based on the following assumptions
on the structure of the random functions Xi.
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Assumption 1. X1, . . . ,Xn ∈ L2[0,1] is an i.i.d. sample of random func-
tions with mean µ and continuous covariance function σ(t, s), and (1) holds
for a system of eigenfunctions satisfying sups∈N

supt∈[0,1] |γs(t)| < ∞. Fur-

thermore,
∑∞

r=1

∑∞
s=1 E[β2

riβ
2
si] < ∞ and

∑∞
q=1

∑∞
s=1 E[β2

riβqiβsi] < ∞ for all
r ∈ N.

Recall that E[βri] = 0 and E[βriβsi] = 0 for r 6= s. Note that the assump-
tion on the factor loadings is necessarily fulfilled if Xi are Gaussian random
functions. Then βri and βsi are independent for r 6= s, all moments of βri

are finite, and hence E[β2
riβqiβsi] = 0 for q 6= s, as well as E[β2

riβ
2
si] = λrλs

for r 6= s; see Gihman and Skorohod (1973).

We need some further assumptions concerning smoothness of Xi and the
structure of the discrete model (4).

Assumption 2. (a) Xi is a.s. twice continuously differentiable. There
exists a constant D1 < ∞ such that the derivatives are bounded by
supt E[Xi

′(t)4]≤ D1, as well as supt E[Xi
′′(t)4]≤ D1.

(b) The design points tik, i = 1, . . . , n, k = 1, . . . , Ti, are i.i.d. random
variables which are independent of Xi and εik. The corresponding design
density f is continuous on [0,1] and satisfies inft∈[0,1] f(t) > 0.

(c) For any i, the error terms εik are i.i.d. zero mean random variables
with Var(εik) = σ2

i . Furthermore, εik is independent of Xi, and there exists
a constant D2 such that E(ε8

ik) < D2 for all i, k.

(d) The estimates X̂i used in (8) are determined by either a local linear or
a Nadaraya–Watson kernel estimator with smoothing parameter b and kernel
function K. K is a continuous probability density which is symmetric at 0.

The following theorems provide asymptotic results as n,T → ∞, where
T = minn

i=1{Ti}.

Theorem 1. In addition to Assumptions 1 and 2, assume that infs 6=r |λr−
λs|> 0 holds for some r = 1,2, . . . . Then we have the following:

(i) n−1∑n
i=1(β̂ri − β̂ri;T )2 = Op(T

−1) and

∣∣∣∣λ̂r −
l̂r
n

∣∣∣∣=Op(T
−1 + n−1).(9)

(ii) If additionally b → 0 and (Tb)−1 → 0 as n,T →∞, then for all t ∈
[0,1],

|γ̂r(t)− γ̂r;T (t)| = Op{b2 + (nTb)−1/2 + (Tb1/2)−1 + n−1}.(10)

A proof is given in the Appendix.
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Theorem 2. Under Assumption 1 we obtain the following:

(i) For all t ∈ [0,1],

√
n{X̄(t)− µ(t)} =

∑

r

{
1√
n

n∑

i=1

βri

}
γr(t)

L→N

(
0,
∑

r

λrγr(t)
2

)
.

If, furthermore, λr−1 > λr > λr+1 holds for some fixed r ∈ {1,2, . . .}, then

(ii)

√
n(λ̂r − λr) =

1√
n

n∑

i=1

(β2
ri − λr) +Op(n

−1/2)
L→ N(0,Λr),(11)

where Λr = E[(β2
ri − λr)

2],
(iii) and for all t ∈ [0,1]

γ̂r(t)− γr(t) =
∑

s 6=r

{
1

n(λr − λs)

n∑

i=1

βsiβri

}
γs(t) + Rr(t),

(12)
where ‖Rr‖ =Op(n

−1).

Moreover,

√
n
∑

s 6=r

{
1

n(λr − λs)

n∑

i=1

βsiβri

}
γs(t)

L→ N

(
0,
∑

q 6=r

∑

s 6=r

E[β2
riβqiβsi]

(λq − λr)(λs − λr)
γq(t)γs(t)

)
.

A proof can be found in the Appendix. The theorem provides a general-
ization of the results of Dauxois, Pousse and Romain (1982) who derive ex-
plicit asymptotic distributions by assuming Gaussian random functions Xi.

Note that in this case Λr = 2λ2
r and

∑
q 6=r

∑
s 6=r

E[β2
ri

βqiβsi]
(λq−λr)(λs−λr)γq(t)γs(t) =

∑
s 6=r

λrλs

(λs−λr)2 γs(t)
2.

When evaluating the bandwidth-dependent terms in (10), best rates of
convergence |γ̂r(t) − γ̂r;T (t)| = Op{(nT )−2/5 + T−4/5 + n−1} are achieved

when choosing an undersmoothing bandwidth b ∼ max{(nT )−1/5, T−2/5}.
Theoretical work in functional data analysis is usually based on the implicit
assumption that the additional error due to (4) is negligible, and that one
can proceed “as if” the functions Xi were directly observed. In view of
Theorems 1 and 2, this approach is justified in the following situations:

(1) T is much larger than n, that is, n/T 4/5 → 0, and the smoothing
parameter b in (8) is of order T−1/5 (optimal smoothing of individual func-
tions).
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(2) An undersmoothing bandwidth b ∼ max{(nT )−1/5, T−2/5} is used and
n/T 8/5 → 0. This means that T may be smaller than n, but T must be at
least of order of magnitude larger than n5/8.

In both cases (1) and (2) the above theorems imply that |λ̂r − l̂r
n |= Op(|λ̂r −

λr|), as well as ‖γ̂r − γ̂r;T‖= Op(‖γ̂r − γr‖). Inference about functional prin-
cipal components will then be first-order equivalent to an inference based
on known functions Xi.

In such situations Theorem 2 suggests bootstrap procedures as tools for
one sample inference. For example, the distribution of ‖γ̂r − γr‖ may by
approximated by the bootstrap distribution of ‖γ̂∗

r − γ̂r‖, where γ̂∗
r are es-

timates to be obtained from i.i.d. bootstrap resamples X∗
1 ,X∗

2 , . . . ,X∗
n of

{X1,X2, . . . ,Xn}. This means that X∗
1 = Xi1 , . . . ,X

∗
n = Xin for some indices

i1, . . . , in drawn independently and with replacement from {1, . . . , n} and,
in practice, γ̂∗

r may thus be approximated from corresponding discrete data
(Yi1j , ti1j)j=1,...,Ti1

, . . . , (Yinj , tinj)j=1,...,Tin
. The additional error is negligible

if either (1) or (2) is satisfied.
One may wonder about the validity of such a bootstrap. Functions are

complex objects and there is no established result in bootstrap theory which
readily generalizes to samples of random functions. But by (1), i.i.d. boot-
strap resamples {X∗

i }i=1,...,n may be equivalently represented by correspond-
ing, i.i.d. resamples {β∗

1i, β
∗
2i, . . .}i=1,...,n of factor loadings. Standard multi-

variate bootstrap theorems imply that for any q ∈ N the distribution of mo-
ments of the random vectors (β1i, . . . , βqi) may be consistently approximated
by the bootstrap distribution of corresponding moments of (β∗

1i, . . . , β
∗
qi). To-

gether with some straightforward limit arguments as q →∞, the structure of
the first-order terms in the asymptotic expansions (11) and (12) then allows
to establish consistency of the functional bootstrap. These arguments will
be made precise in the proof of Theorem 3 below, which concerns related
bootstrap statistics in two sample problems.

Remark. Theorem 2(iii) implies that the variance of γ̂r is large if one of
the differences λr−1 − λr or λr − λr+1 is small. In the limit case of eigenval-
ues of multiplicity m > 1 our theory does not apply. Note that then only the
m-dimensional eigenspace is identified, but not a particular basis (eigenfunc-
tions). In multivariate PCA Tyler (1981) provides some inference results on
corresponding projection matrices assuming that λr > λr+1 ≥ · · · ≥ λr+m >
λr+m+1 for known values of r and m.

Although the existence of eigenvalues λr, r ≤ r0, with multiplicity m > 1
may be considered as a degenerate case, it is immediately seen that λr → 0
and, hence, λr − λr+1 → 0 as r increases. Even in the case of fully observed
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functions Xi, estimates of eigenfunctions corresponding to very small eigen-
values will thus be poor. The problem of determining a sensible upper limit
of the number r0 of principal components to be analyzed is addressed in
Hall and Hosseini-Nasab (2006).

3. Two sample inference. The comparison of functional components across
groups leads naturally to two sample problems. Thus, let

X
(1)
1 ,X

(1)
2 , . . . ,X(1)

n1
and X

(2)
1 ,X

(2)
2 , . . . ,X(2)

n2

denote two independent samples of smooth functions. The problem of inter-
est is to test in how far the distributions of these random functions coincide.
The structure of the different distributions in function space can be accessed
by means of the respective Karhunen–Loève decompositions. The problem
to be considered then translates into testing equality of the different com-
ponents of these decompositions given by

X
(p)
i = µ(p) +

∞∑

r=1

β
(p)
ri γ(p)

r , p = 1,2,(13)

where again γ
(p)
r are the eigenfunctions of the respective covariance operator

Γ(p) corresponding to the eigenvalues λ
(p)
1 = E{(β(p)

1i )2} ≥ λ
(p)
2 = E{(β(p)

2i )2} ≥
· · ·. We will again suppose that λ

(p)
r−1 > λ

(p)
r > λ

(p)
r+1, p = 1,2, for all r ≤ r0

components to be considered. Without restriction, we will additionally as-

sume that signs are such that 〈γ(1)
r , γ

(2)
r 〉 ≥ 0, as well as 〈γ̂(1)

r , γ̂
(2)
r 〉 ≥ 0.

It is of great interest to detect possible variations in the functional compo-
nents characterizing the two samples in (13). Significant difference may give
rise to substantial interpretation. Important hypotheses to be considered
thus are as follows:

H01 :µ(1) = µ(2) and H02,r
:γ(1)

r = γ(2)
r , r ≤ r0.

Hypothesis H02,r
is of particular importance. Then γ

(1)
r = γ

(2)
r and only the

factor loadings βri may vary across samples. If, for example, H02,r
is ac-

cepted, one may additionally want to test hypotheses about the distribu-

tions of β
(p)
ri , p = 1,2. Recall that necessarily E{β(p)

ri } = 0, E{β(p)
ri }2 = λ

(p)
r ,

and β
(p)
si is uncorrelated with β

(p)
ri if r 6= s. If the X

(p)
i are Gaussian random

variables, the β
(p)
ri are independent N(0, λr) random variables. A natural

hypothesis to be tested then refers to the equality of variances:

H03,r
:λ(1)

r = λ(2)
r , r = 1,2, . . . .

Let µ̂(p)(t) = 1
np

∑
i X

(p)
i (t), and let λ̂

(p)
1 ≥ λ̂

(p)
2 ≥ · · · and γ̂

(p)
1 , γ̂

(p)
2 , . . . de-

note eigenvalues and corresponding eigenfunctions of the empirical covari-

ance operator Γ̂
(p)
np of X

(p)
1 ,X

(p)
2 (t), . . . ,X

(p)
np . The following test statistics are
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defined in terms of µ̂(p), λ̂
(p)
r and γ̂

(p)
r . As discussed in the proceeding section,

all curves in both samples are usually not directly observed, but have to be
reconstructed from noisy observations according to (4). In this situation, the
“true” empirical eigenvalues and eigenfunctions have to be replaced by their
discrete sample estimates. Bootstrap estimates are obtained by resampling

the observations corresponding to the unknown curves X
(p)
i . As discussed in

Section 2.2, the validity of our test procedures is then based on the assump-
tion that T is sufficiently large such that the additional estimation error is
asymptotically negligible.

Our tests of the hypotheses H01 ,H02,r
and H03,r

rely on the statistics

D1
def
= ‖µ̂(1) − µ̂(2)‖2,

D2,r
def
= ‖γ̂(1)

r − γ̂(2)
r ‖2,

D3,r
def
= |λ̂(1)

r − λ̂(2)
r |2.

The respective null-hypothesis has to be rejected if D1 ≥ ∆1;1−α, D2,r ≥
∆2,r;1−α or D3,r ≥ ∆3,r;1−α, where ∆1;1−α, ∆2,r;1−α and ∆3,r;1−α denote the
critical values of the distributions of

∆1
def
= ‖µ̂(1) − µ(1) − (µ̂(2) − µ(2))‖2,

∆2,r
def
= ‖γ̂(1)

r − γ(1)
r − (γ̂(2)

r − γ(2)
r )‖2,

∆3,r
def
= |λ̂(1)

r − λ(1)
r − (λ̂(2)

r − λ(2)
r )|2.

Of course, the distributions of the different ∆’s cannot be accessed directly,
since they depend on the unknown true population mean, eigenvalues and
eigenfunctions. However, it will be shown below that these distributions and,
hence, their critical values are approximated by the bootstrap distribution
of

∆∗
1

def
= ‖µ̂(1)∗ − µ̂(1) − (µ̂(2)∗ − µ̂(2))‖2,

∆∗
2,r

def
= ‖γ̂(1)∗

r − γ̂(1)
r − (γ̂(2)∗

r − γ̂(2)
r )‖2,

∆∗
3,r

def
= |λ̂(1)∗

r − λ̂(1)
r − (λ̂(2)∗

r − λ̂(2)
r )|2,

where µ̂(1)∗, γ̂
(1)∗
r , λ̂

(1)∗
r , as well as µ̂(2)∗, γ̂

(2)∗
r , λ̂

(2)∗
r , are estimates to be

obtained from independent bootstrap samples X1∗
1 (t),X1∗

2 (t), . . . ,X1∗
n1

(t), as
well as X2∗

1 (t),X2∗
2 (t), . . . ,X2∗

n2
(t).

This test procedure is motivated by the following insights:

(1) Under each of our null-hypotheses the respective test statistics D is
equal to the corresponding ∆. The test will thus asymptotically possess the
correct level: P (D > ∆1−α)≈ α.
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(2) If the null hypothesis is false, then D 6= ∆. Compared to the distribu-
tion of ∆, the distribution of D is shifted by the difference in the true means,
eigenfunctions or eigenvalues. In tendency D will be larger than ∆1−α.

Let 1 < L ≤ r0. Even if for r ≤ L the equality of eigenfunctions is rejected,
we may be interested in the question of whether at least the L-dimensional
eigenspaces generated by the first L eigenfunctions are identical. Therefore,

let E(1)
L , as well as E(2)

L , denote the L-dimensional linear function spaces

generated by the eigenfunctions γ
(1)
1 , . . . , γ

(1)
L and γ

(2)
1 , . . . , γ

(2)
L , respectively.

We then aim to test the null hypothesis:

H04,L
:E(1)

L = E(2)
L .

Of course, H04,L
corresponds to the hypothesis that the operators projecting

into E(1)
L and E(2)

L are identical. This in turn translates into the condition
that

L∑

r=1

γ(1)
r (t)γ(1)

r (s) =
L∑

r=1

γ(2)
r (t)γ(2)

r (s) for all t, s ∈ [0,1].

Similar to above, a suitable test statistic is given by

D4,L
def
=

∫ ∫ { L∑

r=1

γ̂(1)
r (t)γ̂(1)

r (s)−
L∑

r=1

γ̂(2)
r (t)γ̂(2)

r (s)

}2

dt ds

and the null hypothesis is rejected if D4,L ≥ ∆4,L;1−α, where ∆4,L;1−α de-
notes the critical value of the distribution of

∆4,L
def
=

∫ ∫ [ L∑

r=1

{γ̂(1)
r (t)γ̂(1)

r (s)− γ(1)
r (t)γ(1)

r (s)}

−
L∑

r=1

{γ̂(2)
r (t)γ̂(2)

r (s)− γ(2)
r (t)γ(2)

r (s)}
]2

dt ds.

The distribution of ∆4,L and, hence, its critical values are approximated
by the bootstrap distribution of

∆∗
4,L

def
=

∫ ∫ [ L∑

r=1

{γ̂(1)∗
r (t)γ̂(1)∗

r (s)− γ̂(1)
r (t)γ̂(1)

r (s)}

−
L∑

r=1

{γ̂(2)∗
r (t)γ̂(2)∗

r (s)− γ̂(2)
r (t)γ̂(2)

r (s)}
]2

dt ds.

It will be shown in Theorem 3 below that under the null hypothesis, as well as
under the alternative, the distributions of n∆1, n∆2,r, n∆3,r, n∆4,L converge
to continuous limit distributions which can be consistently approximated by
the bootstrap distributions of n∆∗

1, n∆∗
2,r, n∆∗

3,r, n∆∗
4,L.



16 M. BENKO, W. HÄRDLE AND A. KNEIP

3.1. Theoretical results. Let n = (n1+n2)/2. We will assume that asymp-
totically n1 = n · q1 and n2 = n · q2 for some fixed proportions q1 and q2. We
will then study the asymptotic behavior of our statistics as n →∞.

We will use X1 = {X(1)
1 , . . . ,X

(1)
n1 } and X2 = {X(2)

1 , . . . ,X
(2)
n2 } to denote

the observed samples of random functions.

Theorem 3. Assume that {X(1)
1 , . . . ,X

(1)
n1 } and {X(2)

1 , . . . ,X
(2)
n2 } are two

independent samples of random functions, each of which satisfies Assump-

tion 1. As n →∞ we then obtain the following:

(i) There exists a nondegenerated, continuous probability distribution F1

such that n∆1
L→ F1, and for any δ > 0,

|P (n∆1 ≥ δ)−P (n∆∗
1 ≥ δ|X1,X2)| = Op(1).

(ii) If, furthermore, λ
(1)
r−1 > λ

(1)
r > λ

(1)
r+1 and λ

(2)
r−1 > λ

(2)
r > λ

(2)
r+1 hold for

some fixed r = 1,2, . . . , there exist a nondegenerated, continuous probability

distributions Fk,r such that n∆k,r
L→ Fk,r, k = 2,3, and for any δ > 0,

|P (n∆k,r ≥ δ)−P (n∆∗
k,r ≥ δ|X1,X2)| = Op(1), k = 2,3.

(iii) If λ
(1)
r > λ

(1)
r+1 > 0 and λ

(2)
r > λ

(2)
r+1 > 0 hold for all r = 1, . . . ,L, there

exists a nondegenerated, continuous probability distribution F4,L such that

n∆4,L
L→ F4,L, and for any δ > 0,

|P (n∆4,L ≥ δ)−P (n∆∗
4,L ≥ δ|X1,X2)| = Op(1).

The structures of the distributions F1, F2,r, F3,r, F4,L are derived in the
proof of the theorem which can be found in the Appendix. They are obtained
as limits of distributions of quadratic forms.

3.2. Simulation study. In this paragraph we illustrate the finite behavior
of the proposed test. The basic simulation-setup (setup “a”) is established
as follows: the first sample is generated by the random combination of or-
thonormalized sine and cosine functions (Fourier functions) and the second
sample is generated by the random combination of the same but shifted
factor functions:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2cos(2πtik),

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)}+ β

(2)
2i

√
2cos{2π(tik + δ)}.

The factor loadings are i.i.d. random variables with β
(p)
1i ∼ N(0, λ

(p)
1 ) and

β
(p)
2i ∼ N(0, λ

(p)
2 ). The functions are generated on the equidistant grid tik =

tk = k/T, k = 1, . . . T = 100, i = 1, . . . , n = 70. The simulation setup is based
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Table 1

The results of the simulations for α = 0.1, n = 70, T = 100, number of simulations 250

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.13 0.41 0.85 0.96 1 1
(a) 4, 2, 2, 1 0.12 0.48 0.87 0.96 1 1
(a) 2, 1, 1.5, 2 0.14 0.372 0.704 0.872 0.92 0.9
(b) 10, 5, 8, 4 D1 0.10 0.44 0.86 0.95 1 1
(b) 10, 5, 8, 4 D2 1 1 1 1 1 1

on the fact that the error of the estimation of the eigenfunctions simulated
by sine and cosine functions is, in particular, manifested by some shift of
the estimated eigenfunctions. The focus of this simulation study is the test
of common eigenfunctions.

For the presentation of results in Table 1, we use the following notation:

“(a) λ
(1)
1 , λ

(1)
2 , λ

(2)
2 , λ

(2)
2 .” The shift parameter δ is changing from 0 to 0.25

with the step 0.05. It should be mentioned that the shift δ = 0 yields the
simulation of level and setup with shift δ = 0.25 yields the simulation of the
alternative, where the two factor functions are exchanged.

In the second setup (setup “b”) the first factor functions are the same
and the second factor functions differ:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2cos(2πtik),

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)} + β

(2)
2i

√
2 sin{4π(tik + δ)}.

In Table 1 we use the notation “(b) λ
(1)
1 , λ

(1)
2 , λ

(2)
2 , λ

(2)
2 ,Dr.” Dr means the

test for the equality of the rth eigenfunction. In the bootstrap tests we used
500 bootstrap replications. The critical level in this simulation is α = 0.1.
The number of simulations is 250.

We can interpret Table 1 in the following way: In power simulations (δ 6= 0)
test behaves as expected: less powerful if the functions are “hardly distin-
guishable” (small shift, small difference in eigenvalues). The level approxima-

tion seems to be less precise if the difference in the eingenvalues (λ
(p)
1 −λ

(p)
2 )

becomes smaller. This can be explained by relative small sample-size n, small
number of bootstrap-replications and increasing estimation-error as argued
in Theorem 2, assertion (iii).

In comparison to our general setup (4), we used an equidistant and
common design for all functions. This simplification is necessary, it sim-
plifies and speeds-up the simulations, in particular, using general random
and observation-specific design makes the simulation computationally un-
tractable.

Second, we omitted the additional observation error, this corresponds to
the standard assumptions in the functional principal components theory. As
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Table 2

The results of the simulation for α = 0.1, n = 70, T = 100 with additional error in
observation

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.09 0.35 0.64 0.92 0.94 0.97

argued in Section 2.2, the inference based on the directly observed functions
and estimated functions Xi is first-order equivalent under mild conditions
implied by Theorems 1 and 2. In order to illustrate this theoretical result in
the simulation, we used the following setup:

X
(1)
i (tik) = β

(1)
1i

√
2 sin(2πtik) + β

(1)
2i

√
2cos(2πtik) + ε

(1)
ik ,

X
(2)
i (tik) = β

(2)
1i

√
2 sin{2π(tik + δ)}+ β

(2)
2i

√
2cos{2π(tik + δ)} + ε

(2)
ik ,

where ε
(p)
ik ∼ N(0,0.25), p = 1,2, all other parameters remain the same as

in the simulation setup “a.” Using this setup, we recalculate the simulation
presented in the second “row” of Table 1, for estimation of the functions

X
(p)
i , p = 1,2, we used the Nadaraya–Watson estimation with Epanechnikov

kernel and bandwidth b = 0.05. We run the simulations with various band-
widths, the choice of the bandwidth does not have a strong influence on
results except by oversmoothing (large bandwidths). The results are printed
in Table 2. As we can see, the difference of the simulation results using es-
timated functions is not significant in comparison to the results printed in
the second line of Table 1—directly observed functional values.

The last limitation of this simulation study is the choice of a partic-
ular alternative. A more general setup of this simulation study might be

based on the following model: X
(1)
i (t) = β

(1)
1i γ

(1)
1 (t) + β

(1)
2i γ

(1)
2 (t), X

(2)
i (t) =

β
(2)
1i γ

(2)
1 (t) + β

(2)
2i γ

(2)
2 (t), where γ

(1)
1 , γ

(2)
1 , γ

(1)
2 and g are mutually orthogonal

functions on L2[0,1] and γ
(2)
2 = (1 + υ2)−1/2{γ(1)

2 + υg}. Basically we create
the alternative by the contamination of one of the “eigenfunctions” (in our

case the second one) in the direction g and ensure ‖γ(2)
2 ‖ = 1. The amount

of the contamination is controlled by the parameter υ. Note that the exact

squared integral difference ‖γ(1)
2 − γ

(2)
2 ‖2 does not depend on function g.

Thus, in the “functional sense” particular “direction of the alternative hy-
pothesis” represented by the function g has no impact on the power of the
test. However, since we are using a nonparametric estimation technique, we
might expect that rough (highly fluctuating) functions g will yield higher er-
ror of estimation and, hence, decrease the precision (and power) of the test.
Finally, a higher number of factor functions (L) in simulation may cause less
precise approximation of critical values and more bootstrap replications and
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larger sample-size may be needed. This can also be expected from Theorem
2 in Section 2.2—the variance of the estimated eigenfunctions depends on
all eigenfunctions corresponding to nonzero eingenvalues.

4. Implied volatility analysis. In this section we present an application
of the method discussed in previous sections to the implied volatilities of Eu-
ropean options on the German stock index (ODAX). Implied volatilities are
derived from the Black–Scholes (BS) pricing formula for European options;
see Black and Scholes (1973). European call and put options are derivatives
written on an underlying asset with price process Si, which yield the pay-off
max(SI −K,0) and max(K −SI ,0), respectively. Here i denotes the current
day, I the expiration day and K the strike price. Time to maturity is defined
as τ = I − i. The BS pricing formula for a Call option is

Ci(Si,K, τ, r, σ) = SiΦ(d1)−Ke−rτΦ(d2),(14)

where d1 = ln(Si/K)+(r+σ2/2)τ
σ
√

τ
, d2 = d1 − σ

√
τ , r is the risk-free interest rate,

σ is the (unknown and constant) volatility parameter, and Φ denotes the
c.d.f. of a standard normal distributed random variable. In (14) we assume
the zero-dividend case. The Put option price Pi can be obtained from the
put–call parity Pi = Ci − Si + e−τrK.

The implied volatility σ̃ is defined as the volatility σ, for which the BS
price Ci in (14) equals the price C̃i observed on the market. For a single
asset, we obtain at each time point (day i) and for each maturity τ a IV
function σ̃τ

i (K). Practitioners often rescale the strike dimension by plotting
this surface in terms of (futures) moneyness κ = K/Fi(τ), where Fi(τ) =
Sie

rτ .
Clearly, for given parameters Si, r,K, τ the mapping from prices to IVs is

a one-to-one mapping. The IV is often used for quoting the European options
in financial practice, since it reflects the “uncertainty” of the financial market
better than the option prices. It is also known that if the stock price drops,
the IV raises (so-called leverage effect), motivates hedging strategies based
on IVs. Consequently, for the purpose of this application, we will regard the
BS–IV as an individual financial variable. The practical relevance of such
an approach is justified by the volatility based financial products such as
VDAX, which are commonly traded on the option markets.

The goal of this analysis is to study the dynamics of the IV functions for
different maturities. More specifically, our aim is to construct low dimen-
sional factor models based on the truncated Karhunen–Loève expansions
(1) for the log-returns of the IV functions of options with different maturi-
ties and compare these factor models using the methodology presented in
the previous sections. Analysis of IVs based on a low-dimensional factor
model gives directly a descriptive insight into the structure of distribution
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of the log-IV-returns—structure of the factors and empirical distribution of
the factor loadings may be a good starting point for further pricing models.
In practice, such a factor model can also be used in Monte Carlo based pric-
ing methods and for risk-management (hedging) purposes. For comprehen-
sive monographs on IV and IV-factor models, see Hafner (2004) or Fengler
(2005b).

The idea of constructing and analyzing the factor models for log-IV-
returns for different maturities was originally proposed by
Fengler, Härdle and Villa (2003), who studied the dynamics of the IV via
PCA on discretized IV functions for different maturity groups and tested the
Common Principal Components (CPC) hypotheses (equality of eigenvectors
and eigenspaces for different groups). Fengler, Härdle and Villa (2003) pro-
posed a PCA-based factor model for log-IV-returns on (short) maturities
1, 2 and 3 months and grid of moneyness [0.85,0.9,0.95,1,1.05,1.1]. They
showed that the factor functions do not significantly differ and only the
factor loadings differ across maturity groups. Their method relies on the
CPC methodology introduced by Flury (1988) which is based on maximum
likelihood estimation under the assumption of multivariate normality. The
log-IV-returns are extracted by the two-dimensional Nadaraya–Watson es-
timate.

The main aim of this application is to reconsider their results in a func-
tional sense. Doing so, we overcome two basic weaknesses of their approach.
First, the factor model proposed by Fengler, Härdle and Villa (2003) is per-
formed only on a sparse design of moneyness. However, in practice (e.g.,
in Monte Carlo pricing methods), evaluation of the model on a fine grid is
needed. Using the functional PCA approach, we may overcome this difficulty
and evaluate the factor model on an arbitrary fine grid. The second difficulty
of the procedure proposed by Fengler, Härdle and Villa (2003) stems from
the data design—on the exchange we cannot observe options with desired
maturity on each day and we need to estimate them from the IV-functions
with maturities observed on the particular day. Consequently, the two-
dimensional Nadaraya–Watson estimator proposed by Fengler, Härdle and Villa
(2003) results essentially in the (weighted) average of the IVs (with clos-
est maturities) observed on a particular day, which may affect the test
of the common eigenfunction hypothesis. We use the linear interpolation

scheme in the total variance σ2
TOT,i(κ, τ)

def
= (στ

i (κ))2τ, in order to recover
the IV functions with fixed maturity (on day i). This interpolation scheme is
based on the arbitrage arguments originally proposed by Kahalé (2004) for
zero-dividend and zero-interest rate case and generalized for deterministic
interest rate by Fengler (2005a). More precisely, having IVs with matu-

rities observed on a particular day i: σ̃
τji

i (κ), ji = 1, . . . , pτi
, we calculate

the corresponding total variance σ̃TOT,i(κ, τji
). From these total variances
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we linearly interpolate the total variance with the desired maturity from
the nearest maturities observed on day i. The total variance can be easily
transformed to corresponding IV σ̃τ

i (κ). As the last step, we calculate the

log-returns ∆ log σ̃τ
i (κ)

def
= log σ̃τ

i+1(κ)− log σ̃τ
i (κ). The log-IV-returns are ob-

served for each maturity τ on a discrete grid κτ
ik. We assume that observed

log-IV-return ∆ log σ̃τ
i (κτ

ik) consists of true log-return of the IV function
denoted by ∆ logστ

i (κτ
ik) and possibly of some additional error ετ

ik. By set-
ting Y τ

ik := ∆ log σ̃τ
i (κτ

ik), Xτ
i (κ) := ∆logστ

i (κ), we obtain an analogue of the
model (4) with the argument κ:

Y τ
ik = Xτ

i (κik) + ετ
ik, i = 1, . . . , nτ .(15)

In order to simplify the notation and make the connection with the theoret-
ical part clear, we will use the notation of (15).

For our analysis we use a recent data set containing daily data from
January 2004 to June 2004 from the German–Swiss exchange (EUREX).
Violations of the arbitrage-free assumptions (“obvious” errors in data) were
corrected using the procedure proposed by Fengler (2005a). Similarly to
Fengler, Härdle and Villa (2003), we excluded options with maturity smaller
then 10 days, since these option-prices are known to be very noisy, par-
tially because of a special and arbitrary setup in the pricing systems of the
dealers. Using the interpolation scheme described above, we calculate the
log-IV-returns for two maturity groups: “1M” group with maturity τ = 0.12
(measured in years) and “3M” group with maturity τ = 0.36. The observed
log-IV-returns are denoted by Y 1M

ik , k = 1, . . . ,K1M
i , Y 3M

ik , k = 1, . . . ,K3M
i .

Since we ensured that for no i, the interpolation procedure uses data with
the same maturity for both groups, this procedure has no impact on the
independence of both samples.

The underlying models based on the truncated version of (3) are as fol-
lows:

X1M
i (κ) = X̄1M (κ) +

L1M∑

r=1

β̂1M
ri γ̂r

1M (κ), i = 1, . . . , n1M ,(16)

X3M
i (κ) = X̄3M (κ) +

L3M∑

r=1

β̂3M
ri γ̂r

3M (κ), i = 1, . . . , n3M .(17)

Models (16) and (17) can serve, for example, in a Monte Carlo pricing tool
in the risk management for pricing exotic options where the whole path of
implied volatilities is needed to determine the price. Estimating the factor
functions in (16) and (17) by eigenfunctions displayed in Figure 1, we only

need to fit the (estimated) factor loadings β̂1M
ji and β̂3M

ji . The pillar of the
model is the dimension reduction. Keeping the factor function fixed for a
certain time period, we need to analyze (two) multivariate random processes
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of the factor loadings. For the purposes of this paper we will focus on the
comparison of factors from models (16) and (17) and the technical details of
the factor loading analysis will not be discussed here, since in this respect
we refer to Fengler, Härdle and Villa (2003), who proposed to fit the factor
loadings by centered normal distributions with diagonal variance matrix
containing the corresponding eigenvalues. For a deeper discussion of the
fitting of factor loadings using a more sophisticated approach, basically based
on (possibly multivariate) GARCH models; see Fengler (2005b).

From our data set we obtained 88 functional observations for the 1M group
(n1M ) and 125 observations for the 3M group (n3M ). We will estimate the
model on the interval for futures moneyness κ ∈ [0.8,1.1]. In comparison
to Fengler, Härdle and Villa (2003), we may estimate models (16) and (17)
on an arbitrary fine grid (we used an equidistant grid of 500 points on the
interval [0.8,1.1]). For illustration, the Nadaraya–Watson (NW) estimator
of resulting log-returns is plotted in Figure 2. The smoothing parameters
have been chosen in accordance with the requirements in Section 2.2. As
argued in Section 2.2, we should use small smoothing parameters in order
to avoid a possible bias in the estimated eigenfunctions. Thus, we use for
each i essentially the smallest bandwidth bi that guarantees that estimator
X̂i is defined on the entire support [0.8,1.1].

Using the procedures described in Section 2.1, we first estimate the eigen-
functions of both maturity groups. The estimated eigenfunctions are plot-
ted in Figure 1. The structure of the eigenfunctions is in accordance with
other empirical studies on IV-surfaces. For a deeper discussion and econom-
ical interpretation, see, for example, Fengler, Härdle and Mammen (2007)
or Fengler, Härdle and Villa (2003).

Clearly, the ratio of the variance explained by the kth factor function is
given by the quantity ν̂1M

k = λ̂1M
k /

∑n1M

j=1 λ̂1M
j for the 1M group and, corre-

spondingly, by ν̂3M
k for the 3M group. In Table 3 we list the contributions of

the factor functions. Looking at Table 3, we can see that 4th factor functions
explain less than 1% of the variation. This number was the “threshold” for
the choice of L1M and L2M .

We can observe (see Figure 1) that the factor functions for both groups
are similar. Thus, in the next step we use the bootstrap test for testing the

Table 3

Variance explained by the eigenfunctions

Var. explained 1M Var. explained 3M

ν̂
τ
1 89.9% 93.0%

ν̂
τ
2 7.7% 4.2%

ν̂
τ
3 1.7% 1.0%

ν̂
τ
4 0.6% 0.4%
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Fig. 2. Nadaraya–Watson estimate of the log-IV-returns for maturity 1M (left figure)
and 3M (right figure). The bold line is the sample mean of the corresponding group.

equality of the factor functions. We use 2000 bootstrap replications. The test
of equality of the eigenfunctions was rejected for the first eigenfunction for
the analyzed time period (January 2004–June 2004) at a significance level
α = 0.05 (P-value 0.01). We may conclude that the (first) factor functions are
not identical in the factor model for both maturity groups. However, from
a practical point of view, we are more interested in checking the appropri-
ateness of the entire models for a fixed number of factors: L = 2 or L = 3 in
(16) and (17). This requirement translates into the testing of the equality of
eigenspaces. Thus, in the next step we use the same setup (2000 bootstrap
replications) to test the hypotheses that the first two and first three eigen-
functions span the same eigenspaces E1M

L and E3M
L . None of the hypotheses

for L = 2 and L = 3 is rejected at significance level α = 0.05 (P-value is 0.61
for L = 2 and 0.09 for L = 3). Summarizing, even in the functional sense we
have no significant reason to reject the hypothesis of common eigenspaces
for these two maturity groups. Using this hypothesis, the factors governing
the movement of the returns of IV surface are invariant to time to ma-
turity, only their relative importance can vary. This leads to the common
factor model: Xτ

i (κ) = X̄τ (κ) +
∑Lτ

r=1 β̂τ
riγ̂r(κ), i = 1, . . . , nτ , τ = 1M,3M,

where γr := γ1M
r = γ3M

r . Beside contributing to the understanding of the
structure of the IV function dynamics, the common factor model helps
us to reduce the number of functional factors by half compared to mod-
els (16) and (17). Furthermore, from the technical point of view, we also
obtain an additional dimension reduction and higher estimation precision,
since under this hypothesis we may estimate the eigenfunctions from the
(individually centered) pooled sample Xi(κ)1M , i = 1, . . . , n1M , X3M

i (κ), i =
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1, . . . , n3M . The main improvement compared to the multivariate study by
Fengler, Härdle and Villa (2003) is that our test is performed in the func-
tional sense – it does not depend on particular discretization and our factor
model can be evaluated on an arbitrary fine grid.

APPENDIX: MATHEMATICAL PROOFS

In the following, ‖v‖ = (
∫ 1
0 v(t)2 dt)1/2 will denote the L2-norm for any

square integrable function v. At the same time, ‖a‖ = ( 1
k

∑k
i=1 a2

i )
1/2 will

indicate the Euclidean norm, whenever a ∈ R
k is a k-vector for some k ∈ N.

In the proof of Theorem 1, Eε and Varε denote expectation and variance
with respect to ε only (i.e., conditional on tij and Xi).

Proof of Theorem 1. Recall the definition of the χi(t) and note that
χi(t) = χX

i (t) + χε
i (t), where

χε
i (t) =

Ti∑

j=1

εi(j)I

(
t ∈

[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
,

as well as

χX
i (t) =

Ti∑

j=1

Xi(ti(j))I

(
t∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))

for t ∈ [0,1], ti(0) =−ti(1) and ti(Ti+1) = 2− ti(Ti). Similarly, χ∗
i (t) = χX∗

i (t)+
χε∗

i (t).
By Assumption 2, E(|ti(j) − ti(j−1)|s) = O(T−s) for s = 1, . . . ,4, and the

convergence is uniform in j < n. Our assumptions on the structure of Xi

together with some straightforward Taylor expansions then lead to

〈χi, χj〉= 〈Xi,Xj〉+Op(1/T )

and

〈χi, χ
∗
i 〉= ‖Xi‖2 +Op(1/T ).

Moreover,

Eε(〈χε
i , χ

X
j 〉) = 0, Eε(‖χε

i‖2) = σ2
i ,

Eε(〈χε
i , χ

ε∗
i 〉) = 0, Eε(〈χε

i , χ
ε∗
i 〉2) = Op(1/T ),

Eε(〈χε
i , χ

X
j 〉2) = Op(1/T ), Eε(〈χε

i , χ
X
j 〉〈χε

k, χX
l 〉) = 0 for i 6= k,

Eε(〈χε
i , χ

ε
j〉〈χε

i , χ
ε
k〉) = 0 for j 6= k and Eε(‖χε

i‖4) = Op(1)

hold (uniformly) for all i, j = 1, . . . , n.
Consequently, Eε(‖χ̄‖2 −‖X̄‖2) = Op(T

−1 + n−1).
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When using these relations, it is easily seen that for all i, j = 1, . . . , n

M̂ij −Mij = Op(T
−1/2 + n−1) and

(18)
tr{(M̂ −M)2}1/2 = Op(1 + nT−1/2).

Since the orthonormal eigenvectors pq of M satisfy ‖pq‖ = 1, we furthermore
obtain for any i = 1, . . . , n and all q = 1,2, . . .

n∑

j=1

pjq

{
M̂ij −Mij −

∫ 1

0
χε

i (t)χ
X
j (t)dt

}
= Op(T

−1/2 + n−1/2),(19)

as well as
n∑

j=1

pjq

∫ 1

0
χε

i (t)χ
X
j (t)dt = Op

(
n1/2

T 1/2

)
(20)

and
n∑

i=1

ai

n∑

j=1

pjq

∫ 1

0
χε

i (t)χ
X
j (t)dt =Op

(
n1/2

T 1/2

)
(21)

for any further vector a with ‖a‖ = 1.

Recall that the jth largest eigenvalue lj satisfies nλ̂j = lj . Since by as-
sumption infs 6=r |λr − λs| > 0, the results of Dauxois, Pousse and Romain

(1982) imply that λ̂r converges to λr as n →∞, and sups 6=r
1

|λ̂r−λ̂s|
= Op(1),

which leads to sups 6=r
1

|lr−ls| = Op(1/n). Assertion (a) of Lemma A of

Kneip and Utikal (2001) together with (18)–(21) then implies that

∣∣∣∣λ̂r −
l̂r
n

∣∣∣∣= n−1|lr − l̂r|= n−1|p⊤r (M̂ −M)pr|+Op(T
−1 + n−1)

(22)
= Op{(nT )−1/2 + T−1 + n−1}.

When analyzing the difference between the estimated and true eigenvec-
tors p̂r and pr, assertion (b) of Lemma A of Kneip and Utikal (2001) together
with (18) lead to

p̂r − pr = −Sr(M̂ −M)pr +Rr, with ‖Rr‖= Op(T
−1 + n−1)(23)

and Sr =
∑

s 6=r
1

ls−lr
psp

⊤
s . Since sup‖a‖=1 a⊤Sra ≤ sups 6=r

1
|lr−ls| = Op(1/n),

we can conclude that

‖p̂r − pr‖= Op(T
−1/2 + n−1),(24)

and our assertion on the sequence n−1∑
i(β̂ri − β̂ri;T )2 is an immediate con-

sequence.
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Let us now consider assertion (ii). The well-known properties of local lin-

ear estimators imply that |Eε{X̂i(t)−Xi(t)}| = Op(b
2), as well as Varε{X̂i(t)} =

Op{Tb}, and the convergence is uniform for all i, n. Furthermore, due to the

independence of the error term εij , Covε{X̂i(t), X̂j(t)} = 0 for i 6= j. There-
fore,

∣∣∣∣∣γ̂r(t)−
1√
lr

n∑

i=1

pirX̂i(t)

∣∣∣∣∣= Op

(
b2 +

1√
nTb

)
.

On the other hand, (18)–(24) imply that with X̂(t) = (X̂1(t), . . . , X̂n(t))⊤
∣∣∣∣∣γ̂r;T (t)− 1√

lr

n∑

i=1

pirX̂i(t)

∣∣∣∣∣

=

∣∣∣∣∣
1√
lr

n∑

i=1

(p̂ir − pir)Xi(t) +
1√
lr

n∑

i=1

(p̂ir − pir){X̂i(t)−Xi(t)}
∣∣∣∣∣

+Op(T
−1 + n−1)

=
‖SrX(t)‖√

lr

∣∣∣∣p
⊤
r (M̂ −M)Sr

X(t)

‖SrX(t)‖

∣∣∣∣

+Op(b
2T−1/2 + T−1b−1/2 + n−1)

= Op(n
−1/2T−1/2 + b2T−1/2 + T−1b−1/2 + n−1).

This proves the theorem. �

Proof of Theorem 2. First consider assertion (i). By definition,

X̄(t)− µ(t) = n−1
n∑

i=1

{Xi(t)− µ(t)}=
∑

r

(
n−1

n∑

i=1

βri

)
γr(t).

Recall that, by assumption, βri are independent, zero mean random variables
with variance λr, and that the above series converges with probability 1.
When defining the truncated series

V (q) =
q∑

r=1

(
n−1

n∑

i=1

βri

)
γr(t),

standard central limit theorems therefore imply that
√

nV (q) is asymptoti-
cally N(0,

∑q
r=1 λrγr(t)

2) distributed for any possible q ∈ N.
The assertion of a N(0,

∑∞
r=1 λrγr(t)

2) limiting distribution now is a
consequence of the fact that for all δ1, δ2 > 0 there exists a qδ such that
P{|√nV (q) −√

n
∑

r(n
−1∑n

i=1 βri)γr(t)| > δ1} < δ2 for all q ≥ qδ and all n
sufficiently large.
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In order to prove assertions (i) and (ii), consider some fixed r ∈ {1,2, . . .}
with λr−1 > λr > λr+1. Note that Γ as well as Γ̂n are nuclear, self-adjoint and
non-negative linear operators with Γv =

∫
σ(t, s)v(s)ds and Γ̂nv =∫

σ̂(t, s)v(s)ds, v ∈ L2[0,1]. For m ∈ N, let Πm denote the orthogonal projec-
tor from L2[0,1] into the m-dimensional linear space spanned by {γ1, . . . , γm},
that is, Πmv =

∑m
j=1〈v, γj〉γj , v ∈ L2[0,1]. Now consider the operator ΠmΓ̂nΠm,

as well as its eigenvalues and corresponding eigenfunctions denoted by λ̂1,m ≥
λ̂2,m ≥ · · · and γ̂1,m, γ̂2,m, . . . , respectively. It follows from well-known re-

sults in the Hilbert space theory that ΠmΓ̂nΠm converges strongly to Γ̂n as
m →∞. Furthermore, we obtain (Rayleigh–Ritz theorem)

lim
m→∞

λ̂r,m = λr and lim
m→∞

‖γ̂r − γ̂r,m‖= 0 if λ̂r−1 > λ̂r > λ̂r+1.(25)

Note that under the above condition γ̂r is uniquely determined up to sign,
and recall that we always assume that the right “versions” (with respect
to sign) are used so that 〈γ̂r, γ̂r,m〉 ≥ 0. By definition, βji =

∫
γj(t){Xi(t)−

µ(t)}dt, and therefore,
∫

γj(t){Xi(t) − X̄(t)}dt = βji − β̄j , as well as Xi −
X̄ =

∑
j(βji − β̄j)γj , where β̄j = 1

n

∑n
i=1 βji. When analyzing the structure

of ΠmΓ̂nΠm more deeply, we can verify that ΠmΓ̂nΠmv =
∫

σ̂m(t, s)v(s)ds,
v ∈L2[0,1], with

σ̂m(t, s) = gm(t)⊤Σ̂mgm(s),

where gm(t) = (γ1(t), . . . , γm(t))⊤, and where Σ̂m is the m×m matrix with

elements { 1
n

∑n
i=1(βji− β̄j)(βki− β̄k)}j,k=1,...,m. Let λ1(Σ̂m)≥ λ2(Σ̂m)≥ · · · ≥

λm(Σ̂m) and ζ̂1,m, . . . , ζ̂m,m denote eigenvalues and corresponding eigenvec-

tors of Σ̂m. Some straightforward algebra then shows that

λ̂r,m = λr(Σ̂m), γ̂r,m = gm(t)⊤ζ̂r,m.(26)

We will use Σm to represent the m × m diagonal matrix with diagonal
entries λ1 ≥ · · · ≥ λm. Obviously, the corresponding eigenvectors are given
by the m-dimensional unit vectors denoted by e1,m, . . . , em,m. Lemma A of
Kneip and Utikal (2001) now implies that the differences between eigenval-

ues and eigenvectors of Σm and Σ̂m can be bounded by

λ̂r,m − λr = tr{er,me⊤r,m(Σ̂m −Σm)}+ R̃r,m,
(27)

with R̃r,m ≤
6 sup‖a‖=1 a⊤(Σ̂m −Σm)2a

mins |λs − λr|
,

ζ̂r,m − er,m =−Sr,m(Σ̂m −Σm)er,m + R∗
r,m,

(28)

with ‖R∗
r,m‖ ≤

6 sup‖a‖=1 a⊤(Σ̂m −Σm)2a

mins |λs − λr|2
,
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where Sr,m =
∑

s 6=r
1

λs−λr
es,me⊤s,m.

Assumption 1 implies E(β̄r) = 0, Var(β̄r) = λr

n , and with δii = 1, as well
as δij = 0 for i 6= j, we obtain

E

{
sup
‖a‖=1

a⊤(Σ̂m −Σm)2a

}

≤E{tr[(Σ̂m −Σm)2]}

= E

{
m∑

j,k=1

[
1

n

n∑

i=1

(βji − β̄j)(βki − β̄k)− δjkλj

]2}

(29)

≤E

{ ∞∑

j,k=1

[
1

n

n∑

i=1

(βji − β̄j)(βki − β̄k)− δjkλj

]2}

=
1

n

(
∑

j

∑

k

E{β2
jiβ

2
ki}
)

+ O(n−1) =O(n−1),

for all m. Since tr{er,me⊤r,m(Σ̂m −Σm)} = 1
n

∑n
i=1(βri − β̄r)

2 −λr, (25), (26),
(27) and (29) together with standard central limit theorems imply that

√
n(λ̂r − λr) =

1√
n

n∑

i=1

(βri − β̄r)
2 − λr +Op(n

−1/2)

=
1√
n

n∑

i=1

[(βri)
2 −E{(βri)

2}] +Op(n
−1/2)(30)

L→ N(0,Λr).

It remains to prove assertion (iii). Relations (26) and (28) lead to

γ̂r,m(t)− γr(t) = gm(t)⊤(ζ̂r,m − er,m)

= −
m∑

s 6=r

{
1

n(λs − λr)

n∑

i=1

(βsi − β̄s)(βri − β̄r)

}
γs(t)(31)

+ gm(t)⊤R∗
r,m,

where due to (29) the function gm(t)⊤R∗
r,m satisfies

E(‖g⊤mR∗
r,m‖) = E(‖R∗

r,m‖)

≤ 6

nmins |λs − λr|2

(
∑

j

∑

k

E{β2
jiβ

2
ki}
)

+ O(n−1),
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for all m. By Assumption 1, the series in (31) converge with probability 1
as m →∞.

Obviously, the event λ̂r−1 > λ̂r > λ̂r+1 occurs with probability 1. Since m
is arbitrary, we can therefore conclude from (25) and (31) that

γ̂r(t)− γr(t)

= −
∑

s 6=r

{
1

n(λs − λr)

n∑

i=1

(βsi − β̄s)(βri − β̄r)

}
γs(t) + R∗

r(t)(32)

= −
∑

s 6=r

{
1

n(λs − λr)

n∑

i=1

βsiβri

}
γs(t) + Rr(t),

where ‖R∗
r‖ = Op(n

−1), as well as ‖Rr‖ = Op(n
−1). Moreover,

√
n ×∑

s 6=r{ 1
n(λs−λr)

∑n
i=1 βsiβri}γs(t) is a zero mean random variable with vari-

ance
∑

q 6=r

∑
s 6=r

E[β2
riβqiβsi]

(λq−λr)(λs−λr)γq(t)γs(t) < ∞. By Assumption 1, it follows
from standard central limit arguments that for any q ∈ N the truncated series√

nW (q)
def
=

√
n
∑q

s=1,s 6=r[
1

n(λs−λr)

∑n
i=1 βsiβri]γs(t) is asymptotically normal

distributed. The asserted asymptotic normality of the complete series then
follows from an argument similar to the one used in the proof of assertion
(i). �

Proof of Theorem 3. The results of Theorem 2 imply that

n∆1 =

∫ (∑

r

1√
q1n1

n1∑

i=1

β
(1)
ri γ(1)

r (t)

(33)

−
∑

r

1√
q2n2

n2∑

i=1

β
(2)
ri γ(2)

r (t)

)2

dt.

Furthermore, independence of X
(1)
i and X

(2)
i together with (30) imply that

√
n[λ̂(1)

r − λ(1)
r − {λ̂(2)

r − λ(2)
r }] L→ N

(
0,

Λ
(1)
r

q1
+

Λ
(2)
r

q2

)
and

(34)
n

Λ
(1)
r /q1 + Λ

(2)
r /q2

∆3,r
L→ χ2

1.

Furthermore, (32) leads to

n∆2,r =

∥∥∥∥∥
∑

s 6=r

{
1

√
q1n1(λ

(1)
s − λ

(1)
r )

n1∑

i=1

β
(1)
si β

(1)
ri

}
γ(1)

s

(35)

−
∑

s 6=r

{
1

√
q2n2(λ

(2)
s − λ

(2)
r )

n2∑

i=1

β
(2)
si β

(2)
ri

}
γ(2)

s

∥∥∥∥∥

2

+Op(n
−1/2)
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and

n∆4,L = n

∫ ∫ [ L∑

r=1

γ(1)
r (t){γ̂(1)

r (u)− γ(1)
r (u)}

+ γ(1)
r (u){γ̂(1)

r (t)− γ(1)
r (t)}

−
L∑

r=1

γ(2)
r (t){γ̂(2)

r (u)− γ(2)
r (u)}

+ γ(2)
r (u){γ̂(2)

r (t)− γ(2)
r (t)}

]2

dt du +Op(n
−1/2)

=

∫ ∫ [ L∑

r=1

∑

s>L

{
1

√
q1n1(λ

(1)
s − λ

(1)
r )

n1∑

i=1

β
(1)
si β

(1)
ri

}
(36)

×{γ(1)
r (t)γ(1)

s (u) + γ(1)
r (u)γ(1)

s (t)}

−
L∑

r=1

∑

s>L

{
1

√
q2n2(λ

(2)
s − λ

(2)
r )

n2∑

i=1

β
(2)
si β

(2)
ri

}

×{γ(2)
r (t)γ(2)

s (u) + γ(2)
r (u)γ(2)

s (t)}
]2

dt du

+Op(n
−1/2).

In order to verify (36), note that
∑L

r=1

∑L
s=1,s 6=r

1

(λ
(p)
s −λ

(p)
r )

aras = 0 for

p = 1,2 and all possible sequences a1, . . . , aL. It is clear from our assumptions

that all sums involved converge with probability 1. Recall that E(β
(p)
ri β

(p)
si ) =

0, p = 1,2 for r 6= s.

It follows that X̃
(p)
r := 1√

qpnp

∑
s 6=r

∑np

i=1
β

(p)
si

β
(p)
ri

λ
(p)
s −λ

(p)
r

γ
(p)
s , p = 1,2, is a continu-

ous, zero mean random function on L2[0,1], and, by assumption, E(‖X̃(p)
r ‖2) <

∞. By Hilbert space central limit theorems [see, e.g., Araujo and Giné (1980)],

X̃
(p)
r thus converges in distribution to a Gaussian random function ξ

(p)
r as

n →∞. Obviously, ξ
(1)
r is independent of ξ

(2)
r . We can conclude that n∆4,L

possesses a continuous limit distribution F4,L defined by the distribution

of
∫∫

[
∑L

r=1{ξ
(1)
r (t)γ

(1)
r (u) + ξ

(1)
r (u)γ

(1)
r (t)} −∑L

r=1{ξ
(2)
r (t)γ

(2)
r (u) + ξ

(2)
r (u)×

γ
(2)
r (t)}]2 dt du. Similar arguments show the existence of continuous limit

distributions F1 and F2,r of n∆1 and n∆2,r.

For given q ∈ N, define vectors b
(p)
i1 = (β

(p)
1i , . . . , β

(p)
qi , )⊤ ∈ R

q, b
(p)
i2 =

(β
(p)
1i β

(p)
ri , . . . , β

(p)
r−1,iβ

(p)
ri , β

(p)
r+1,iβ

(p)
ri , . . . , β

(p)
qi β

(p)
ri )⊤ ∈ R

q−1 and bi3 = (β
(p)
1i β

(p)
2i ,
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. . . , β
(p)
qi β

(p)
Li )⊤ ∈ R

(q−1)L. When the infinite sums over r in (33), respectively
s 6= r in (35) and (36), are restricted to q ∈ N components (i.e.,

∑
r and

∑
s>L

are replaced by
∑

r≤q and
∑

L<s≤q), then the above relations can generally
be presented as limits n∆ = limq→∞ n∆(q) of quadratic forms

n∆1(q) =




1√
n1

n1∑

i=1

b
(1)
i1

1√
n2

n2∑

i=1

b
(2)
i1




⊤

Qq
1




1√
n1

n1∑

i=1

b
(1)
i1

1√
n2

n2∑

i=1

b
(2)
i1




,

n∆2,r(q) =




1√
n1

n1∑

i=1

b
(1)
i2

1√
n2

n2∑

i=1

b
(2)
i2




⊤

Qq
2




1√
n1

n1∑

i=1

b
(1)
i2

1√
n2

n2∑

i=1

b
(2)
i2




,(37)

n∆4,L(q) =




1√
n1

n1∑

i=1

b
(1)
i3

1√
n2

n2∑

i=1

b
(2)
i3




⊤

Qq
3




1√
n1

n1∑

i=1

b
(1)
i3

1√
n2

n2∑

i=1

b
(2)
i3




,

where the elements of the 2q×2q, 2(q−1)×2(q−1) and 2L(q−1)×2L(q−1)
matrices Qq

1, Qq
2 and Qq

3 can be computed from the respective (q-element)
version of (33)–(36). Assumption 1 implies that all series converge with
probability 1 as q →∞, and by (33)–(36), it is easily seen that for all ǫ, δ > 0
there exist some q(ǫ, δ), n(ǫ, δ) ∈ N such that

P (|n∆1 − n∆1(q)| > ǫ) < δ, P (|n∆2,r − n∆2,r(q)|> ǫ) < δ,
(38)

P (|n∆4,L − n∆4,L(q)| > ǫ) < δ

hold for all q ≥ q(ǫ, δ) and all n ≥ n(ǫ, δ). For any given q, we have E(bi1) =

E(bi2) = E(bi3) = 0, and it follows from Assumption 1 that the respective
covariance structures can be represented by finite covariance matrices Ω1,q,
Ω2,q and Ω3,q. It therefore follows from our assumptions together with stan-

dard multivariate central limit theorems that the vectors { 1√
n1

∑n1
i=1(b

(1)
ik )⊤,

1√
n2

∑n2
i=1(b

(2)
ik )⊤}⊤, k = 1,2,3, are asymptotically normal with zero means

and covariance matrices Ω1,q, Ω2,q and Ω3,q. One can thus conclude that, as
n →∞,

n∆1(q)
L→ F1,q, n∆2,r(q)

L→ F2,r,q, n∆4,L(q)
L→ F4,L,q,(39)

where F1,q, F2,r,q, F4,L,q denote the continuous distributions of the quadratic

forms z⊤1 Qq
1z1, z⊤2 Qq

2z2, z⊤3 Qq
3z3 with z1 ∼ N(0,Ω1,q), z2 ∼ N(0,Ω2,q), z3 ∼
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N(0,Ω3,q). Since ǫ, δ are arbitrary, (38) implies

lim
q→∞

F1,q = F1, lim
q→∞

F2,r,q = F2,r, lim
q→∞

F4,L,q = F4,L.(40)

We now have to consider the asymptotic properties of bootstrapped eigen-

values and eigenfunctions. Let X̄(p)∗ = 1
np

∑np

i=1 X
(p)∗
i , β

(p)∗
ri =

∫
γ

(p)
r (t){X(p)∗

i (t)−
µ(t)}, β̄

(p)∗
r = 1

np

∑np

i=1 β
(p)∗
ri , and note that

∫
γ

(p)
r (t){X(p)∗

i (t) − X̄(p)∗(t)} =

β
(p)∗
ri − β̄

(p)∗
r . When considering unconditional expectations, our assumptions

imply that for p = 1,2

E[β
(p)∗
ri ] = 0, E[(β

(p)∗
ri )2] = λ(p)

r ,

E[(β̄(p)∗
r )2] =

λ
(p)
r

np
, E{[(β(p)∗

ri )2 − λ(p)
r ]2}= Λ(p)

r ,

E

{ ∞∑

l,k=1

[
1

np

np∑

i=1

(β
(p)∗
li − β̄

(p)∗
l )(β

(p)∗
ki − β̄

(p)∗
k )− δlkλ

(p)
l

]2}
(41)

=
1

np

(
∑

l

Λ
(p)
l +

∑

l 6=k

λ
(p)
l λ

(p)
k

)
+ O(n−1

p ).

One can infer from (41) that the arguments used to prove Theorem 1
can be generalized to approximate the difference between the bootstrap

eigenvalues and eigenfunctions λ̂
(p)∗
r , γ̂

(p)∗
r and the true eigenvalues λ

(p)
r ,

γ
(p)
r . All infinite sums involved converge with probability 1. Relation (30)

then generalizes to
√

np(λ̂
(p)∗
r − λ̂(p)

r )

=
√

np(λ̂
(p)∗
r − λ(p)

r )−√
np(λ̂

(p)
r − λ(p)

r )

=
1

√
np

np∑

i=1

(β
(p)∗
ri − β̄(p)∗

r )2(42)

− 1
√

np

np∑

i=1

(β
(p)
ri − β̄(p)

r )2 +Op(n
−1/2
p )

=
1

√
np

np∑

i=1

{
(β

(p)∗
ri )2 − 1

np

np∑

k=1

(β
(p)
rk )2

}
+Op(n

−1/2
p ).

Similarly, (32) becomes

γ̂(p)∗
r − γ̂(p)

r

= γ̂(p)∗
r − γ(p)

r − (γ̂(p)
r − γ(p)

r )(43)
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= −
∑

s 6=r

{
1

λ
(p)
s − λ

(p)
r

1

np

np∑

i=1

(β
(p)∗
si − β̄(p)∗

s )(β
(p)∗
ri − β̄(p)∗

r )

− 1

λ
(p)
s − λ

(p)
r

1

np

np∑

i=1

(β
(p)
si − β̄(p)

s )(β
(p)
ri − β̄(p)

r )

}
γ(p)

s (t)

+ R(p)∗
r (t)

= −
∑

s 6=r

{
1

λ
(p)
s − λ

(p)
r

1

np

np∑

i=1

(
β

(p)∗
si β

(p)∗
ri − 1

np

np∑

k=1

β
(p)
sk β

(p)
rk

)}
γ(p)

s (t)

+ R̃(p)∗
r (t),

where due to (28), (29) and (41), the remainder term satisfies ‖R(p)∗
r ‖ =

Op(n
−1
p ).

We are now ready to analyze the bootstrap versions ∆∗ of the different

∆. First consider ∆∗
3,r and note that {(β(p)∗

ri )2} are i.i.d. bootstrap resam-

ples from {(β(p)
ri )2}. It therefore follows from basic bootstrap results that

the conditional distribution of 1√
np

∑np

i=1[(β
(p)∗
ri )2 − 1

np

∑np

k=1(β
(p)
rk )2] given Xp

converges to the same N(0,Λ
(p)
r ) limit distribution as 1√

np

∑np

i=1[(β
(p)
ri )2 −

E{(β(p)
ri )2}]. Together with the independence of (β

(1)∗
ri )2 and (β

(2)∗
ri )2, the

assertion of the theorem is an immediate consequence.

Let us turn to ∆∗
1, ∆∗

2,r and ∆∗
4,L. Using (41)–(43), it is then easily seen

that n∆∗
1, n∆∗

2,r and n∆∗
4,L admit expansions similar to (33), (35) and (36),

when replacing there 1√
np

∑np

i=1 β
(p)
ri by 1√

np

∑np

i=1(β
(p)∗
ri − 1

np

∑np

k=1 β
(p)
rk ), as

well as 1√
np

∑np

i=1 β
(p)
si β

(p)
ri by 1√

np

∑np

i=1(β
(p)∗
si β

(p)∗
ri − 1

np

∑np

k=1 β
(p)
sk β

(p)
rk ).

Replacing β
(p)
ri , β

(p)
si by β

(p)∗
ri , β

(p)∗
si leads to bootstrap analogs b

(p)∗
ik of

the vectors b
(p)
ik , k = 1,2,3. For any q ∈ N, define bootstrap versions n∆∗

1(q),

n∆∗
2,r(q) and n∆∗

4,L(q) of n∆1(q), n∆2,r(q) and n∆4,L(q) by using

( 1√
n1

∑n1
i=1(b

(1)∗
ik − 1

n1

∑n1
k=1 b

(1)
ik )⊤, 1√

n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b

(2)
ik )⊤) instead of

( 1√
n1

∑n1
i=1(b

(1)
ik )⊤, 1√

n2

∑n2
i=1(b

(2)
ik )⊤), k = 1,2,3, in (37). Applying again (41)–

(43), one can conclude that for any ǫ > 0 there exists some q(ǫ) such that,

as n→∞,

P (|n∆∗
1 − n∆∗

1(q)|< ǫ) → 1,

P (|n∆∗
2,r − n∆∗

2,r(q)|< ǫ) → 1,(44)

P (|n∆∗
4,L − n∆∗

4,L(q)|< ǫ) → 1
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hold for all q ≥ q(ǫ). Of course, (44) generalizes to the conditional probabil-
ities given X1, X2.

In order to prove the theorem, it thus only remains to show that for any

given q and all δ

|P(n∆(q)≥ δ)−P(n∆∗(q)≥ δ| X1,X2)|= Op(1)(45)

hold for either ∆(q) = ∆1(q) and ∆∗(q) = ∆∗
1(q), ∆(q) = ∆2,r(q) and ∆∗(q) =

∆∗
2,r(q), or ∆(q) = ∆4,L(q) and ∆∗(q) = ∆∗

4,L(q). But note that for k =

1,2,3,E(bik) = 0, {b(j)∗
ik } are i.i.d. bootstrap resamples from {b(p)

ik }, and

E(b
(p)∗
ik |X1,X2) = 1

np

∑np

k=1 b
(p)
ik are the corresponding conditional means. It

therefore follows from basic bootstrap results that as n→∞ the conditional

distribution of ( 1√
n1

∑n1
i=1(b

(1)∗
ik − 1

n1

∑n1
k=1 b

(1)
ik )⊤, 1√

n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b

(2)
ik )⊤)

given X1, X2 converges to the same N(0,Ωk,q) limit distribution as

( 1√
n1

∑n1
i=1(b

(1)
ik )⊤, 1√

n2

∑n2
i=1, (b

(2)
ik )⊤). This obviously holds for all q ∈ N, and

(45) is an immediate consequence. The theorem then follows from (38), (39),
(40), (44) and (45). �
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Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued
Random Variables. Wiley, New York. MR0576407

Besse, P. and Ramsay, J. (1986). Principal components of sampled functions. Psychome-
trika 51 285–311. MR0848110

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J.
Political Economy 81 637–654.

Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the princi-
pal component analysis of a vector random function: Some applications to statistical
inference. J. Multivariate Anal. 12 136–154. MR0650934

Fengler, M. (2005a). Arbitrage-free smoothing of the implied volatility surface. SFB 649
Discussion Paper No. 2005–019, SFB 649, Humboldt-Universität zu Berlin.

Fengler, M. (2005b). Semiparametric Modeling of Implied Volatility. Springer, Berlin.
MR2183565
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