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Abstract

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. There are however limitations of some widely-used risk
management methods that either calculate risk measures under the Gaussian distributional
assumption or involve numerical difficulty. The primary aim of this paper is to present a
realistic and fast method, GHICA, which overcomes the limitations in multivariate risk
analysis. The idea is to first retrieve independent components (ICs) out of the observed
high-dimensional time series and then individually and adaptively fit the resulting ICs in the
generalized hyperbolic (GH) distributional framework. For the volatility estimation of each
IC, the local exponential smoothing technique is used to achieve the best possible accuracy
of estimation. Finally, the fast Fourier transformation technique is used to approximate the

density of the portfolio returns.

The proposed GHICA method is applicable to covariance estimation as well. It is compared
with the dynamic conditional correlation (DCC) method based on the simulated data with
d = 50 GH distributed components. We further implement the GHICA method to calculate
risk measures given 20-dimensional German DAX portfolios and a dynamic exchange rate
portfolio. Several alternative methods are considered as well to compare the accuracy of
calculation with the GHICA one.
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1 Introduction

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. Given a d-dimensional portfolio, the conditionally het-

eroscedastic model is widely used to describe the movement of the underlying series:
2(t) = Y2 (t)ea(t), (1)

where z(t) € IR? are risk factors of the portfolio, e.g. (log) returns of the financial instru-
ments. The covariance 3, is assumed to be predictable with respect to (w.r.t.) the past
information and e, (t) € IR is a sequence of standardized innovations with E[e, ()| F;_1] = 0
and E[e2(t)|F;_1] = I4. There is a sizeable literature on risk management methods. Among

others, we refer to Jorion (2001) for a systematic description.

In this paper, we focus on the calculation of two risk measures, value at risk (VaR) and
expected shortfall (ES). These two risk measures are inherently related to the joint density
of z(t). The VaR is in fact the distributional quantile of loss, i.e. —xz(t), at a prescribed level
over a target time horizon and the ES measures the size of loss once the loss exceeds the
VaR value. Indicated by formula (1), the joint density estimation depends on the covariance

estimation and the distributional assumption of the innovations.

The largest challenge of risk management is due to the high-dimensionality of real port-
folios. Above all, the covariance estimation is really computationally demanding as high
dimensional series, e.g. a dimension d > 10, is considered, see Hardle, Herwartz and
Spokoiny (2003). For example, the dynamic conditional correlation (DCC) model proposed
by Engle (2002), Engle and Sheppard (2001), which is one multivariate GARCH model, is
recommended due to the good performance of its univariate version. In the estimation, the
covariance matrix is approximated by the product of a diagonal matrix and a correlation
matrix, which reduces the number of unknown parameters much relative to the BEKK
specification proposed by Engle and Kroner (1995). In spite of the appealing dimensional
reduction, the mentioned estimation method is time consuming and numerically difficult to

handle given high-dimensional data.

Moreover, many widely-used risk management methods rely on the unrealistic Gaussian
distributional assumption, e.g. the RiskMetrics product introduced by JP Morgan in 1994.
In the Gaussian framework with an estimate 3, (t) of $,(t), the standardized returns é,(t) =
2 (t)x(t) are asymptotically independent and the joint distributional behavior can
be easily measured by the marginal distributions. However the Gaussian distributional
assumption is merely used for computational and numerical purposes and not for statistical
reasons. The conditional Gaussian marginal distributions and the resulting joint Gaussian

distribution are at odds with empirical facts, i.e. financial series are heavy tailed distributed.



The heavy tails are typically reduced but not eliminated as the series are standardized by
the estimated volatility, see Anderson, Bollerslev, Diebold and Labys (2001).

We illustrate this effect based on two real data sets, the Allianz stock and a DAX
portfolio from 1988/01/04 to 1996/12/30. The DAX is the leading index of Frankfurt
stock exchange and a 20-dimensional hypothetic portfolio with a static trading strategy
b(t) = (1/20,---,1/20)" is considered. The portfolio returns r(t) = b(t) " z(t) are analyzed
in the univariate version of (1). This simplified calculation is used in practice, but it often
suffers from low accuracy of calculation. Suppose now that the two return processes have
been properly standardized, by using a local volatility estimation technique discussed later.
The standardized returns are empirically heavy-tailed distributed, indicated by the sample
kurtoses 12.07 for the Allianz and 22.38 for the portfolio respectively.

Figure 1 displays the estimated logarithmic density curves under several distributional
assumptions. Among them, the estimate using the nonparametric kernel estimation is con-
sidered as benchmark. The comparison w.r.t. the Allianz stock shows that the GH estimate
is most close to the benchmark among others. The Gaussian estimate presents lighter tails.
To alleviate the limitation, the Student-¢(6) distribution with degrees of freedom of 6 has
been recommended in practice. However this distribution is found to over-fit the heavy
tails, namely the ¢(6) estimate displays heavier tails relative to the benchmark. The sim-
ilar result is observed w.r.t. the DAX portfolio. It is rational to surmise that the risk
management methods under the Gaussian and ¢(6) distributional assumptions generate low

accurate results.

To overcome these limitations, Chen, Hardle and Spokoiny (2006) present a simple VaR
calculation approach that achieves much better accuracy than the alternative RiskMetrics
method. In their study, univariate approaches that involve more realistic but complex
procedures can be easily extended for multivariate risk measurement. To be more specific,
financial risk factors are first converted to independent components (ICs) using a linear
filtering and the univariate method is applied to identify the distributional behavior of
each IC. We name here two univariate approaches which measure the risk exposure in the
realistic distributional framework. One is the univariate VaR calculation proposed by Chen,
Hérdle and Jeong (2005), which implements local constant model to estimate volatility
and fit the standardized returns under the GH distributional assumption. The other is
proposed by Chen and Spokoiny (2006), who apply the local exponential smoothing method
to estimate volatility and calculate the risk measure in the GH distributional framework.
The standardization of the Allianz and DAX returns in Figure 1 is in fact based on the

local exponential smoothing technique.

The primary aim of this paper is to present an realistic and fast multivariate risk manage-
ment method, GHICA, by implementing the IC analysis (ICA) to the high dimensional
series and adaptively fitting the ICs in the GH distributional framework. The GHICA
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Fig. 1. Density comparisons of the standardized returns in log scale based on the Al-
lianz stock (top) and the DAX portfolio (bottom) with static weights b(t) =
unit(1/20).  Time interval: 1988/01/04 - 1996/12/30.  The nonparamet-
ric kernel density is considered as benchmark. The GH distributional pa-
rameters are respectively GH(—0.5,1.01,0.05,1.11,—0.03) for the Allianz and
GH(-0.5,1.21,-0.21,1.21,0.24) for the DAX portfolio. ~Data source: FEDC
(http://stb649.wiwi.hu-berlin.de).

method improves the work of Chen et al. (2006) from two aspects. The volatility estima-
tion is driven by the local exponential smoothing technique to achieve the best possible
accuracy of estimation. The fast Fourier transformation (FFT) technique is used to ap-
proximate the density of the portfolio returns. Compared to the Monte Carlo simulation

technique used in the former study, it significantly speeds up the calculation.

In addition, the proposed GHICA method is easily applicable for covariance estimation.
Relative to the widely used DCC setup, the GHICA method is fast and delivers sensitive

estimates. We demonstrate the comparison based on simulated data. Furthermore, the



GHICA method is implemented to risk management on the base of DAX stocks and foreign
exchange rates. Several hypothetic portfolios are constructed by assigning static and dy-
namic trading strategies to the data sets. The results are compared with those calculated
using alternative methods, i.e. the RiskMetrics method, the method using the exponential
smoothing to estimate volatility and assuming the Student-#(6) distribution, and the method
using the DCC to estimate covariance in the Gaussian distributional framework. All the
results are analyzed from the viewpoints of regulatory, investors and internal supervisory.
The GHICA method, in general, produces better results than the others.

The paper is organized as follows. The GHICA method is described in Section 2, by
which the ICA method, the local exponential smoothing technique and the FFT technique
are detailed. Section 3 compares the covariance estimation using the GHICA and DCC
methods based on the simulated data with d = 50 GH components. The real data analysis
in Section 4 demonstrates the implementation of the GHICA method in risk management
based on the 20-dimensional German DAX portfolios and a dynamic exchange rate portfolio.
Several alternative methods are considered as well to compare the accuracy of calculation
with the GHICA one.

2 GHICA Methodology

Given multidimensional time series, for example prices of financial assets, s(t) € R, the
(log) returns are calculated as z(t) = log{s(t)/s(t — 1)}. Without loss of generality, the
drift of the returns is set to be 0. Given the time homogeneous model, z(t) = Eiﬂsx(t)
with standardized innovations £,(t), the maximum Gaussian likelihood estimate of the time
independent covariance >, is the sample covariance based on the whole past information.
Since the covariance is in fact time dependent, one considers the conditional heteroscedastic

model:
w(t) = S/ 2 (D)ea(t).

Many techniques have been used to approximate the local covariance by specifying a “local
homogeneous” interval (e.g. one year or 250 trading days). Inside the homogeneous interval,
the unknown covariance should be time-invariant and can be identified using the ML esti-
mation. Among many others, the multivariate GARCH setup such as the DCC is successful
in characterizing the clustering feature of covariance under the Gaussian distributional as-
sumption. As the dimension d increases, it however needs to estimate many parameters and
becomes numerically difficult. Moreover, the standardized returns &,(t) = X5 1/2 (t)z(t) are
empirically not Gaussian distributed. Under a realistic distributional assumption, on the
other hand, by which the distributional behaviors such as asymmetry and heavy tails are
well matched, it is hard to identify the unknown distributional parameters due to complex

density form.



The GHICA method proposes a solution to balance the numerical tractability and the
realistic distributional assumption on the risk factors. It first converts the return series
using a linear transformation and filters out ICs: y(¢) = Wx(¢). The transformation matrix
W is assumed to be time constant and nonsingular and y(¢) is the independent vector. The

heteroscedastic model is now reformulated as:
a(t) = Wly(t) = WS/ 2(t)ey (t) = WD, 2 (t)ey (1)

Due to the statistical property of independence, the covariance of the ICs ¥, (t) is a diagonal
matrix and is denoted as D,(t) to emphasize this feature. Its diagonal elements are the
time varying variances of the ICs. The stochastic innovations e,(t) = {gy, (t), -, ey, (t)} "
are cross independent and can be individually identified in the realistic and univariate
distributional framework. By doing so, the GHICA method converts the high dimensional

analysis to univariate study and significantly speeds up the calculation.

In this section, the building blocks of the GHICA method are detailed: The FastICA
procedure is used to estimate the transformation matrix W; The resulting ICs are indi-
vidually analyzed, by which the univariate volatility process is estimated using the local
exponential smoothing technique and the innovations are assumed to be GH distributed;

The quantile of the portfolio return is approximated using the FFT technique.

The GHICA algorithm is summarized as follows:

1. Do ICA to the given risk factors to get ICs.

2. Implement local exponential smoothing to estimate the variance of each IC

3. Identify the distribution of every IC’s innovation in the GH distributional framework

4. Estimate the density of the portfolio return using the FFT technique

5. Calculate risk measures

In addition, the GHICA method can be used to estimate the covariance matrix ¥(t).
Given the matrix estimate W in the ICA and the variance estimates of the ICs, the covari-
ance of the observed time series are: 3, (t) = VAVfllA)y(t)WflT. An alternative covariance

estimation approach, the DCC, is briefly described as well. We will compare the GHICA-

based covariance estimation with the DCC estimation in the later simulation study.

2.1 Independent component analysis (ICA) and FastlCA approach

The aim of ICA is to retrieve, out of high dimensional time series, stochastically ICs through

a linear transformation: y(t) = Wx(t), where the transformation matrix W = (wy, - - -, wq) "



is nonsingular. It is essential to use high order moments in the ICA. In the Gaussian
framework, high order moments are however fixed such as skewness with value of 0 and
kurtosis with value of 3. Therefore the ICs are assumed to be nongaussian distributed.
Furthermore, the ICA transformation has scale identification problem, i.e. the equation
holds true by simultaneously multiplying the same constants to the unknown terms y(t)
and W: {cy(t)} = {cW}z(t). To avoid this problem, it is natural to standardize the
dependent series and assume that every IC has unit variance E(y;) = 1 with j = 1,---,d.
The Mahalanobis transformation Z(t) = S Y 2ac(1t) helps to standardize the return series

and the resulting series are considered:
y(t) = Wi(t),

where ¥, is the sample covariance based on the available data. It is easy to show that
after the standardization the transformation matrix W turns to be an orthogonal matrix
with unit norm. The corresponding matrix w.r.t. the return series is W = Wi;lp. For
notational simplification, we eliminate the mark ~ in the following text in this section.
Various ideas have been proposed to estimate the transformation matrix W. Among
others, one intuitive ICA estimation is motivated by the definition of mutual information.

The mutual information is a natural measure of independence. It is defined as the difference

of the sum of marginal entropy and the mutual entropy:

d
I(y) = Z (y;) — H(y) (2)

where H(y;) = /fy] u)log fy,; (u)du

The mutual information is nonnegative and goes to 0 if the vector y is cross independent,
see Cover and Thomas (1991). Hence for a candidate transformation W, one can minimize
the mutual information to achieve independence. Based on the linear transformation of the

ICA, the mutual information in (2) can be reformulated as:
d
I(W,y) :Z () — log | det(WW)].

Notice that the entropy of the return series H (z) is a fixed value and does not depend on the
ICs, and the last term in the equation is 0 due to the orthogonality of the transformation
matrix W. The optimization problem is: miny Z;lzl H(y;) and can be further simplified

to d optimization problems according to the inequality:

d d
mm Z H(y;) > Z min H (y;)
X wy
7=1 7j=1



This simplification leads to some loss in the W estimation but it extensively speeds up
the estimation procedure by merely considering d elements of W every time. Equivalently,
one can formulate the optimization problem concerning negentropy J(y;) = H(yo) — H(y;)
since the entropy and the negentropy are in one-to-one correspondence, where yo ~ N(0, 1)
is a standard Gaussian vector and H(yg) is merely a constant. The negentropy is always
nonnegative since the Gaussian random variable has the largest entropy given the same

variance, see Hyvérinen (1998).
w; = argminH (y;) = argmaxJ(wj, y;).

In the estimation, the approximation of negentropy is used to construct the optimization

object function w.r.t. the j-th row of the transformation matrix W:

w; = argminH(y;) = argmaxJ(y;)
Jy) ~ const{EIG(y)] - E[G(yo)]}*
= const.{E[G( JT ) — E[G(y )]}2
G(y;) = logcosh(y)) (3)

This optimization problem is solved by using the symmetric FastICA algorithm, see
Hyvérinen, Karhunen and Oja (2001):

1. Initialization: Choose initial vectors w( ) for W = {wy, -, wg}" with j =1,---,d,

each has a unit norm.
2. Loop:

e At step n, Calculate ’lI)J(-n) =E [m—r(t)g {wj(-n_l)—rx(t)}} —E {g’ {uA)J(.n_l)Tx(t)H 12)](-”_1),

where g is the first derivative of G(y) in form (3) and ¢’ is the second derivative.

The expectation E[-] is approximated by the sample mean.

e Do a symmetric orthogonalization of the estimated transformation matrix W,

_1/2 ~

W — (e Ty 2 m)

e If not converged, i.e. det{W(") — W("_l)} # 0, go back to 2. Otherwise, the

algorithm stops.

3. Final result: the last (converged) estimate is the final estimate W.



2.2 Local exponential smoothing and dynamically conditional correlation

Suppose that the ICs and the transformation matrix W are given. The covariance matrices

of the ICs and the original return series are respectively:

Dy(t) = diag{oy (t), -, 05, (1)}
Y.(t) = WD, w1T (4)

where oy, (t) is the heteroscedastic volatility of the j-th IC with j = 1,---,d. Recall that
(4) has a similar decomposition structure as the often-used principal component analysis
(PCA), by which the covariance is decomposed as: ¥, = TAT' " with the eigenvector matrix
I' and the diagonal eigenvalue matrix A, see Flury (1998). Among other distinctions, the
PCA method orders the resulting PCs whereas the ICs have equal importance. In the

estimation of the unknown variance, the local exponential smoothing method is used.

Local exponential smoothing: Given the univariate conditional heteroscedastic model:
y;j(t) = oy, (t)ey, (t) with E[e,, (t)|F—1] = 0 and E[egj (t)|Fi—1] = 1, we now focus on the
adaptive estimation of the volatility oy, for j =1,---,d. For notational simplification, the

subscripts y; in 0y, and j in y; are eliminated here.

Suppose that a finite set {ng,k =1, -+, K} of values of smoothing parameter is given.
Every value n;, leads to a localizing weighting scheme {77,2_5} for s <t to the local Gaussian
MLE &) (1)

o o 1/2
sM(@t) = l{ Z_ mity?(t —m—1)}/{ Z_: n?}]

In practice, one truncates the smoothing window at M}, such that 772/‘[ <o 0:

. M, 1/2
5(k)(t) = [{ Z iy (t —m — 1)}/{ Z 7721}]
m=0 m=0

where the Gaussian log-likelihood function given 7y is:

~ (k) Ni () (112 1 s
L(ny,a\™(t)) = —7108; (2m{c"™(t)}7) — 2o (D)2 Syt —m—1)
m=0
My,
where N, = 2772” (5)
m=0

10



The fitted log-likelihood ratio L (nk, k) (1), U(t)) reads as:

L(m,6M@®),00)) = L (P ) = Lk, o(t))

The idea of local exponential smoothing is to aggregate all the local likelihood estimate to
achieve the best possible accuracy of estimation. In this sense, the local MLEs () (¢) are

referred as “weak” estimates.

In our study, we concern the heavy-tailedness of financial time series and assume the
normal inverse Gaussian (NIG) distribution, one subclass of the GH distribution, see Section
2.3 for more details. Since the NIG distributional parameters of the innovations are unknown
at this stage, we use the quasi ML estimation instead of estimating the variance based on
the NIG density form. The quasi ML estimation is applicable if the exponential moment of

the squared innovations E[exp{pe®(t)}] exists. A power transformation guarantees that:

sign{y(t) Hy(t)[?
0(t) = Var{yy(t)|Fi-1} = E{y2(t)|Fi-1} = E{Jy(t)[*"|Fi—1}
= o) Ele(t)*? = o (t)C, (6)

<

—~
~

S—
I

where C), = E(|e(t)|?P|F—1) is a constant and only relies on 0 < p < 1/2. Notice that the
power transformed variable 6(t) is one-to-one correspondence to the variance o(t) and can

be estimated on the base of the transformed observations |y(t)|?":
00 = {> 'yt —m—1)PP}/Ny
m=0

Here the smoothing parameter 7 is designed to run over a wide range from values close
to zero to one, so that the variability of the unknown process 6(¢) reduces and at least one
of the resulting MLESs is good in the sense of small estimation bias. Polzehl and Spokoiny
(2006) show that the inverse of Ny in (5) is positively related to the variation of the MLEs.

This result is used to construct the sequence of the smoothing parameter {n}:

N; 1-
Lad Mk _ a>1, (7)
Ne 1 —nkm

where the coefficient a controls the decreasing speed of the variations.

The procedure is sequential and starts with the estimate é(l)(t) that has the largest
variability but small bias, i.e. we set 00 () = 6D (¢). At every step k > 2, the new
estimate 9()(t) is constructed by aggregating the next “weak” estimate %) (¢) and the
previously constructed estimate é(k_l)(t). Following to Belomestny and Spokoiny (2006),
the aggregation is done in terms of the parameter v = —1/(26) so that the variable y(t)

11



belongs to the exponential distributional family with a density form: p(y,v) = p(y) exp{yv—

d(v)}:
W) = ™)+ (1 -y ()

-1
or equivalently, 0% (1) = (éu?)k(t) ' éikjlyft))

The mixing weights {7;} are computed on the base of the fitted log-likelihood ratio by
checking that the previously accepted estimate é(kfl)(t) is in agreement with the next
“weak” estimate 0()(¢), i.e. the difference between these two estimates is bounded by

critical values j:

Y& = Kag {L (771437 é(k) (t)v é(k_l)(t)) /5k}

The aggregation kernel K, guarantees that the mixing coefficient +;, is one if there is no
essential difference between %) (¢) and =1 (¢t), and zero if the difference is significant.
The significance level is measured by the critical value (. In the intermediate case, the
mixing coefficient ~; is between zero and one. The procedure terminates after step k if
v& = 0 and we define in this case 6™ (¢) = 64+~ (¢) for all m > k.

The critical values {(;} are calculated by using Monte Carlo simulation. We briefly
summarize the procedure here. Since the NIG distributional parameters of the innovations
are unknown and the transformed variable is close to Gaussian variable, we start from the

Gaussian assumption. To be more specific, we generate y(t) = o*e(t) with (t) ~ N(0,1) and

o* 1. The “weak” estimates are calculated given the sequence of {n}. For k =2,..., K
with (1,00, -+, 00, the value (7 is selected as the minimal one to fulfill
~ A(k QrT,
Eq-|Z (e, 09 (1), 65 (0) 1" < ==, (8)

where 7. = 2r [, ("le=Cd¢ = 2rI'(r), and 7 = 0.5 and o = 1 have been suggested
in Chen and Spokoiny (2006). Consequently for [ = k + 1,..., K with the parameters

(1, C,y00,...,00, we select (i as the minimal value which fulfills
~(l) "(l) r kOéTr
Eg-|L (m, 00 t), 00 (t))\ < T (9)

As said before, the transformed variable is close to Gaussian variable, we use the gener-
ated critical values under the Gaussian assumption to estimate the volatility. The constant
C) is calculated based on the estimates é(t) such that the innovation is standardized, i.e.
Var{é(t)} = Var [y(t){ép/é(t)}ﬁ} = 1. One then estimates the NIG distributional pa-

rameters of £(t) = y(t)/6(t) where 6(t) = {é(t)/ép}i To get more accurate results, one

12



generates NIG innovations with the estimated distributional parameters and recalculates

the critical values as in the Gaussian case.

The local exponential smoothing algorithm is described as follows:

1. Initialization: 61 (¢) = 61 (¢).

2. Loop: for k > 2,
R 1—
k) (1) — ~’Yk 4= Ve -1
0= G i

where the aggregating parameter 7 is computed as:

W = Kag(L(m, 0(8),07D(8)) /Ger) (10)
If v, = 0 then terminate by letting (%) (t)y=...= oK) (t) = é(k_l)(t).

t) =0 (t).

(¢
{0(t)/C }217, where the constant C), is computed such that
/6

(t) have a unit variance as assumed in the heteroscedastic

3. Aggregation estimate:

4. Final estimate: (t) =
the residuals £(¢) = y(t)

model.

Consequently, the covariance matrices D, (t) and ¥,(t) are calculated.

Dynamic conditional correlation (DCC) model: Alternatively, the covariance of the

return series can be estimated by the DCC model:

This technique first identifies the elements of the diagonal matrix D, (¢) in the GARCH(1,1)

setup and adaptively specifies the correlation matrix as:
Ro(t) = Ry(1— 01 — 02) + 01 {ex(t — Dex(t — 1) "} + 62R,(t — 1),

where R, is the sample correlation of the risk factors, e, € IR? are the standardized returns,
i.e. risk factors divided by the univariate GARCH(1,1) volatilities, or equivalently by the
squared diagonal elements in D, (t). The standardized returns are assumed to be Gaussian

distributed. The parameters 6, and 6o are identified by the ML estimation.

2.3 Normal inverse Gaussian (NIG) distribution and fast Fourier
transformation (FFT)

The estimated ICs are assumed to be NIG distributed. The NIG is a subclass of the
GH distribution with a fixed value of A = —1/2, see Eberlein and Prause (2002). With 4

13



distributional parameters, the NIG distribution is flexible to well match the behavior of real
data. Compared to many other subclasses of GH distribution, the NIG distribution has a
desirable property, saying that the scaled NIG variable belongs to the NIG distribution as

well. The density of NIG random variable has a form of:

§ Kion/o% + (y — p)?
fNIc;(y;oa,ﬁ,&#):% 1{ ) }exp{5\/a2—ﬁ2+ﬁ(y—u)},

where the distributional parameters fulfill 4 € IR, 6 > 0 and |3| < a. The modified Bessel
function of the third kind K(-) with an index A = 1 has a form of:

Kx(y) = 5 /UOO y ! exp{*%(y +y N} dy

The characteristic function of the NIG variable is:

wﬂwzem{uu+aﬁﬂﬂ—ﬁr—¢M—wﬁ+uv}

Proof: The characteristic function of the GH random variable has a form of:

o2 M Ka{ove? = (BT}
a? — (B +1iz)? EA(0v/a? = B?)

Using the representation of the modified Bessel function with a fixed index A = —1/2 derived
in Barndorff-Nielsen and Bleesild (1981):

2 _ _
Kaf) = |/ 2y,

it is straightforwardly to show that the assertion holds. O

oy (2) = exp(izp) {

One desirable feature of the NIG distribution is its explicit scaling transformation. Mul-
tiplying the random variable by ¢, the resulting variable 3’ = cy belongs to the NIG distri-

bution as well:

INigW'se!, 80", 1) = faig ey /el B/e |eld, ep). (11)
Proof: It is easy to show the result by using the Jacobian transformation, see Hardle and
Simar (2003). Given the density of y and let o/ = «/|c|, ' = B/c, &' = |c|d and u' = cp,
the density of 3/ = cy has a form of:

o K1 O/\/ 52 + (y/ - M,)Q
f) = ify(%) _ o0 { } exp{d'\/o/* — 8% + B'(y — 1)}

’C‘ s 5’2 4 (y/ _ H/)Z
= NieWsd, B8, 1),

14
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To calculate risk measures, it requires the identification of the portfolio returns’ density.

Based on the GHICA model, the portfolio returns are calculated as:
r(t) = b(t) WDy (1) e, (1)

where b(t) is the trading strategy. Notice that the linear transformation of the NIG variable
is not necessarily NIG distributed. In other words, the density of the return is unknown
although the marginal densities are clear. On the meanwhile its characteristic function is
explicitly writable. This is the same case as approximating the a-stable distribution in
Menn and Rachev (2004), by which the Fourier transformation is used to approximate the
density of the variable based on its characteristic function. This motivates us to use the

technique to approximate the density of the return in the GHICA procedure.

Set a = (a1, -, aq) = b(t) TW 1D, (t)/2, the variable (; = a;¢; is NIG distributed with
j=1,---,d, according to (11):

¢ ~ NIG(G, &, B, 05, 1) = NIG(C, 5/ |ajl, B/ aj, |a;16;, ajuj).

The characteristic function of the return r = Z;l:l ¢; at time ¢ is:

d d d
or(2) = [T o (2) = exp iz ) jij + 253'{\/56? — 07— \/]2 — (B +1i2)?}
j=1 j=1 j=1
The density function is approximated by the Fourier transformation:

f(r) ! /+OO exp(—itr)y(z)dt ~ 2i /S exp(—itr)y(z)dt
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The procedure of quantile estimation is summarized as follows:

e Implement the discrete fast Fourier transformation (DFT) to approximate the density

of r at every time point ¢:

1. Let N = 2™ with m € IN and define an equidistance grid over the integral interval
2s

[—s, 5] by setting h = 57 and the grid points z; = —s + j * h with j =0,---, N.
2. Calculate the input of the DFT: y; = (—1)74(2}) with 2} = 0.5(z; + z;41) are
the middle points. Notice that the characteristic function is time dependent.
3. The density f(r) = £=CyDFT(y); with C = Z(-1)fexp(—%2)i with k =

0,---,N — 1. We refer to Borak, Detlefsen and Hérdle (2005) and Menn and

_Nm + Lk‘

Rachev (2004) for more details. The corresponding values of r = — 57 + ™

e The cumulative density function and the quantile are then approximated based on
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Structure shifts of covariance matrix
Sigma2 - f
Sigma1 T
Sigma3 -
0 4(;0 7(;0 10‘00 1 3‘00 14‘00 1 5‘00 16‘00 17‘00 18‘00 1900

Fig. 2: Structure shifts of the generated covariance through time. Notice that there are
shifts among matrices not up-and-down movements.

the resulting density.

3 Covariance estimation with simulated data

In this section, the GHICA versus the DCC, are implemented to estimate covariance of
simulated data. The dimension is set to be d = 50. The simulation study is designed
to include structure shifts of covariance. To be more specific, the designed covariance
changes among three matrices over time, one is an identity matrix denoted as ¥, meaning
uncorrelatedness, and two symmetric and semi-positive defined matrices ¥ and 33. (Here
we first generate d * d matrix U; whose elements are uniform random variables for o
and standard Gaussian variables for X3, then calculate a new matrix Uy = Uy * U] to
guarantee the semi-positiveness. The elements X(4, j) of the target matrix are calculated as
¥(i,7) = Ua(i,7)//U2(1,1)Ua(4,7).) The eigenvalues of these two matrices are distributed
in [5.92e — 004, 3.779] (32) and [0.002, 3.573] (X3) respectively. The off-diagonal values span
over [—0.433,0.468] in the first self-correlated matrix (X2) and [—0.447,0.464] in the second
one (X3). Temporal stationarity is assumed to be long for 400 time units and short for 100
units. The structure shifts of the generated covariance are illustrated in Figure 2. The level
of the shifts is either small with a shift from one self-correlated matrix (32 or ¥3) to the

identity matrix or contrariwise, e.g. at the point 700, or large with a shift between the two
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self-correlated matrices, e.g. at the point 1800.

Furthermore, two distributional parameters y and 3 of the standardized NIG innovations
e.(t) are set to be 0, meaning that the innovations are centered around 0 and symmetric
distributed, see Barndorff-Nielsen and Bleesild (1981). By doing so, the mean and variance

of the NIG innovations only depend on « and §:

)
Var(e,) — —— g8y

This result is used to generate the standardized innovations, by which o ~ U[1,2] is sug-

gested by our experience on real data analysis and § = a.

In the Monte Carlo simulation, we generate d = 50 NIG variables with the designed

covariance and distributional parameters:
x(t) = 532 (t)ea (D).

The sample size is T' = 1900 and the scenarios are repeated N = 100 times. The covariance

matrix is estimated using the GHICA procedure and the DCC method respectively.

The GHICA method first converts the underlying series to ICs by a linear transforma-
tion:
w(t) = Why(t) = WD, 2 (), (b),

by which the elements of Dy(t) on the diagonal are estimated using the local exponential
smoothing method. In the local exponential smoothing estimation, we set the involved
parameters ¢ = 0.01, a = 1.25 and p = 0.25. The sequence of the smoothing parameters
{nk} are 0.600, - - -,0.982 with K = 15, based on the condition (1—n;)/(1—nk+1) = ain (7).
The first 300 observations are reserved as training set for the very beginning estimations,
since the largest smoothing parameter used in this study corresponds to a window with 259

observations.

The covariance of z(t) is calculated by the basic statistical property:

Y. (t) =W D,tyw1T

The DCC method assumes that the underlying series are Gaussian distributed. It de-
composes the covariance matrix to a product of diagonal variance matrix and correlation

matrix:
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— — Sigma(2,5)(t)
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Sigma(2,5) d = 50 dimensions — GHICA estimates

0.2 ! ! ! ! ! !
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Fig. 3: Realized estimates of (2, 5) based on the GHICA and DCC methods. The generated
data consists of 50 NIG distributed components.

where D,(t) consists of the variances of x(¢) on the diagonal that are estimated in the
GARCH(1,1) setup.

Figure 3 displays one realization of ¥(2,5), i.e. the covariance of the second and fifth
risk factors x2(t) and x5(t), based on one simulation data. The true values are 0.365 in
Yo and —0.124 in X3. As expected, the GHICA estimates are sensitive to structure shifts
through time. The DCC estimates, on the contrary, are over-smooth and slowly follow the
shifts. Given more often shifts around the last hundreds of time points, the DCC estimates
deliver less information on the movements. Recall that 100 points correspond to 4 months
observations of daily returns. It is rational to surmise that structure shifts happen so
often in the active financial markets, see Merton (1973). The similar estimation results are

observed in the other elements of the covariance, which are eliminated here.

To measure the accuracy of estimation, ratio of absolute estimation error (RAE) of the
estimates w.r.t. the true covariance are calculated pointwise.
T -GHICA
S [EEH A0 - 2y (1)

RAE(,j) = )
S s BRSC®) - S, ()]

If RAE(7, j) < 1, it means that the GHICA method reaches higher accuracy in the estima-
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Fig. 4: Boxplot of the proportion 22 (d><d (7)=D) for i,j = 1,--+,d. Here d = 50 and

the proportions on the base of 100 simulations are considered.

tion of X(4,7) than the DCC. To compare the general performance of these two methods in

covariance estimation, we check the proportion of the RAEs among the 2500 (d*d) elements

S 1(RAEG,)<1
that are smaller or equal to one, i.e. 22 (d><d )= for ¢,7 = 1,---,d. Notice that

the proportion with value of 0.5 indicates that half elements are better estimated by using
the GHICA and the other half are better done by the DCC. In other words, the considered
methods have a comparable accuracy of estimation. Figure 4 displays the boxplot of the
100 proportions. The mean of the proportion is 0.4904 among the 100 simulations. It states
that the DCC method performs a little bit better than the GHICA in the sense of accuracy.
On the meanwhile, the GHICA method is much fast and sensitive to structure shifts.

4 Risk management with real data

In this section, we implement the proposed GHICA method to calculate risk measures
using real data sets: 20-dimensional German DAX portfolio and 7-dimensional exchange
rate portfolio. The results are compared with those based on alternative risk management
models. The data sets have been kindly provided by the financial and economic data center
(FEDC) of the Collaborative Research Center 649 on Economic Risk of the Humboldt-
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Universitét zu Berlin (http://sfb649.wiwi.hu-berlin.de). Before giving detailed description
of the data sets, we analyze the risk measures from the viewpoints of regulatory, investors

and internal supervisory.

Regulatory requirement: Financial institutions generally face market risk that arises
from the uncertainty due to changes in market prices and rates such as share prices, foreign
exchange rates and interest rates, the correlations among them and their levels of volatility,
see Jorion (2001). The market risk is the main risk source and has a great negative influence
on the development of economic. The famous example is the stock crashes in the autumn
1929 and 1987 which caused a violent depression in the United States and some other
countries, with the collapse of financial markets and the contraction of production and
employment. To alleviate the down influence of market risks, regulation on banking and
other financial institutions has been strengthened since the mid-1990s. The goals of the
regulation are to restrict the happening of extremely large losses and require banks to
reserve adequate capital. In 1998 the Basel accord officially allowed financial institutions
to use their internal models to measure market risks. Among others, Value at Risk (VaR)

has been considered as industry standard risk measure:
VaRy,pr = —quantilep; {r(t)}.

where pr is the h = 1-day or h = 5-day forecasted probability of the portfolio returns.
Internal models for risk management are verified in accordance with the “traffic light” rule
that counts the number of exceptions over VaR at 1% probability spanning the last 250
days and identifies the multiplicative factor My in the market risk charge calculation, see
Franke, Hardle and Hafner (2004):

60
Risk charge, = max (MfGlO ; VaRt_i,l%, VaRt71%>
The multiplicative factor My has a floor value 3. It increases corresponding to the number
of exceptions, see Table 1. For example, if an internal model generates 7 exceptions at 1%
probability over the last 250 days, the model is in the yellow zone and its multiplicative
factor is My = 3.65. Financial institutions whose internal model is located in the yellow or
red zone, with a very high probability, are required to reserve more risk capital than their
internal-model-based VaRs. Notice that the increase of risk charge will reduce the ratio of
profit since the reserved capital can not be invested. On the meanwhile, an internal model
is automatically accepted if the number of exceptions does not exceed 4. This regulatory
rule in fact suggests banks to control VaR at 1.6% (i.e. 4/250) instead of 1% probability. It
is clear that 1.6%-VaR is smaller than 1%-VaR. Therefore an internal model is particularly
desirable by financial institutions if its empirical probability is smaller or equal to 1.6%,

and simultaneously requires risk charge as small as possible. Here a simplified calculation
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No. exceptions | Increase of M;  Zone
0 bis 4 0
5 0.4
6 0.5
7 0.65
8 0.75
9 0.85
More than 9 1 red

Tab. 1: Traffic light as a factor of the exceeding amount, cited from Franke, Hardle and
Hafner (2004).

on the average value of VaRs is used as risk charge for comparison:

Risk charge (RC) = mean (VaRy pr)

Investor: It is known that VaR is inappropriate for the measurement of capital adequacy,
since it controls only the probability of default, i.e. the frequency of losses, but not the size
of losses in the case of default. For this reason, investors concern expected shortfall (ES)

more than VaR to measure and control their risks.
ES = E{—r(t)] — r(t) > VaRypr}

Investors suffer loss once bankruptcy happens. Even in the “best” situation, their loss
equals to the difference between the total loss and the reserved risk capital, i.e. the value
of ES. Generally risk-averse investors care the amount of loss and thus prefer an internal
model with small value of ES. Risk-seeking investors, on the other hand, care profit and

hence the small value of risk charge favors their requirement.

Internal supervisory: It is important for internal supervisory to exactly measure the
market risk exposures before risk controlling. For this reason, internal supervisory prefers
the model delivering accurate probability prediction, i.e. the empirical probability pr is as

close to the expected values as possible:

No. exceptions

r =
No. total observations

Given two models with the same empirical probability, the model has a smaller value of
ES is considered better than the other. Here two extreme probabilities are considered, i.e.
pr = 1% for regulatory reason and pr = 0.5% used by financial institutions with AAA

rating.
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4.1 Data analysis 1: DAX portfolio

The primary target of the real data analysis is to compare the forecasting ability of the
GHICA method with two alternatives, the RiskMetrics method under the Gaussian dis-
tributional assumption and a modification with the Student-¢(6) distributional assumption
(abbreviated as t(6) method) in the market. The comparison is demonstrated based on 20
DAX stocks over a long time period, starting on 1974/01/02 and ending on 1996,/12/30
(5748 observations). The return series are all centered around 0 and have heavy tails
(kurtosis> 3), the smallest correlation coefficient is 0.3654. Hypothetical German DAX
portfolios are constructed with two static trading strategies b(t) = bV = (1/d,---,1/d)"
and b(t) = b ~ U[0,1]%. Such a simple portfolio construction eliminates the influence
of strategy adjustments on the calculation. The portfolio returns are analyzed using the
RiskMetrics or the ¢(6) method. Here the unknown volatility process of the portfolio is

estimated using the exponential smoothing method with n = 0.94:

r(t) = blz(t) = o.(t)eq(t)

M M
ar(t) = {D nmrt(t—m—=1} (0™
m=0 m=0

where the truncated value M fulfills the condition n™+1) < 0.01. Notice that given a
dynamic trading strategy, this simplification needs to repeatedly estimate the density of
the time varying hypothetical portfolio returns, and it often suffers from a low accuracy of

estimation.

Figure 5 depicts the one day log-returns of the DAX portfolio with the static trading
strategy b(t) = bM). The VaRs from 1975/03/17 to 1996/12/30 at pr = 0.5% are displayed
w.r.t. three methods, the GHICA, the RiskMetrics and the ¢(6). The most volatile time
period over ¢ € [3300,4300] is detailed in the bottom diagram. Recall that on the Monday,
19 October 1987, the worldwide downward jump of stocks happened. Dow Jones Industrial
Average for example dropped by over 500 points. At this market quiver around ¢t = 3446, the
GHICA method exactly achieves the locations of extreme losses whereas the RiskMetrics and
t(6) methods over-react to them. Such over reactions induce large risk charges unnecessarily.
On the other hand, it is observed that these two alternative methods give close forecasts to
some extreme losses, e.g. around time points 4000 and 4500. As a result, the associating

values of ES are small and satisfy the requirement of risk-averse investors.

Table 2 reports the risk measures based on the three methods. In general, the Risk-
Metrics is successful in fulfilling the minimal requirement of regulatory. The ¢(6) method
is preferred by investors who consider risk happened with 1% probability. The GHICA

method performs better than the other two for internal supervisory and requirement of

22



0.15 T T

log-returns with equal weights (b1)
— GHICA VaR at 0.5%
— RiskMetrics VaR at 0.5%
u — — t(6) VaR at 0.5% ]
0.1
0.05F X 4
0% ¢ o " R
< /“r;/,, ¢ ; : '._C,%m/_‘u../:\’f‘_....-e,'
‘/ﬂ/.ﬂ 1 ‘1/ l f \Vr‘ ‘1 Rtk (» o 8
S’/ g ( J'v“ i ( ﬂ"-‘/ )
-0.05 | A 1 E ! fil W
| i W iy ”r» i *uf ol
LN A
:w T
-01} ‘J H ! . _
W h .
‘ .
| |
’\ |
| :
-0.15F | |

+ log-returns with equal weights (b1) h
—— GHICA VaR at 0.5%
— - RiskMetrics VaR at 0.5% |
— — t(6) VaR at 0.5%

-0.15

1 1 1
2300 3300 4300

Fig. 5: One day log-returns of the DAX portfolio with the static trading strategy b(t) = b(1).
The VaRs are from 1975/03/17 to 1996/12/30 at pr = 0.5% w.r.t. three methods,
the GHICA, the RiskMetrics and the ¢(6). Part of the VaR time plot is enlarged

and displayed on the bottom.
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GHICA RiskMetrics N(u, 0?) Exponential smoothing #(6)

h b(t) pr pr RC ES pr RC ES pr RC ES
1 v 1% 0.55%  0.0264 0.0456 1.18%° 0.0229” 0.0279 | 0.40% 0.0292

¥ 0.5% | 0.44%°  0.0297 0.75%  0.0254 0.0317 | 0.23% 0.0345 0.0506

@ 1% 0.59%  0.0265 0.0448 1.03%° 0.02317 0.0288 | 0.38%  0.0294

b@  05% | 0.42%°  0.0298 0.71%  0.0256 0.0315 | 0.21% 0.0347 0.0514
5 oY 1% | 0.83%  0.0550 0.0841 1.15%° 0.0481" 0.0602 | 0.19% 0.0665

b 05% | 0.51%°  0.0612 0.64%  0.0536 0.0683 | 0.09% 0.0784 0.1067

@ 1% 0.83%°  0.0554 1.18%  0.0488" 0.0613 | 0.16% 0.0673 0.0852

b@  05% | 0.50%° 0.0617 0.63%  0.0543 0.0676 | 0.07% 0.0794 0.1218

Tab. 2: Risk analysis of the DAX portfolios with two static trading strategies. The con-
cerned forecasting interval is h = 1 or A = 5 days. The best results to fulfill
the regulatory requirement are marked by . The method preferred by investor is
marked by ‘. For the internal supervisory, the method marked by ¢ is recommended.

risk-averse investors who care the extreme risk happened with 0.5% probability.

4.2 Data analysis 2: Foreign exchange rate portfolio

In financial markets, traders adjust trading strategy according to information obtained.
The GHICA is easily applicable to dynamic portfolios. We consider here 7 actively traded
exchange rates, Euro (EUR), the US dollar (USD), the British pounds (GBP), the Japanese
yen (JPY) and the Singapore dollar (SGD) from 1997/01/02 to 2006/01/05 (2332 obser-
vations). The foreign exchange rate (FX) market is the most active and liquid financial
market in the world. It is realistic to analyze a dynamic portfolio with daily time varying
trading strategy b (t). The strategy at time point ¢ relies on the realized returns at t — 1,

the proportions of which w.r.t the sum of returns:

z(t—1)

b(3) )=~
W= =1

where x(t) = {z1(t),---,24(t)} . Among these data sets, the returns of the EUR/SGD
and USD/JPY rates are least correlated with the correlation coefficient 0.0071 whereas
the returns of the EUR/USD and EUR/SGD rates are most correlated with the coefficient
0.6745. The resulting portfolio returns span over [—0.7962,0.7074].

The GHICA method is compared with an alternative method, abbreviated as DCCN,

that applies the DCC covariance estimation under the Gaussian distributional assumption.
r(t) = b(t)Ta(t) = b(t) TP ()eu (t)

where £, ~ N(u,Y.) with the diagonal covariance matrix ¥.. Notice that the quantile
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GHICA DCCN
h  b(t) pr pr RC ES pr RC ES
1 3@ 1% | 1.28%° 0.0453" 0.0778 | 1.59% 0.0494
b3 (t)  0.5% | 0.59%° 0.0493 0.94% 0.0547 0.0289
5 b)) 1% | 1.53%° 0.0806" 4.17% 0.0993 0.1735
b3 () 0.5% | 0.79%°  0.1092 3.44% 0.1100 0.1389

Tab. 3: Risk analysis of the dynamic exchange rate portfolio. The best results to fulfill the
regulatory requirement are marked by ". The recommended method to the investor

is marked by ‘. For the internal supervisory, we recommend the method marked by
S

vector with pr-quantiles of individual innovations does not necessarily correspond to the
pr-quantile of the portfolio return. Under the Gaussian distributional assumption, the
standardized DCCN returns are theoretically cross independent and the Gaussian quantiles
of the portfolio can be easily calculated. The dynamic mean, variance of the portfolio’s

returns have values of:

E{r(t)} = b(t)"={/?(8) E{ea(t)}
Var{r(t)} = b(t) =02 (¢) Var{e, (6)}£5/2T (0)b(1)

The GHICA method in general presents better results than the DCCN. Except the value
of ES at 1% level, the GHICA fulfills the requirements of regulatory, internal supervisory
and investors, see Table 3. For h = 1 day forecasts, the DCCN gives although a closer VaR
value to 1.6%, i.e. the ideal probability for regulatory, its risk charge with a value of 0.0494
is larger than that based on the GHICA, 0.0453. Therefore the GHICA is more favored in

fulfilling the minimal regulatory requirement.

The two real data studies show that the GHICA method fulfills the minimal regulatory
requirement by controlling the risk inside 1.6% level and requiring small risk charge, in
particular satisfies the internal supervisory requirement by precisely measuring risk level as
expected and favors the investors’ requirement by delivering small size of loss. In summary,
the GHICA method is not only a realistic and fast procedure given either static or dy-
namic portfolios but also produces better results than several alternative risk management
methods.
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Abstract

This paper analyzes empirical market utility functions and pricing kernels
derived from the DAX and DAX option data for three market regimes. A
consistent parametric framework of stochastic volatility is used. All empirical
market utility functions show a region of risk proclivity that is reproduced by
adopting the hypothesis of heterogeneous individual investors whose utility
functions have a switching point between bullish and bearish attitudes. The
inverse problem of finding the distribution of individual switching points is
formulated in the space of stock returns by discretization as a quadratic opti-
mization problem. The resulting distributions vary over time and correspond
to different market regimes.

JEL classification: G12, G13, C50

Keywords: Utility function, pricing kernel, behavioral finance, risk aversion,
risk proclivity, Heston model



1 Introduction

Numerous attempts have been undertaken to describe basic principles on
which the behaviour of individuals are based. Expected utility theory was
originally proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such
terms as risk aversion and risk premium and proposed a concave (logarithmic)
utility function, see Bernoulli (1956). The utilitarianism theory that emerged
in the 18th century considered utility maximization as a principle for the
organisation of society. Later the expected utility idea was applied to game
theory and formalized by von Neumann and Morgenstern (1944). A utility
function relates some observable variable, in most cases consumption, and an
unobservable utility level that this consumption delivers. It was suggested
that individuals’ preferences are based on this unobservable utility: such
bundles of goods are preferred that are associated with higher utility levels.
It was claimed that three types of utility functions — concave, convex and
linear — correspond to three types of individuals — risk averse, risk neutral
and risk seeking. A typical economic agent was considered to be risk averse
and this was quantified by coefficients of relative or absolute risk aversion.
Another important step in the development of utility theory was the prospect
theory of Kahneman and Tversky (1979). By behavioural experiments they
found that people act risk averse above a certain reference point and risk
seeking below it. This implies a concave form of the utility function above
the reference point and a convex form below it.

Besides these individual utility functions, market utility functions have
recently been analyzed in empirical studies by Jackwerth (2000), Rosenberg
and Engle (2002) and others. Across different markets, the authors observed
a common pattern in market utility functions: There is a reference point
near the initial wealth and in a region around this reference point the market
utility functions are convex. But for big losses or gains they show a concave
form — risk aversion. Such utility functions disagree with the classical utility
functions of von Neumann and Morgenstern (1944) and also with the findings
of Kahneman and Tversky (1979). They are however in concordance with
the utility function form proposed by Friedman and Savage (1948).

In this paper, we analyze how these market utility functions can be ex-
plained by aggregating individual investors’ attitudes. To this end, we first
determine empirical pricing kernels from DAX data. Our estimation proce-
dure is based on historical and risk neutral densities and these distributions
are derived with stochastic volatility models that are widely used in indus-
try. From these pricing kernels we construct the corresponding market util-
ity functions. Then we describe our method of aggregating individual utility
functions to a market utility function. This leads to an inverse problem for



the density function that describes how many investors have the utility func-
tion of each type. We solve this problem by discrete approximation. In this
way, we derive utility functions and their distribution among investors that
allow to recover the market utility function. Hence, we explain how (and
what) individual utility functions can be used to form the behaviour of the
whole market.

The paper is organized as follows: In section 2, we describe the theoretical
connection between utility functions and pricing kernels. In section 3, we
present a consistent stochastic volatility framework for the estimation of both
the historical and the risk neutral density. Moreover, we discuss the empirical
pricing kernel implied by the DAX in 2000, 2002 and 2004. In section 4, we
explain the utility aggregation method that relates the market utility function
and the utility functions of individual investors. This aggregation mechanism
leads to an inverse problem that is analyzed and solved in this section. In
section 5, we conclude and discuss related approaches.

2 Pricing kernels and utility functions

In this section, we derive the fundamental relationship between utility func-
tions and pricing kernels. It describes how a representative utility function
can be derived from historical and risk-neutral distributions of assets. In the
following sections, we estimate the empirical pricing kernel and observe in
this way the market utility function.

First, we derive the price of a security in an equilibrium model: we con-
sider an investor with a utility function U who has as initial endowment
one share of stock. He can invest into the stock and a bond up to a final
time when he can consume. His problem is to choose a strategy that maxi-
mizes the expected utility of his initial and terminal wealth. In continuous
time, this leads to a well known optimization problem introduced by Merton
(1973) for stock prices modelled by diffusions. In discrete time, it is a basic
optimization problem, see Cochrane (2001).

From this result, we can derive the asset pricing equation

Py =E” [{(Sr) My]

for a security on the stock (S;) with payoff function 1 at maturity 7. Here,
P, denotes the price of the security at time 0 and E is the expectation with
respect to the real/historical measure P. The stochastic discount factor My
is given by

My = pU'(St)/U"(So) (1)



where (3 is a fixed discount factor. This stochastic discount factor is actually
the projection of the general stochastic discount factor on the traded asset
(S¢). The stochastic discount factor can depend on more variables in general.
But as discussed in Cochrane (2001) this projection has the same interpre-
tation for pricing as the general stochastic discount factor.

Besides this equilibrium based approach, Black and Scholes (1973) de-
rived the price of a security relative to the underlying by constructing a
perfect hedge. The resulting continuous delta hedging strategy is equivalent
to pricing under a risk neutral measure () under which the discounted price
process of the underlying becomes a martingale. Hence, the price of a se-
curity is given by an expected value with respect to a risk neutral measure

Q:

Py = E [exp(—rT)t(Sr)]
If p denotes the historical density of Sy (i.e. P(Sp <s) = [°_ p(z) dz) and
¢ the risk neutral density of Sy (i.e. Q(Sy < s) = [°__q(x) dz) then we get

Py =exp(—rT) /z/z(as)q(x)dx

Combining equations (1) and (2) we see

U'(s)
U'(So)

= exp(—rT)@.

g p(s)

Defining the pricing kernel by K = ¢/p we conclude that the form of the
market utility function can be derived from the empirical pricing kernel by
integration:

U(S) _ U(So) + /Ss U/(S())exp(gTT) ;.;Ei; dx

—U(S0) + /S "0 (5 D)

0 3 K(x)dx

because Sj is known.



As an example, we consider the model of Black and Scholes (1973) where
the stock follows a geometric Brownian motion

dSt/St = Mdt + O'th (3)

Here the historical density p of 5 is log-normal, i.e.

(2) 1 1 1 (logx — [ 2 -0
x) = — expg —= | ——— x
p T/ On52 P 2 ol ’

where i = (u—02/2)t +log Sy and & = ov/t. Under the risk neutral measure
@ the drift p is replaced by the riskless interest rate r, see e.g. Harrison and
Pliska (1981). Thus, also the risk neutral density ¢ is log-normal. In this
way, we can derive the pricing kernel

p—r

X

K(z) = (S—) 7 exp{(u— )+ — o)T/(207),

This pricing kernel has the form of a derivative of a power utility

. (=) (utr=c®)T _ .
where the constants are given by A = e 207 and v = £5-. This gives

a utility function corresponding to the underlying (3)
(1-£55)

Usr) = (12501 s,

o2

where we ignored additive and multiplicative constants. In this power utility
function the risk aversion is not given by the market price of risk (u —r)/o.
Instead investors take the volatility more into account. The expected return
i — r that is adjusted by the riskfree return is related to the variance. This
results in a higher relative risk aversion than the market price of risk.

A utility function corresponding to the Black-Scholes model is shown in
the upper panel of figure 1 as a function of returns. In order to make different
market situations comparable we consider utility functions as functions of
(half year) returns R = Sp5/S0. We chose the time horizon of half a year
ahead for our analysis. Shorter time horizons are interesting economically
and moreover the historical density converges to the Dirac measure so that
results become trivial (in the end). Longer time horizons are economically
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Figure 1: up: Utility function in the Black Scholes model for T" = 0.5 years
ahead and drift © = 0.1, volatility ¢ = 0.2 and interest rate r = 0.03. down:
Market utility function on 06/30/2000 for 7" = 0.5 years ahead.



more interesting but it is hardly possible to estimate the historical density
for a long time ahead. It neither seems realistic to assume that investors have
clear ideas where the DAX will be in e.g. 10 years. For these reasons we use
half a year as future horizon. Utility functions U of returns are defined by:

U(R) := U(RSy), R>0

where Sy denotes the value of the DAX on the day of estimation. Because of
U’ = c¢K for a constant ¢ we have U'(R) = c¢K(RS;)Sy and we see that also
utility functions of returns are given as integrals of the pricing kernel. The
change to returns allows us to compare different market regimes indepen-
dently of the initial wealth. In the following we denote the utility functions
of returns by the original notation U. Hence, we suppress in the notation
the dependence of the utility function U on the day of estimation t.

The utility function corresponding to the model of Black and Scholes
(1973) is a power utility, monotonically increasing and concave. But such
classical utility functions are not observed on the market. Parametric and
nonparametric models that replicate the option prices all lead to utility func-
tions with a hump around the initial wealth level. This is described in detail
later but is shown already in figure 1. The upper panel presents the utility
function corresponding to Black-Scholes model with a volatility of 20% and
an expected return of 10%. The function is concave and implies a constant
relative risk aversion. The utility function estimated on the bullish market
in summer 2000 is presented in the lower panel. Here, the hump around the
money is clearly visible. The function is no more concave but has a region
where investors are risk seeking. This risk proclivity around the money is
reflected in a negative relative risk aversion.

3 Estimation

In this section, we start by reviewing some recent approaches for estimating
the pricing kernel. Then we describe our method that is based on estimates
of the risk neutral and the historical density. The risk neutral density is
derived from option prices that are given by an implied volatility surface and
the historical density is estimated from the independent data set of historical
returns. Finally, we present the empirical pricing kernels and the inferred
utility and relative risk aversion functions.



3.1 Estimation approaches for the pricing kernel

There exist several ways and methods to estimate the pricing kernel. Some
of these methods assume parametric models while others use nonparametric
techniques. Moreover, some methods estimate first the risk neutral and sub-
jective density to infer the pricing kernel. Other approaches estimate directly
the pricing kernel.

Ait-Sahalia and Lo (1998) derive a nonparametric estimator of the risk
neutral density based on option prices. In Ait-Sahalia and Lo (2000), they
consider the empirical pricing kernel and the corresponding risk aversion
using this estimator. Moreover, they derive asymptotic properties of the es-
timator that allow e.g. the construction of confidence bands. The estimation
procedure consists of two steps: First, the option price function is deter-
mined by nonparametric kernel regression and then the risk neutral density
is computed by the formula of Breeden and Litzenberger (1978). Advantages
of this approach are the known asymptotic properties of the estimator and
the few assumptions necessary.

Jackwerth (2000) analyses risk aversion by computing the risk neutral
density from option prices and the subjective density from historical data
of the underlying. For the risk neutral distribution, he applies a variation
of the estimation procedure described in Jackwerth and Rubinstein (1996):
A smooth volatility function derived from observed option prices gives the
risk neutral density by differentiating it twice. The subjective density is
approximated by a kernel density computed from historical data. In this
method bandwidths have to be chosen as in the method of Ait-Sahalia and
Lo (1998).

Rosenberg and Engle (2002) use a different approach and estimate the
subjective density and directly (the projection of) the pricing kernel. This
gives the same information as the estimation of the two densities because the
risk neutral density is the product of the pricing kernel and the subjective
density. For the pricing kernel, they consider two parametric specifications
as power functions and as exponentials of polynomials. The evolution of
the underlying is modelled by GARCH processes. As the parametric pricing
kernels lead to different results according to the parametric form used this
parametric approach appears a bit problematic.

Chernov (2003) also estimates the pricing kernel without computing the
risk neutral and subjective density explicitly. Instead of assuming directly a
parametric form of the kernel he starts with a (multi dimensional) modified
model of Heston (1993) and derives an analytic expression for the pricing
kernel by the Girsanov theorem, see Chernov (2000) for details. The ker-



nel is estimated by a simulated method of moments technique from equity,
fixed income and commodities data and by reprojection. An advantage of
this approach is that the pricing kernel is estimated without assuming an
equity index to approximate the whole market portfolio. But the estimation
procedure is rather complex and model dependent.

In a recent paper, Barone-Adesi et al. (2004) price options in a GARCH
framework allowing the volatility to differ between historical and risk neutral
distribution. This approach leads to acceptable calibration errors between
the observed option prices and the model prices. They estimate the histori-
cal density as a GARCH process and consider the pricing kernel only on one
day. This kernel is decreasing which coincides with standard economic the-
ory. But the general approach of changing explicitly the volatility between
the historical and risk neutral distribution is not supported by the standard
economic theory.

We estimate the pricing kernel in this paper by estimating the risk neu-
tral and the subjective density and then deriving the pricing kernel. This
approach does not impose a strict structure on the kernel. Moreover, we
use accepted parametric models because nonparametric techniques for the
estimation of second derivatives depend a lot on the bandwidth selection al-
though they yield the same pricing kernel behaviour over a wide range of
bandwidths. For the risk neutral density we use a stochastic volatility model
that is popular both in academia and in industry. The historical density is
more difficult to estimate because the drift is not fixed. Hence, the estima-
tion depends more on the model and the length of the historical time series.
In order to get robust results we consider different (discrete) models and dif-
ferent lengths. In particular, we use a GARCH model that is the discrete
version of the continuous model for the risk neutral density. In the following,
we describe these models, their estimation and the empirical results.

3.2 Estimation of the risk neutral density

Stochastic volatility models are popular in industry because they replicate
the observed smile in the implied volatility surfaces (IVS) rather well and
moreover imply rather realistic dynamics of the surfaces. Nonparametric
approaches like the local volatility model of Dupire (1994) allow a perfect fit
to observed price surfaces but their dynamics are in general contrary to the
market. As Bergomi (2005) points out the dynamics are more important for
modern products than a perfect fit. Hence, stochastic volatility models are
popular.

We consider the model of Heston (1993) for the risk neutral density be-



cause it can be interpreted as the limit of GARCH models. The Heston
model has been refined further in order to improve the fit, e.g. by jumps in
the stock price or by a time varying mean variance level. We use the original
Heston model in order to maintain a direct connection to GARCH processes.
Although it is possible to estimate the historical density also with the Heston
model e.g. by Kalman filter methods we prefer more direct approaches in or-
der to reduce the dependence of the results on the model and the estimation
technique.

The stochastic volatility model of Heston (1993) is given by the two
stochastic differential equations:

dS;

- = rdt + /VidW]
t

where the variance process is modelled by a square-root process:
dVy = &(n — Vy)dt + 0+/V,dW?

and W' and W? are Wiener processes with correlation p and r is the risk free
interest rate. The first equation models the stock returns by normal inno-
vations with stochastic variance. The second equation models the stochastic
variance process as a square-root, diffusion.

The parameters of the model all have economic interpretations: n is called
the long variance because the process always returns to this level. If the
variance V; is e.g. below the long variance then n — V; is positive and the
drift drives the variance in the direction of the long variance. ¢ controls the
speed at which the variance is driven to the long variance. In calibrations,
this parameter changes a lot and makes also the other parameters instable.
To avoid this problem, the reversion speed is kept fixed in general. We follow
this approach and choose £ = 2 as Bergomi (2005) does. The volatility of
variance 6 controls mainly the kurtosis of the distribution of the variance.
Moreover, there are the initial variance Vj of the variance process and the
correlation p between the Brownian motions. This correlation models the
leverage effect: When the stock goes down then the variance goes up and vice
versa. The parameters also control different aspects of the implied volatility
surface. The short (long) variance determines the level of implied volatility
for short (long) maturities. The correlation creates the skew effect and the
volatility of variance controls the smile.

The variance process remains positive if the volatility of variance 6 is
small enough with respect to the product of the mean reversion speed £ and



the long variance level n (i.e. 2£n > 0%). As this constraint leads often to
significantly worse fits to implied volatility surfaces it is in general not taken
into account and we follow this approach.

The popularity of this model can probably be attributed to the semiclosed
form of the prices of plain vanilla options. Carr and Madan (1999) showed
that the price C(K,T) of a European call option with strike K and maturity
T is given by

C(K,T) = exp{—aln

()} /0+00 exp{—iv In(K) }¢r(v)dv

™

for a (suitable) damping factor @ > 0. The function 7 is given by

_exp(=rT)¢r{v — (e + 1)i}
@/JT(U) T 24+ a—v?+ i(2a + 1)1)

where ¢r is the characteristic function of log(Sr). This characteristic func-
tion is given by

— (22 +12)V
v(2) coth @ + & —iphz
exp{w +i2Tr + iz log(Sy) } (1)
2¢n

(cosh W(Z)T + g;égfz sinh W(Z)T)T?

¢r(z) = exp{

where 7(z) &f VO2(22 +i2) + (€ — ipf2)?, see e.g. Cizek et al. (2005).

For the calibration we minimize the absolute error of implied volatilities
based on the root mean square error:

ASE, <\ |3 n {IVmo(r) — TV (1)}
=1

where mod refers to a model quantity, mar to a quantity observed on the
market and IV (t) to an implied volatility on day ¢. The index i runs over
all n observations of the surface on day t.

It is essential for the error functional ASE; which observed prices are used
for the calibration. As we investigate the pricing kernel for half a year to
maturity we use only the prices of options that expire in less than 1.5 years.
In order to exclude liquidity problems occurring at expiry we consider for the
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calibration only options with more than 1 month time to maturity. In the
moneyness direction we restrict ourselves to strikes 50% above or below the
spot for liquidity reasons.

The risk neutral density is derived by estimation of the model parameters
by a least squares approach. This amounts to the minimization of the error
functional ASE;. Cont and Tankov (2004) provided evidence that such error
functionals may have local minima. In order to circumvent this problem we
apply a stochastic optimization routine that does not get trapped in a local
minimum. To this end, we use the method of differential evolution developed
by Storn and Price (1997).

Having estimated the model parameters we know the distribution of
X7 = log Sy in form of the characteristic function ¢r, see (4). Then the
corresponding density f of X1 can be recovered by Fourier inversion:

Fla) = = /oo e o (1),

:§ N

see e.g. Billingsley (1995). This integral can be computed numerically.
Finally, the risk neutral density ¢ of Sr = exp(X7) is given as a trans-
formed density:

o) =  f{log()).

This density ¢ is risk neutral because it is derived from option prices and
options are priced under the risk neutral measure. This measure is applied
because banks replicate the payoff of options so that no arbitrage conditions
determine the option price, see e.g. Rubinstein (1994). An estimated risk
neutral density is presented in figure 2. It is estimated from the implied
volatility shown in figure 3 for the day 24/03/2000. The distribution is right
skewed and its mean is fixed by the martingale property. This implies that
the density is low for high profits and high for high losses. Moreover, the dis-
tribution is not symmetrical around the neutral point where there are neither
profits nor losses. For this and all the following estimations we approximate
the risk free interest rates by the EURIBOR. On each trading day we use the
yields corresponding to the maturities of the implied volatility surface. As
the DAX is a performance index it is adjusted to dividend payments. Thus,
we do not have to consider dividend payments explicitly.

3.3 Estimation of the historical density

While the risk neutral density is derived from option prices observed on the
day of estimation we derive the subjective density from the historical time
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model time period
GARCH in mean 2.0y
discrete Heston 2.0y
observed returns 1.0y

Table 1: Models and the time periods used for their estimation.

series of the index. Hence, the two data sets are independent in the sense
that the option prices reflect the future movements and the historical time
series the past.

The estimation of the historical density seems more difficult than the
estimation of the risk neutral density because the drift is not fixed and it de-
pends in general on the length of the time series. Because of these difficulties
we use different models and time horizons for the historical density: First,
we estimate a GARCH in mean model for the returns. Returns are generally
assumed to be stationary and we confirmed this at least in the time intervals
we consider. The mean component in the GARCH model is important to
reflect different market regimes. We estimate the GARCH model from the
time series of the returns of the last two year because GARCH models require
quite long time series for the estimation in order to make the standard error
reasonably small. We do not choose longer time period for the estimation
because we want to consider special market regimes. Besides this popular
model choice we apply a GARCH model that converges in the limit to the
Heston model that we used for the risk neutral density. As this model is also
hard to estimate we use again the returns of the last 2 years for this model.
Moreover, we consider directly the observed returns of the last year. The
models and their time period for the estimation are presented in table 1. All
these models give by simulation and smoothing the historical density for half
a year ahead.

The GARCH estimations are based on the daily log-returns
R; = log(Sti) - log(stifl)

where (S;) denotes the price process of the underlying and ¢;, i = 1,2,...
denote the settlement times of the trading days. Returns of financial assets
have been analyzed in numerous studies, see e.g. Cont (2001). A model that
has often been successfully applied to financial returns and their stylized facts
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is the GARCH(1,1) model. This model with a mean is given by
Ry = pn+o0iZ
o} =w+aR}, + fo},

where (Z;) are independent identically distributed innovations with a stan-
dard normal distribution, see e.g. Franke et al. (2004). On day t; the model
parameters p,w,a and 3 are estimated by quasi maximum likelihood from
the observations of the last two years, i.e. Rj_504, ..., R; assuming 252 trad-
ing days per year.

After the model parameters have been estimated on day ¢; from historical
data the process of logarithmic returns (R;) is simulated half a year ahead,
i.e. until time ¢; 4+ 0.5. In such a simulation p,w,a and 3 are given and the
time series (0;) and (R;) are unknown. The values of the DAX corresponding
to the simulated returns are then given by inverting the definition of the log
returns:

Sti = Stifl exp(Ri)

where we start with the observed DAX value on day t;. Repeating the
simulation N times we obtain N samples of the distribution of S;, 195. We
use N = 2000 simulations because tests have shown that the results become
robust around this number of simulations.

From these samples we estimate the probability density function of Sy, 1.5
(given (Si,_,44,---,5,)) by kernel density estimation. We apply the Gaus-
sian kernel and choose the bandwidth by Silverman’s rule of thumb, see e.g.
Silverman (1986). This rule provides a trade-off between oversmoothing — re-
sulting in a high bias — and undersmoothing — leading to big variations of the
density. We have moreover checked the robustness of the estimate relative
to this bandwidth choice. The estimation results of a historical density are
presented in figure 4 for the day 24/03/2000. This density that represents a
bullish market is has most of its weight in the profit region and its tail for
the losses is relatively light.

As we use the Heston model for the estimation of the risk neutral density
we consider in addition to the described GARCH model a GARCH model
that is a discrete version of the Heston model. Heston and Nandi (2000)
show that the discrete version of the square-root process is given by

Vi=w+ Vi + a(Ziy — v/ Vie1)

and the returns are modelled by

Ri:M—%Vz“F\/ViZz‘
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Figure 4: Historical density on 24/03/2000 half a year ahead.

where (Z;) are independent identically distributed innovations with a stan-
dard normal distribution. Having estimated this model by maximum likeli-
hood on day t; we simulate it half a year ahead and then smooth the samples
of St; 105 in the same way as in the other GARCH model.

In addition to these parametric models, we consider directly the observed
returns over half a year

Ri = Sti/Sti7126'

In this way, we interpret these half year returns as samples from the distribu-
tion of the returns for half a year ahead. Smoothing these historical samples
of returns gives an estimate of the density of returns and in this way also an
estimate of the historical density of S, 195.

3.4 Empirical pricing kernels

In contrast to many other studies that concentrate on the S&P500 index we
analyze the German economy by focusing on the DAX, the German stock
index. This broad index serves as an approximation to the German economy.
We use two data sets: A daily time series of the DAX for the estimation of
the subjective density and prices of European options on the DAX for the
estimation of the risk neutral density.
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Figure 5: DAX, 1998 - 2004.

1.0y 2.0y
03/2000 | 1.63 1.57
07/2002 | 0.66 0.54
06/2004 | 1.11 0.98

Table 2: Market regimes in 2000, 2002 and 2004 described by the return
So/So_a for periods A = 1.0y, 2.0y.

In figure 5, we present the DAX in the years 1998 to 2004. This figure
shows that the index reached its peak in 2000 when all the internet firms
were making huge profits. But in the same year this bubble burst and the
index fell afterwards for a long time. The historical density is estimated from
the returns of this time series. We analyze the market utility functions in
March 2000, July 2002 and June 2004 in order to consider different market
regimes. We interpret 2000 as a bullish, 2002 as a bearish and 2004 as a
unsettled market. These interpretations are based on table 2 that describes
the changes of the DAX over the preceding 1 or 2 years. (In June 2004 the
market went up by 11% in the last 10 months.)

A utility function derived from the market data is a market utility func-

tion. It is estimated as an aggregate for all investors as if the representative
investor existed. A representative investor is however just a convenient con-
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struction because the existence of the market itself implies that the asset
is bought and sold, i.e. at least two counterparties are required for each
transaction.

In section 2 we identified the market utility function (up to linear trans-

formations) as
R

U(R) = K(x)dx
Ry

where K is the pricing kernel for returns. It is defined by

K(z) = q(x)/p(x)

in terms of the historical and risk neutral densities p and ¢ of returns. Any
utility function (both cardinal and ordinal) can be defined up to a linear
transformation, therefore we have identified the utility functions sufficiently.
In section 3.3 we proposed different models for estimating the historical den-
sity. In figure 6 we show the pricing kernels resulting from the different
estimation approaches for the historical density. The figure shows that all
three kernels are quite similar: They have the same form, the same charac-
teristic features like e.g. the hump and differ in absolute terms only a little.
This demonstrates the economic equivalence of the three estimation methods
on this day and this equivalence holds also for the other days. In the fol-
lowing we work with historical densities that are estimated by the observed
returns.

Besides the pricing kernel and the utility function we consider also the
risk attitudes in the markets. Such risk attitudes are often described in terms
of relative risk aversion that is defined by

U//(R)
RRA(R) = —R 0(R)
Because of U’ = ¢K = ¢q/p for a constant ¢ the relative risk aversion is also
given by

_ pd(R)p(R) — q(R)p'(R) _ _
RRA(R) = —R (B

P*(R) p(R)  q(R)

Hence, we can estimate the relative risk aversion from the estimated histori-
cal and risk neutral densities.

/q(R) _ R (p’(R) Q’(R)) _

In figure 7 we present the empirical pricing kernels in March 2000, July
2002 and June 2004. The dates represent a bullish, a bearish and an unsettled
markets, see table 2. All pricing kernels have a proclaimed hump located
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Figure 6: Empirical pricing kernel on 24/03/2000 (bullish market).

at small profits. Hence, the market utility functions do not correspond to
standard specification of utility functions. We present the pricing kernels
only in regions around the initial DAX (corresponding to a return of 1) value
because the kernels explode outside these regions. This explosive behaviour
reflects the typical pricing kernel form for losses. The explosion of the kernel
for large profits is due to numerical problems in the estimation of the very
low densities in this region. But we can see that in the unsettled market the
kernel is concentrated on a small region while the bullish and bearish markets
have wider pricing kernels. The hump of the unsettled market is also narrower
than in the other two regimes. The bullish and bearish regimes have kernels
of similar width but the bearish kernel is shifted to the loss region and the
bullish kernel is located mainly in the profit area. Moreover, the figures show
that the kernel is steeper in the unsettled markets than in the other markets.
But this steepness cannot be interpreted clearly because pricing kernels are
only defined up to a multiplicative constant.

The pricing kernels are the link between the relative risk aversion and
the utility functions that are presented in figure 8. These utility functions
are only defined up to linear transformations, see section 2. All the utility
functions are increasing but only the utility function of the bullish market is
concave. This concavity can be seen from the monotonicity of the kernel, see
figure 7. Actually, this non convexity can be attributed to the quite special
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Figure 7: Empirical pricing kernel on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

form of the historical density which has two modes on this date, see figure
4. Hence, we presume that also this utility function has in general a region
of convexity. The other two utility functions are convex in a region of small
profits where the bullish utility is almost convex. The derivatives of the
utility functions cannot be compared directly because utility functions are
identified only up to multiplicative constants. But we can compare the ratio
of the derivatives in the loss and profit regions for the three dates because the
constants cancel in these ratios. We see that the derivatives in the loss region
are highest in the bullish and lowest in the bearish market and vice versa in
the profit region. Economically these observations can be interpreted in such
a way that in the bullish market a loss (of 1 unit) reduces the utility stronger
than in the bearish market. On the other hand, a gain (of 1 unit) increases
the utility less than in the bearish market. The unsettled market shows a
behaviour between these extreme markets. Hence, investors fear in a good
market situation losses more than in a bad situation and they appreciate
profits in a good situation less than in a bad situation.

Finally, we consider the relative risk aversions in the three market regimes.
These risk aversions are presented in figure 9, they do not depend on any
constants but are completely identified. We see that the risk aversion is
smallest in all markets for a small profit that roughly corresponds to the
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Figure 8: Market utility functions on 24,/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

initial value plus a riskless interest on it. In the unsettled regime the market
is risk seeking in a small region around this minimal risk aversion. But then
the risk aversion increases quite fast. Hence, the representative agent in this
market is willing to take small risks but is sensitive to large losses or profits.
In the bullish and bearish regimes the representative agent is less sensitive to
large losses or profits than in the unsettled market. In the bearish situation
the representative agent is willing to take more risks than in the bullish
regime. In the bearish regime the investors are risk seeking in a wider region
than in the unsettled regime. In this sense they are more risk seeking in the
bearish market. In the bullish market — on the other hand — the investors
are never risk seeking so that they are less risk seeking than in the unsettled
market.

The estimated utility functions most closely follow the specification pro-
posed by Friedman & Savage (1948). The utility function proposed by Kah-
neman & Tversky (1979) consists of one concave and one convex segment and
is less suitable for describing the observed behaviour, see figure 10. Both util-
ity functions were proposed to account for two opposite types of behaviour
with respect to risk attitudes: buying insurance and gambling. Any utility
function that is strictly concave fails to describe both risk attitudes. Most
notable examples are the quadratic utility function with the linear pricing
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Figure 9: Relative risk aversions on 24/03,/2000 (bullish), 30/07/2002 (bear-
ish) and 30/06/2004 (unsettled or sidewards market).

kernel as in the CAPM model and the CRRA utility function. These func-
tions are presented in figure 10. Comparing this theoretical figure with the
empirical results in figure 7 we see clearly the shortcoming of the standard
specifications of utility functions to capture the characteristic hump of the
pricing kernels.

4 Individual investors and their utility func-
tions

In this section, we introduce a type of utility function that has two regions
of different risk aversion. Then we describe how individual investors can be
aggregated to a representative agent that has the market utility function.
Finally, we solve the resulting estimation problem by discretization and es-
timate the distribution of individual investors.

4.1 Individual Utility Function

We learn from figures 10 and 7 that the market utility differs significantly
from the standard specification of utility functions. Moreover, we can observe
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from the estimated utility functions 8 that the loss part and the profit part of
the utility functions can be quite well approximated with hyperbolic absolute
risk aversion (HARA) functions, k =1, 2:

UM(R) = ax(R — cx)* + by,

where the shift parameter is ¢;. These power utility functions become in-
finitely negative for R = ¢;, and can be extended by U®(R) = —oo for
R < ¢, i.e. investors will avoid by all means the situation when R < ¢y.
The CRRA utility function has ¢, = 0.

We try to reconstruct the market utility of the representative investor by
individual utility functions and hence assume that there are many investors
on the market. Investor ¢ will be attributed with a utility function that
consists of two HARA functions:

( ) —0Q, if RSCl

{max{U(R, 01,¢1);U(R,02,¢0,)}, if R>c¢
where U(R,0,c) = a(R —¢)” +b, 0 = (a,b,7)", co; > c1. Ifa; = ay = 1,
by = by =0 and ¢; = ¢co = 0, we get the standard CRRA utility function.

The parameters #; and 6, and ¢; are the same for all investors who differ
only with the shift parameter c¢,. #; and c¢; are estimated from the lower
part of the utility market function, where all investors probably agree that
the market is “bad”. 6 is estimated from the upper part of the utility
function where all investors agree that the state of the world is “good”. The
distribution of ¢y uniquely defines the distribution of switching points and is
computed in section 4.3. In this way a bear part Upeq(R) = U(R, 61, ¢1) and
a bull part Uy, (R) = U(R, 61, cy) can be estimated by least squares.

The individual utility function can then be denoted conveniently as:
ULR) = {maX{Ubem:(R); Upar(R,c)}, if R>cp )

—00, if R<e.

Switching between Upe,, and Uy, happens at the switching point z, whereas
Upear(2) = Upuu(z,¢;). The switching point is uniquely determined by ¢; =
ca2;. The notations bear and bull have been chosen because Uy, is activated
when returns are low and Uy,; when returns are high.

Each investor is characterised by a switching point z. The smoothness
of the market utility function is the result of the aggregation of different
attitudes. U4 characterizes more cautious attitudes when returns are low
and Uy, describes the attitudes when the market is booming. Both Upeg,
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Figure 11: Market utility function (solid) with bearish (dashed) and bullish
(dotted) part of an individual utility function 5 estimated in the unsettled
market of 30/06/2004.

and Uy, are concave. However, due to switching the total utility function
can be locally convex.

These utility functions are illustrated in figure 11 that shows the results
for the unsettled market. We observe/estimate the market utility function
that does not correspond to standard utility approaches because of the convex
region. We propose to reconstruct this phenomenon by individual utility
functions that consist of a bearish part and a bullish part. While the bearish
part is fixed for all investors the bullish part starts at the switching point that
characterizes an individual investor. By aggregating investors with different
switching points we reconstruct the market utility function. We describe the
aggregation in section 4.2 and estimate the distribution of switching points
in section 4.3. In this way we explain the special form of the observed market
utility functions.

4.2 Market Aggregation Mechanism

We consider the problem of aggregating individual utility functions to a rep-
resentative market utility function. A simple approach to this problem is to
identify the market utility function with an average of the individual utility
functions. To this end one needs to specify the observable states of the world
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in the future by returns R and then find a weighted average of the utility
functions for each state. If the importance of the investors is the same, then
the weights are equal:

U(R) =+ S U(R),

where N is the number of investors. The problem that arises in this case is
that utility functions of different investors can not be summed up since they
are incomparable.

Therefore, we propose an alternative aggregation technique. First we
specify the subjective states of the world given by utility levels u and then
aggregate the outlooks concerning the returns in the future R for each per-
ceived state. For a subjective state described with the utility level U, such
that

u = Ul(Rl) = UQ(RQ) =...= UN(RN)

the aggregate estimate of the resulting returns is

Ra(w) = 5 YU W) )

if all investors have the same market power. The market utility function Uy,
resulting from this aggregation is given by the inverse Rzl.

In contrast to the naive approach described at the beginning of this sec-
tion, this aggregation mechanism is consistent under transformations: if all
individual utility functions are changed by the same transformation then the
resulting market utility is also given by the transformation of the original
aggregated utility. We consider the individual utility functions U; and the
resulting aggregate Uj;. In addition, we consider the transformed individ-
ual utility functions U?(x) = ¢{U;(x)} and the corresponding aggregate U¢,
where ¢ is a transformation. Then the aggregation is consistent in the sense
that U?, = ¢(Up;). This property can be seen from

1 N

(U3 () = 5 D_(U) " (w)

1 —1g -1
= Uy {07 (u)}

The naive aggregation is not consistent in the above sense as the following
example shows: We consider the two individual utility functions Uy (x) = \/x
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and Us(z) = +/x/2 under the logarithmic transformation ¢ = log. Then the
naively aggregated utility is given by Uy (z) = 3y/x/4. Hence, the trans-
formed aggregated utility is ¢p{Up(z)} = log(3/4) + log(x)/2. But the ag-
gregate of the transformed individual utility functions is

U () = 5 {los(v/) + log(v/z/2)}
1 1
= Qlog (5) + log(x)/2.
This implies that U](\Z # ¢(Uypr) in general.

This described aggregation approach can be generalized in two ways: If
the individual investors have different market power then we use the corre-
sponding weights w; in the aggregation (6) instead of the uniform weights.
As the number of market participants is in general big and unknown it is bet-
ter to use a continuous density f instead of the discrete distributions given
by the weights w;. These generalizations lead to the following aggregation

where U (-, z) is the utility function of investor z. We assume in the follow-
ing that the investors have utility function of the form described in section
4.1. In the next section we estimate the distribution of the investors who are
parametrized by z.

4.3 The Estimation of the Distribution of Switching
Points

Using the described aggregation procedure, we consider now the problem of
replicating the market utility by aggregating individual utility functions. To
this end, we choose the parametric utility functions U(+, z) described in 4.1
and try to recover with them the market utility Uy;. We do not consider
directly the utility functions but minimize instead the distance between the
inverse functions:

win | [ U7, 2) )z — Uy g g

where P is image measure of the historical measure P on the returns under
the transformation Upy;. As the historical measure has the density p the
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transformation theorem for densities implies that P has the density

p(u) = p{Uy' (u)} /U AU (w)}.

With this density the functional to be minimized in problem (7) can be stated

/(/U_1<“’Z)f(2>dz—UA?(U))Q p(u) du

:/(/U*w@ﬂ@@—mﬂwfp%ﬁ@ﬂﬂhWﬁ@ﬂw
= / ( / U™ (u, 2) f(2)dz — UMl(u>)2 p{Uxy' ()} Uy () du

because the derivative of the inverse is given by (¢7')'(y) = 1/¢'{9 ' (v)}.
Moreover, we can apply integration by substitution to simplify this expression
further

([ <Z>dZ—UM1<U>>2 PV @MUY (u) du
-[(/ U_l{UM(w),Z}f(Z>dZ—m)2 p(a) di

For replicating the market utility by minimizing (7) we observe first that
we have samples of the historical distribution with density p. Hence, we can
replace the outer integral by the empirical expectation and the minimization
problem can be restated as

n

min % 3 </ G {Un (), 2} f(2)d= — xi>2

i=1

where z; ..., x, are the samples from the historical distribution and g = U~
Replacing the density f by a histogram f(z) = Z}]:1 0;1p,(z) with bins
B;, hj = |Bj]|, the problem is transformed into

n J 2
1 o
35 a0,
i=1 \j=1
where () = [, 9{Uni(as), 2}z
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Hence, the distribution of switching points can be estimated by solving
the quadratic optimization problem

n J 2
1 L
min — > {E g<luj>9j_xi} )
7 i=1 \j=1

s.t. 9]' > O,

Such quadratic optimization problems are well known and their solutions
can be obtained using standard techniques, see e.g. Mehrotra (1992) or
Wright (1998).

We present in figures 12-14 the estimated distribution of switching points
in the bullish (24,/03/2000), bearish (30/07/2002) and unsettled (30/06/2004)
markets. The distribution density f was computed for 100 bins but we
checked the broad range of binwidths. The width of the distribution varies
greatly depending on the regularisation scheme, for example as represented
by the number of bins. The location of the distribution maximum, however,
remains constant and independent from the computational method.

The maximum and the median of the distribution, i.e. the returns at
which half of investors have bearish and bullish attitudes, depend on the year.
For example, in the bullish market (Figure 12) the peak of the switching
point distribution is located in the area of high returns around R = 1.07
for half a year. On the contrary, in the bearish market (Figure 13) the
peak of switching points is around R = 0.93. This means that when the
market is booming, such as in year 1999-2000 prior to the dot-com crash,
investors get used to high returns and switch to the bullish attitude only
for comparatively high R’s. An overall high level of returns serves in this
respect as a reference level and investors form their judgements about the
market relative to it. Since different investors have different initial wealth,
personal habits, attitudes and other factors that our model does not take into
account, we have a distribution of switching points. In the bearish market
the average level of returns is low and investors switch to bullish attitudes
already at much lower R’s.
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Figure 12: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 24
March 2000, a bullish market.
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Figure 13: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
July 2002, a bearish market.
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Figure 14: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
June 2004, an unsettled market.

5 Conclusion

We have analyzed in this paper empirical pricing kernels in three market
regimes using data on the German stock index and options on this index.
In the bullish, bearish and unsettled market regime we estimate the pric-
ing kernel and derive the corresponding utility functions and relative risk
aversions.

In the unsettled market of June 2004, the market investor is risk seeking
in a small region around the riskless return but risk aversion increases fast for
high absolute returns. In the bullish market of March 2000, the investor is on
the other hand never risk seeking while he becomes more risk seeking in the
bearish market of July 2002. Before the stock market crash in 1987 FEuropean
options did not show the smile and the Black-Scholes model captured the data
quite well. Hence, utility functions could be estimated at that times by power
utility functions with a constant positive risk aversion. Our analysis shows
that this simple structure does not hold anymore and discusses different
structures corresponding to different market regimes.

The empirical pricing kernels of all market regimes demonstrate that the
corresponding utility functions do not correspond to standard specifications
of utility functions including Kahneman and Tversky (1979). The observed
utility functions are closest to the general utility functions of Friedman and
Savage (1948). We propose a parametric specification of these functions,
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estimate it and explain the observed market utility function by aggregating
individual utility functions. In this way, we can estimate a distribution of
individual investors.

The proposed aggregation mechanism is based on homogeneous investors
in the sense that they differ only with switching points. Future research can
reveal how nonlinear aggregation procedures could be applied to heteroge-
neous investors.
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Copulae: An Overview
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Abstract: Normal distribution of the residuals is the traditional assumption in the classical
multivariate time series models. Nevertheless it is not very often consistent with the real data.
Copulae allows for an extension of the classical time series models to nonelliptically distributed
residuals. In this paper we apply different copulae to the calculation of the static and dynamic
Value-at-Risk of portfolio returns and Profit-and-Loss function. In our findings copula based
multivariate model provide better results than those based on the normal distribution.
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1 Introduction

Understanding the joint distribution of high dimensional data is fundamental in applied
statistics. The conventional procedure to model joint distributions is to approximate them
with multivariate normal distributions.

That implies, however, that the dependence structures is reduced to a fixed type. Prede-
termining a multivariate normal distribution means that the tails of the distribution are
not too heavy, the distribution is symmetric and that the dependence between variables
is linear.

Empirical evidence for these assumptions are barely verified and an alternative model
is needed, with more flexible dependence structure and arbitrary marginal distributions.
These are exactly the characteristics of copulae.

Copulae are very useful for modelling and estimating multivariate distributions. The
flexibilty of copulae basically follows from Sklar’s Theorem, which says that each joint
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distribution can be “decomposed” into its marginal distributions and a copula C' “re-
sponsible” for the dependence structure:

F(ar...,20) = C{Fi(n1)...., Falza)}.
Two important factors for practical applications rely on this theorem:

1. The construction of multivariate distributions may be done in two independent
steps: the specification of marginal distributions - not necessarily identical - and
the specification of a dependence structure. Copulae “couple together” the marginal
distributions into a multivariate distribution with the desired dependence structure.

2. Joint distributions can be separately estimated from a sample of observations: the
marginal distributions are estimated first, the dependence structure later.

The copula approach gives us more freedom than the normality assumptions, marginal
distributions with asymmetric heavy tails (typical for financial returns) can be combined
with different dependence structures, resulting in multivariate distributions (far different
from the multivariate normal) that better describe the empirical characteristics of financial
returns distribution.

Moreover, copulae allow for dynamical modelling and adaption to portfolios, different
copulae with distinct properties can be associated to different portfolios according to
their specific dependence structures. Furthermore, copulae may change as time evolves,
reflecting the evolution of the dependence between financial assets.

The structure of this paper is as follows. In the next section we give a short review of
the copula theory. In the Section 3 we deals with different copula classes used in the
calculation. The simulation and estimation techniques are provided in Sections 4 and
5 respectively. The first static problem on the calculation of the Value-at-Risk for the
portfolio return has been discussed in Sections 6 and in the beginning of Section 7. Sub-
sections 7.1 and 7.2 deals with the dynamic estimation of the Value-at-Risk for the Profit
and Loss function. The paper is finished with summary.

2 Copulae

The description of copulae for measuring and modelling dependence with its main proper-
ties is the subject of this section. The term copula goes back to the works of Sklar (1959)
were it was first mentioned. There are a lot of different equivalent definitions that could
define the copula, but the most general is the following one.

Definition 1 (Copula) A d-dimensional copula is a d-dimensional distribution with all
uniform marginal distributions.

Note that by considering random variables X, ..., X; with univariate distribution func-
tions Fly,,..., Fx, and the random variables U; = F,(X;), ¢ = 1,...,d uniformly dis-
tributed in [0,1], a copula may be interpreted as the joint distribution of the marginal
distributions.



Copulae gained popularity through Sklar’s (1959) work where the term was first coined.
However, many results had already been proved by Hoeffding (1940) and Hoeffding (1941),
who could have been the founder of a copula theory, if he had considered the stochasti-
cally more intuitive dependency over the unit cube [0, 1]* rather than over [—1/2,1/2]* as
he had done. Copulae allow marginal distributions to be separated from the dependency
structure. Sklar’s theorem connects copulae with distribution functions such that from
the one side every distribution function can be “decomposed” into its marginal distri-
bution and (at least) one copula and from the other side a (unique) copula is obtained
from “decoupling” every (continuous) multivariate distribution function from its marginal
distributions.

Theorem 1 (Sklar’s theorem) Let F' be a multivariate distribution function with mar-
gins F,..., Fy, then a copula C exists such that

F(x1,...,2q) = C{Fi(x1),..., Fp(xq)}, x1,...,24€ R.

If F; are continuous fori =1,...,d then C is unique. Otherwise C is uniquely determined

on Fi(R) x -+ x Fy(R).

Conversely, if C' is a copula and FY, ..., F; are univariate distribution functions, then the
function F' defined above is a multivariate distribution function with margins Fi, ..., Fy.

The representation in Sklar’s Theorem can be used to construct new multivariate distri-
butions by changing either the copula function or marginal distributions. For an arbitrary
continuous multivariate distribution we can determine its copula from the transformation

Cut, ... uq) = F{F (w), ..., Fy (ua)},  wi,...,uq €[0,1], (1)
where F; ! are inverse marginal distribution functions.
Since the copula function is a multivariate distribution with uniform margins, it follows
that the copula density can be determined in the usual way
90w, - . ug)
Oup...0ug '

Being armed with Theorem 1 and (??) we can write the density function f(-) of the
d-variate distribution F' in terms of copula as follows

c(ug, ..., uq) U, ..., uqg € [0,1],

d
flr, .. zg) = c{Fi(z1), ... . Fa(wa)} [ filwi), 21, za €R.
=1

A detailed discussion with proofs and deep mathematical treatment can be found in Joe
(1997) and Nelsen (2006). A practical introduction is given in Deutsch and Eller (1999).
Embrechts, McNeil and Straumann (1999b) discuss restrictions of the copula technique
and their relation to the classical correlation analysis.

3 Copula Classes

Since there are plenty of functions satisfying the assumption of Theorem 1 they should
be classified by construction and properties. Here we consider several main classes, like
simplest, elliptical, Archimedean copulae and hierarchical Archimedean copulae.



3.1 Simplest Copulae

Special cases, like independence and perfect positive or negative dependence can be repre-
sented by copulae. If d random variables X, ..., X, are stochastically independent from
Theorem 1, then the structure of such a relationship is given by the product copula

H(ul,...,ud):Huj. (2)

Copulae are bounded, this means that for all u = (uy,...,uq)" € [0,1]%
Wiuy, ... uq) < Clug, ... uq) < M(ug, ..., ug)

where
M(uy, ..., ug) = min(uy, ..., uq)

is called the Fréchet-Hoeffding lower bound and

d
W(uy,...,uq) = max (Zui—dle,O)

=1

is the Fréchet-Hoeffding upper bound. While M is not a copula for d > 2, W is a copula
for all d. Both structures represent the perfect negative and perfect positive dependence.
From this observation we may conclude that an arbitrary copula C' reflects dependence
which lies between the perfect negative and positive one.

3.2 Elliptical Copulae

The elliptical copulae are derived from the elliptical distributions using Theorem 1. In
the bivariate case one has that a bivariate copula is elliptical if, and only if, it is equal to
its associated copula

C(Ul,UQ,Q) = C(Ul,UQ,Q)
u tuy—1+C(1 —uy, 1 —ug,0), up,uy €10,1].

The most prominent examples of elliptical copulae are Gaussian and t-copula.

Gaussian Copula

The Gaussian copula represents the dependence structure of the multivariate normal dis-
tribution, that means that normal marginal distributions are combined with a Gaus-
sian copula to form multivariate normal distributions. The combination of non-normal
marginal distributions with a Gaussian copula results in meta-Gaussian distributions, i.e.,
distributions where only the dependence structure is Gaussian.



To obtain the Gaussian copula, let X = (X,..., X;)" ~ Ng(p,¥) with X; ~ N(u;,0;)
for j=1,...,d. A copula C exists:

F(z1,...,2q) = C{Fi(z1), ..., Fa(za)},

where F} is the distribution function of X; and F' the distribution function of X. Let
Y; = Ty(X;), Tj(x) = (x — p;)/oj. Then Y; ~ N(0,1) and Y = (Y7,...,Yy) " ~ Ny(0,¥)
where W is the correlation matrix associated with ¥. A copula C$%, called Gaussian
copula exists as follows:

Fy(y1, ..., ya) = Cga{q)(yl)a---aq)(yd)}- (3)

An explicit expression for the Gaussian copula is obtained by rewriting (3) with u; =
D(y;):

Cy(urs . ug) = Fy {7 (w), .., @7 (ug)}
o~ () >~ (ua) p . 1
= / / (2m) 2 |V |2 exp(—§rT\I/’1r)dr1 .odrg.

o0

The density of the Gaussian copula is given by

§ouy, .. ug) = | V|2 exp {—%U(qf—l - Jd)g}. (4)

Student’s t-Copula

The t-copula, containing the dependence structure from the multivariate ¢-distribution,
may be obtained in a similar way.

Let X = (X1,...,X9)" ~tq(v, 1, ) and Y = (Y1,...,Yy) " ~ t4(v,0,¥) where ¥ is the
correlation matrix associated with ¥. The unique copula from Y is the Student’s t-copula
Cly. Foru = (uy,... ,ug)’ €[0,1]%, the Student’s t-copula is given by

C’;\I,(ul, cooug) = toft) uy),t  (ug)}

where ¢! is the quantile function from the univariate ¢-distribution and t,,w the distribu-
tion function of Y.

The density of the t-copula is given by

c,t/’\l,(ul,...,ud) = t”’qj{t;( ooty (U )}

H_] b {ty Huy)}t
) (M) (1 fTemg
ey I 0 1)

= v




3.3 Archimedean Copulae

As opposed to elliptical copulae, Archimedean copulae are not constructed using Theorem
1, but are related to Laplace transforms of univariate distribution functions. Let IL denote
the class of Laplace transforms which consists of strictly decreasing differentiable functions
Joe (1997), i.e.

L= {¢:[0;00) = [0,1][$(0) = 1, ¢(00) = 0; (~1)'¢" > 0; j =1,..., 00}.
The function C': [0,1]¢ — [0,1] defined as
Cluy,...,ug) = ¢{d (u) + -+ (ug)}, u,...,uq €[0,1]

is a d-dimensional Archimedean copula, where ¢ € IL and is called the generator of
the copula. It is straightforward to show that C(uy,...,uy) satisfies the conditions of
Definition 1.

Some d-dimensional Archimedean copulae are presented below.

Frank (1979) copula, 0 < 0 < oc.

The first popular Archimedean copula is the so called Frank copula, which is the only
elliptical Archimedean copula. Its generator and copula functions are

o(x,0) = 0 log{l —(1—ee™}, 0<0<o0, z€]0,00).

| et -1
Co(u,...,ug) = ~3 log |1+ F{lexp(—G) - 1}d71

The dependence becomes maximal when 8 tends to infinity and independence is achieved
when 6 = 0.

Gumbel (1960) copula, 1 < 6 < occ.

The Gumbel copula is frequently used in financial applications. Its generator and copula
functions are

o(x,0) = exp{—z?}, 1<60< o0, ze€0,00)

Co(u,...,uq) = exp —{Z(—loguj)e}

j=1

Consider a bivariate distribution based on the Gumbel copula with univariate extreme
value marginal distributions. Genest and Rivest (1989) showed that this distribution is
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the only bivariate extreme value distribution based on an Archimedean copula. Moreover,
all distributions based on Archimedean copulae belong to its domain of attraction under
common regularity conditions. In contrary to the elliptical copulae, the Gumbel cop-
ula leads to asymmetric contour diagrams. The Gumbel copula shows stronger linkage
between positive values, however, it also shows more variability and more mass in the
negative tail.

For 6 > 1 this copula allows for the generation of dependence in the upper tail. For
0 — 1, the Gumbel copula reduces to the product copula and for § — oo we obtain the
Fréchet-Hoeffding upper bound.

Clayton (1978) copula, —1 <6 < oo, 6 # 0.

The Clayton copula which, in contrast to the Gumbel copula, has more mass on the lower
tail, and less on the upper. The generator and copula function are

d(x,0) = (Br+1)7, —1<6<o00,0+£0,z¢c]0,00),

Cg(ul,...,ud) = {(Zuj9>—d+1} .

The Clayton copula is one of few copulae that has a simple explicit form of density for
any dimension

d d (07" +d)
colur, ... uq) = [ [{1+ (j — Do}u; Y (Z ui® —d+ 1> .
j=1 J=1

As the parameter 0 tends to infinity, dependence becomes maximal and as # tends to zero,
we have independence. As § — —1, the distribution tends to the lower Fréchet bound.

3.4 Hierarchical Archimedean Copulae

A recently developed flexible method is provided by hierarchical Archimedean copulae
(HAC). The special, so called fully nested case of the copula function is:

Clu, ..., uq) Ga-1{dzly 0 Gaa(.. [05" 0 dr{e) (1) + &1 (ua)}
92551(“3)] +ooet ¢¢;—12(Ud—1)) + 9255—11(%)}

= Ga1[ogly 0 C{or, ..., da—a})(ua,. .. ua1) + & (uq)]

+

for ¢! 0 pa_; € L*, i < j, where

L*={w:[0;00) — [0,00) | w(0) =0,
w(oo) = o0; (=1) 1w >0;j=1,... 00}

In contrast to the Archimedean copula, the HAC defines the whole dependency structure
in a recursive way. At the lowest level the dependency between the first two variables is
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modelled by a copula function with the generator ¢y, i.e. z; = C(uy, up) = {7 (u1) +
#7 " (uz)}. At the second level an another copula function is used to model the dependency
between z; and us, etc. Note that the generators ¢; can come from the same family and
they differ only through the parameter or, to introduce more flexibility, they come from
different generator families. As an alternative to the fully nested model, we can consider
copula functions, with arbitrary chosen combinations at each copula level. Okhrin, Okhrin
and Schmid (2009a) provide several methodologies in determining the structure of the
HAC from the data. The case of d = 3 which we use further in applications is quite
a simple one. If 75,73 and 73 are Kendall’s 7, pairwise rank correlation coefficients,
we join together those X; and X; such that max; jef123y, ixj = 7ij. Next we introduce
z= 6{131()(1), Fy(X;)}. Estimation techniques will be considered later. Variable X;-, i* €
{1,2,3}/{i, 7} is joined afterwards with the z.

Whelan (2004) provides tools for generating samples from Archimedean copulae, Savu
and Trede (2006) derived the density of such copulae and Joe (1997) proves their positive
quadrant dependence (see Theorem 4.4). Okhrin et al. (2009a) and Okhrin, Okhrin and
Schmid (2009b) considered methods for determining the optimal structure of the HAC,
provided asymptotic theory for the estimated parameters and derive theoretical properties
of this copula family.

4 Monte Carlo Simulation

The Monte-Carlo simulation is often a single reliable solution to many financial problems.
Within the simulation study the random variables are generated from some prescribed
distributions. There are numerous methods of simulating from copula-based distributions,
see Frees and Valdez (1998), Whelan (2004), Marshall and Olkin (1988),McNeil (2008),
Embrechts, McNeil and Straumann (1999), Frey and McNeil (2003), Devroye (1986), etc.
Here we focus on two of them, on the conditional inversion method and on the method
proposed by Marshall and Olkin (1988) for Archimedean copulae with generalizations to
hierarchical Archimedean copulae by McNeil (2008).

4.1 Conditional Inverse Method

The simulation from d pseudo random variables with joint distribution defined by a copula
C and d marginal distributions F}, j = 1,...,d, may follow different techniques.

Defining the copula j-dimensional marginal distribution C; for j = 2,...,d—1as Cj(uy, ..., u;) =
C(uy,...,uj,1,...,1) and the derivative of C; with respect to the first j — 1 arguments
as

; 10 (u, .., u
iy (ur,. .. u5) = i )

0U1, c. ,an_l
the probability P(U; < u;, Uy = uy,...,Uj—1 = uj_1) can be written as

Cj(ul + Aul, cee U -+ Auj,l,uj) — C’j(ul, c. ,Uj)
Aug,...,Auj_1—0 Aul, R ,Auj_l

= 471(U1, Ce ,Uj).



Thus, the conditional distribution A(w;) (given fixed uy,...,u;_1) is a function of the
ratio of derivatives:

A(UJ) = P(Uj S Uyj | U1 = Uy, .. .,Uj,1 = Ujfl)
C§_1<U1,...,Uj)

C’;:%(Ul, s 7“]’*1).

The generation of d pseudo random numbers with given marginal distributions Fj, j =
1,...,d and dependence structure given by the copula C' follows the steps:

1. generate iid vy, ..., vy ~ U|0, 1].
2. for j =1,...,d calculate u; = A~'(v;).

3. set x; = F; ' (uy).

4.2 Marshal-Olkin Method

The Marshal-Olkin method is developed for the simulations only from Archimedean copu-
lae. The idea this approach is based on the fact that the Archimedean copulae are derived
from Laplace transforms. Let M be a univariate cdf of a positive random variable (so
that M(0) = 0) and ¢ be the Laplace transform of M, i.e.

o(s) = / exp{—sw}dM(w), s > 0.
0
For any univariate distribution function F', a unique distribution G exists:
Fa) = [ G () aM(a) = o~ loz Gla).

Considering d different univariate distributions Fi, ..., Fy, we obtain

Cluy, ... ug) = /OOOHG? dM(a) = ¢ [Z ¢ {Fi(u) }

which is a multivariate distribution function. By replacing the product of univariate
distributions G; for i = 1,...,d with an arbitrary copula function R we get:

Clun, . ug / / R(GS, .. G2 dM(a).

Note that for the classical Archimedean copula R is equal to a product copula.

One proceeds with the following three steps to make a draw from a distribution described
by an Archimedean copula:

1. generate an observation u from M;

2. generate an observations (vy,...,vy) from R;
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3. the generated vector is computed by x; = G;l(v;/ “).
This method works faster than the conditional inverse technique. The drawback is that
the distribution M can be determined explicitly only for a few generator functions ¢ like,
for example for the Frank, Gumbel and Clayton families. The same problem arises in
the case of hierarchical copulae, where ¢; o ¢, +11 should satisfy the properties of generator
functions.

5 Copula Estimation

The estimation of a copula based multivariate distribution involves both the estimation
of the copula parameters ¢ and the estimation of the margins F}, 7 = 1,...,d, however all
the parameters from the copula and from the margins could be also estimated in one step.
The properties and goodness of the estimator of 6 heavily depend on the estimators of

F;, 5 =1,...,d. We distinguish between a parametric and a nonparametric specification
of the margins. If we are interested only in the dependency structure, the estimator
of {d1,...,d4,0} should be independent of any parametric models for the margins. In

practical applications, however, we are interested in a complete distribution model and,
therefore, parametric models for margins are preferred.

For nonparametrically estimated margins, one may show the consistency and asymp-
totic normality of maximum-likelihood (ML) estimators and derive the moments of the
asymptotic distribution. The ML estimation can be performed simultaneously for the pa-
rameters of the margins and of the copula function. Alternatively, a two-stage procedure
can be applied, where we estimate the parameters of margins at the first stage and the
copula parameters at the second stage.

Let X be a d-dimensional random variable with parametric univariate marginal distri-
butions Fj(z;;6;), j = 1,...,d. Further let a copula belong to a parametric family
C = {Cy,0 € ©}. The distribution of X can be expressed as

F(zy,...,2q) = C{F(21;01),. .., Fa(xg;6q); 0}

and its density as
d
flan,. o xa; 61, 00,0) = o Fi(w1561), ., Fa(aa; 6a); 03 [ | £(5:6;)
=1

where c(-) is the copula density (??). For a sample of observations {x;}1 |, z; = (T14,. .., Tas) "
and a vector of parameters a = (d1,...,04,0)" € R4 the likelihood function is given by

T
L(a;zy,...,27) = Hf(l"l,t, s Zg 301, ..., 04,0)

and the log-likelihood function by

T
oz, ... xp) = Z log c{F1(x14;61), ..., Fa(xays; 04); 0}

t=1

d
ZlogfJ x5 05).

1 j=1

Mﬂ

+
t
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The vector of parameters a = (01, ...,d4,6) " contains d parameters d; from the marginals
and the copula parameter 6. All these parameters can be estimated in one step. For
practical applications, however, a two step estimation procedure is more efficient.

5.1 FML — Full Maximum Likelihood Estimation

In the Maximum Likelihood estimation method (also called full mazimum likelihood), the
vector of parameters « is estimated in one single step through

appr = arg max ()

The estimates app;, = (51, o 0~)T solve
(00]Ddy, . ..,00]D04,00/00) = 0.

Following the standard theory on ML estimation it is efficient and asymptotically normal.
However, it is often computationally demanding to solve the system simultaneously.

5.2 IFM — Inference for Margins

In the IFM (inference for margins) method, the parameters d; from the marginal distri-
butions are estimated in the first step and used to estimate the dependece parameter 6
in the second step:

1. for j = 1,...,d the log-likelihood function for each of the marginal distributions are

T
05(6;) =Y log fi(w;; 6;)
t=1

and the estimated parameters

o; = argmax £;(5;)
5
2. the pseudo log-likelihood function

T
000,61,...,04) = Z log c{Fi(x14;01), ..., Fa(zas;0q); 0}

t=1

is maximised over 6 to get the dependence parameter estimate 0.

The estimates &py = (51, . ,5d, é)T solve
(001001, . ..,0Ly]Ddq,00]00) = 0.

Detailed discussion on this method could be found in Joe and Xu (1996) Note, that this
procedure does not lead to efficient estimators, however, as argued by Joe (1997) the loss
in the efficiency is modest. The advantage of the inference for margins procedure lies in
the dramatic reduction of the numerical complexity. Detailed discussion on the inference
for margins procedure can be found in Joe and Xu (1996). Note, that this method does
not lead to efficient estimators, however, as argued by Joe (1997) the loss in the efficiency
is modest.
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5.3 CML — Canonical Maximum Likelihood

In the CML (canonical mazimum likelihood) method, the univariate marginal distributions
are estimated through the edf F. The asymptotic properties of the multistage estimators
of 6 do not depend explicitly on the type of the nonparametric estimator, but on its
convergence properties. For j =1,....,d

T
~ 1
t=1

The pseudo log-likelihood function is
T A
5(0) = Zlog C{Fl(l'l’t), e Fd<xd,t); 6}
t=1

and the copula parameter estimator Ocnrr is given by

- argmax £(0).
0

Notice that the first step of the IMF and CML methods estimates the marginal distribu-
tions. After marginals are estimated, a pseudo sample {u;} of observations transformed
in the unit d-cube is obtained and used in the copula estimation. As in the IFM, the semi-
parametric estimator 0 is asymptotically normal under suitable regularity conditions.

6 Asset Allocation

We illustrate the extension of the classical asset allocation problem to copula-based mod-
els. We consider an investor with a CRRA utility function U(z) = (1—+) 2’7 willing to
allocate his wealth to d risky assets. We denote the d-dimensional vector of d asset prices

by S; = (Si4,- .- ,det)T and their continuously compounded asset returns at time ¢ + 1
by Xiv1 = (X141, -, Xaer1) where X,y = log Sy1 — log Sy The vector of portfolio
weights by w = (wy, ... ,wd)T. Let F;;q1 be the d-dimensional distribution function of

X1 with the mean p;,1 and covariance matrix ;1. The aim is to forecast F;,; for the
time period ¢ + 1 using the data up to time ¢. The estimator is denoted by Ft+1 with the
mean fi;,1, the covariance matrix i\)t+1 and the density ftﬂ. The objective of the investor
is to maximise the expected utility at the time point ¢t 4+ 1. This leads to the optimisation
problem

max EEHU(l +w' Xppq). (5)
In the case of no short sales constraint we set W = {w € [0,1]¢ : w1 = 1} else we set
W ={w e R?: w'l =1}. The conditional expectation in (5) implies that we integrate
the utility with respect to the forecasted distribution Fi,;. This reduces the problem (5)
to the problem

gleai/}v(/ e / U(]_ + U}TXt+1)ft+1(Xt+1)dXt+1.
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There are several alternative parametric approaches to modelling Fj.q. Let 4,41 de-
note the diagonal matrix containing only the main diagonal of ¥,,;. Then >,,; =
ZilﬁrlRtHZ;/il, where R;.; denotes the correlation matrix. A standard approach is
to define the model of the asset returns in the form

S0, (Xe = ) ~ Na(0, Ry), (6)
where the conditional moments y; and ¥; are modelled by a GARCH type process.

To introduce a copula-based distribution into the asset allocation we deviate from the
normality assumption and assume that F' = C(F},..., F;). Thus (7) is replaced by:

z;tl/Q(Xt — ) ~C(Fy, ..., Fy) (7)

with some given functional forms of the copula and the marginal distributions. Similarly
as above, the parameters of the conditional moments of the copula and of the marginal
distributions are estimated using the ML method.

In Patton (2004) the investor allocates his wealth between small cap and large cap stocks
(i.e. d = 2). The conditional mean is defined as linear function of the lagged asset
returns and additional explanatory variables. The conditional variance is stated in the
TARCH(1,1) form. The rotated Gumbel copula with skewed ¢ margins are used to con-
struct the bivariate distribution of the residuals. This model reveals the highest likelihood
function and the lowest AIC and BIC criterion. It is concluded that unconstrained port-
folios derived from the normality assumption performed worse in 9 of 10 different trading
strategies compared to the Gumbel model.

7 Value-at-Risk of the Portfolio Returns

If the return of the stock i at time point ¢ is denoted as X;; then the portfolio value V' at
time t is defined recursively as

d
Vi=Viy (1 +) wl-Xit> :
=1

where w; fort =1, ..., d are the corresponding portfolio weights. Ruled with this notation
the portfolio return is then given by

v, d
Rtp: ‘/ttl _1:ZXthZ
N 1=1

In our study we consider the case of equally weighted portfolio, i.e. w; = % fori=1,....,d.
The portfolio return is the random variable and its distribution strongly depends on the
underlying distribution of the indices.

The distribution function of R, dropping the time index, is given by
Fr, (&) = P(R, <) (8)

One of the main advantages of copulae is the fact that they allow flexible modelling of
the tail behaviour of multivariate distributions. Since the tail behaviour explains the
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simultaneous outliers of asset returns, it is of special interest in risk management. The
Value-at-Risk of a portfolio at level « is defined as the lower a-quantile of the distribution
of the portfolio return, i.e.

VaR(a) = ngl(a). (9)

The VaR is a reasonable measure of risk if we assume that the returns are elliptically
distributed. Moreover, the assumption of ellipticity implies that minimising the variance
in the Markowitz problem also minimises the VaR, the expected shortfall and any other
coherent measure of risk. However, this statement is false in the non-elliptical case.
Moreover, regarding the effect of diversification the variance is the smallest (highest)
for perfect negative (positive) correlation of the assets. This also holds for the VaR in
the elliptical case, however, not for the non-elliptical distributions. This implies that
for copula based distribution the VaR should be used with caution and its computation
should be awarded more attention. Detailed description of the VaR estimation procedure
at prescribed level a can be found in Giacomini and Hérdle (2005).

Our aim is to determine such ¢ that P(R, < &) = a. Note that

R = U)TX Z sz Z wz 2

where F; denotes the marginal distributions of individual asset returns, u; = F;(X;) ~
Ul0,1] for all i = 1,...,d and uy,...,uq ~ C. The copula C' defines the dependency
structure between the asset returns. This implies that

Fr,(§) =P(R, <) = /uc(ul,...,ud)dul...dud, (10)

with
U={0.1"" % [0,ug(€)]}, ual) = {s/wd—zwz (ui) fwa}. (11)

For fixed «, the VaR is determined by solving (10) numerically for . Direct multidi-
mensional numerical integration is a tedious task which can be substantially simplified by
using the Monte-Carlo integration. For this purpose we have to generate random samples
from C' using the methods described in Section 4.

In the empirical study we consider four countries Canada, Germany, U.S. and U.K. from
the MCSI index and eleven models of the joint multivariate distribution of indices, which
include t-copula, Gaussian copula, simple exchangeable Archimedean copula, binary HAC
and aggregated binary HAC, with normally and ¢-distributed margins. As a benchmark
we use the empirical VaR, based purely on the real data.

In the cases where margins are t-distributed, we consider ¢-distribution with three degrees
of freedom, while estimated t-distributions for this data are t51¢3, t3420, £3.023, t2.879.
Multivariate t-copula in this case has eight degrees of freedom. Let us consider the
simulation procedure, where on the first stage we estimate the covariance matrix ¥ =
{3 }ij=1,..4, mean vector i = {fi; }i=1,.q from the real data set and assume, or estimate,

the marginal distributions F(-) (in our case they are normally or ¢-distributed), for i =
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1,...,d. Next we show how to sample uy,...,us € U from (11). First we simulate the
vector u of a dimension d — 1

Uty ..., Ug—1 ™ U(O,l)

Based on u we consider z = {z;};,=1_4—1 which for normal margins is equal to

xi:qfl(ui) in—i—ﬁ“ izl,...,d—l,

and for ¢ margins is

v, — 24
xizt—l(ui),/ S+, i=1,....d—1,
V’L

where v;, 1 = 1,...,d are degrees of freedom for marginal distributions. This transfor-
mation returns a normally or ¢-distributed vector x with the same parameters as the real
data set.

Theoretically, in further steps we have to find bounds for the last stock (or index) to
gain the portfolio & which is the a quantile. Thus, we separate our maximally reachable
portfolio return £ into two parts

a1, .
£ = Z EXi + EXda
i=1

then the return of the last index given the return of the portfolio is

where the upper bound for our last value in vector u is then
d—1
= F, <d§ — Zx) .
i=1
Value u}; is uniformly distributed on [0, 1] and we simulate the last element of the vector
ug ~ U(0,uf).
As mentioned above, the goal is to compute (10) which for this setting is
FRp / / ul,..., du1 dd
[0,1]9=1 x [0,u]

Then by solving Fg, (§) = a we find R, = VaR(a). In our study we solve the equations
numerically using the golden section method. The integration is performed using the
Monte-Carlo technique

— 1 &

P(Rp S 5) = _Zc(ulia"'7udi)
Ns
where n, is equal to 10%, « is set to be 1% and the values wy;, ..., uqg for i = 1,...,n,

are simulated using the method described above. The precision of R is set at 0.00015.
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Table 1: VaR for the 4-dimensional data set

N ts
N -0.0194 | -0.0210
tg -0.0199 | -0.0213
AC -0.0174 | -0.0154
HAChinary -0.0187 | -0.0194
HACbmary aggr. -0.0188 -0.0194
Empirical -0.0235

The final results for all methods are given in Table 1. In the left-hand column we provide
the models with normal margins and in the right-hand column with ¢ margins. From top
to bottom we have five different copula functions like Gaussian, ¢, simple Archimedean
copula, binary HAC and binary aggregated HAC. The empirical VaR which is at the bot-
tom of the table is derived from the empirical quantile. Bold fonts in the table emphasize
those results which are closest in absolute value to the empirical one in each column, and
italic fonts the worst cases in absolute value.

As can be seen from Table 1, the results which are the best in absolute value are those
returned by the model with ¢-copula and ¢t margins. The model based on the simple
Archimedean copula is the worst one. This is quite natural, since this copula needs
exchangeability between variables, which is not observable here (see previous section).
HAC with binary as well as aggregated binary structures, unfortunately, give us results
that are not much worse compared to t-copula and Gaussian copula. For VaR(0.01) the
t-copula with ¢ margins provided the best result.

7.1 VaR of the P&L

This sub-section introduces the main assumptions and steps necessary to estimate the
VaR from a Profit and Loss of a linear portfolio using copulae. Static and time-varying
methods and their VaR performance evaluation through backtesting are described below.

In this section w is the portfolio, which is represented by the number of assets for a
specified stock in the portfolio, w = {wy,...,ws}, w; € Z. The value V; of the portfolio
w is given non-recursively by

d
Vi= ijsj,t (12)
j=1
and the random variable
Lt+1 = (Vi+1 - V;t)

d
= > w8 {exp(Xje41) — 1}

j=1

also called profit and loss (P&L) function, expresses the absolute change in the portfolio
value in one period.
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Similarly to the previous case, the distribution function of L, dropping the time index, is
given by

Fr(x) =P(L < z). (13)

As usual the Value-at-Risk at level a from a portfolio w is defined as the a-quantile from
FLI

VaR(a) = F; Y(a). (14)

It follows from (13) that F, depends on the d-dimensional distribution of log-returns F.
In general, the loss distribution Fr, depends on a random process representing the risk
factors influencing the P&L from a portfolio. In the present case log-returns are a suitable
risk factor choice. Thus, modelling their distribution is essential to obtain the quantiles
from Fry.

Contrary to the previous section, here log-returns are assumed to be time-dependent, thus
a log-returns process {X;} can be modelled as

Xjt = Wit + 05151

where e, = (e14,...,€44) " are standardised i.i.d. innovations with E[e;,] = 0 and E[e3,] =
1 for j =1,...,d; F; is the available information at time ¢:

i = E[Xj¢ | Fid]
is the conditional mean given F;_; and

02, = B[( X0 — p0)? | Fooi]

is the conditional variance given F;_;. The innovations ¢ = (e1,...,&4)" have joint
distribution
F.(e1,...,eq) = Co{Fi(e1),..., Falea)}, (15)

where Cj is a copula belonging to a parametric family C = {Cy,0 € O}, and F}, j =
1,...,d are continuous marginal distributions of ¢;. To obtain the Value-at-Risk in this
set up, the dependence parameter and distribution function from residuals are estimated
from a sample of log-returns and used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the Value-at-Risk.

For a portfolio w on d assets and a sample {z;,}{_;, j = 1,...,d of log-returns, the
Value-at-Risk at level « is estimated according to the following steps:

1. Estimation of residuals &; from the prespecified time-series model;

2. Specification and estimation of marginal distributions F}(é,);

3. Specification of a parametric copula family C and estimation of dependence param-
eter 0;

4. Generation of Monte Carlo sample of innovations € and losses L, for the forecast on
the one day;
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5. Estimation of m(a), the empirical a-quantile from the forecasted L.

The application of the (static) procedure described above on sliding windows of a time
series {z;,}7_, delivers a sequence of parameters for a copula family. Hence the denomi-
nation time-varying copulae.

Using moving windows of size 7 in time ¢

{xt}?:s—w-‘rl
for s = r,..., T, the procedure described in the section above generates the time series
{VaR;}L, of Value-at-Risk and {6;}._, dependence parameters estimates.

Afterwards Backtesting is used to evaluate the performance of the specified copula family
C. The estimated values for the VaR are compared with the true realisations {l;} of the
P&L function, an ezceedance occuring for each [, smaller than Va\Rt(a). The ratio of the
number of exceedances to the number of observations gives the exceedances ratio &:

T
A 1 .
a = T——T E I{lt < VaRt(oz)}.

t=r

The estimation methods described before are used on two portfolio, the first composed of
2 positions, the second of 3 positions. Different copulae are used in static and dynamic
setups and their VaR performance is compared based on backtesting.

In this section, the Value-at-Risk of portfolios for two companies (Tyssenkrupp (TKA) and
Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed using different copulae.

Assuming the log-returns {X;,} follow a GARCH(1,1) process we have
Xjt = Hjp + 0je€j
where

2 2 2
07 = wj+ ;o5 g+ Bi( Xy — 1)

andw >0,a; >0, 3 >0, o; + 3; < 1.

The fit of a GARCH(1,1) model to the sample of log returns {x;}-,, X; = (X14, Xo4) ",
T = 2500, gives the estimates w;, &; and Bj, as in Table 2, and empirical residuals
{é,}L,, where é, = (£14,€2,)". The marginal distributions are specified as normal, i.e.,
¢; ~ N(ji;,6;) with parameters 0; = (ji;, 5;) estimated from the data.

Figure 1 displays the Kernel density estimator of the residuals and of the normal den-
sity, estimated with an Quartic kernel. The dependence parameters are estimated for
different copula families (Gaussian, Clayton and Gumbel). Residuals £ and fitted copulae
(Gaussian, Clayton and Gumbel) are plotted in Figure 2.

In the dynamic approach, the empirical residuals are sampled in moving windows with
a fixed size r = 250, {&};_, ., for s = r,...,T. The time series from estimated
dependence parameters for each copula family are in Figure 3.

The same portfolio compositions as in the static case are used to generate P&L samples.
The series of estimated Value-at-Risk and the P&L function for selected portfolios are
plotted in Figure 4, 5 and 6.
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i) wj Q; Bj BL KS
MRK | 7.392e-04  4.588¢-06  3.333e-02  9.572e-01  0.1285 1.255e-11
(3.672e-04)  (1.557e-06) (6.225¢-03) (8.568¢-03)
TKA 7.845e-04 3.549e-06 7.087e-02 9.252e-01 0.1360 4.189e-05
(3.308¢-04)  (1.149¢-06)  (9.837¢-03)  (9.915¢-03)
VOW 9.720e-04 1.239e-05 9.303e-02 8.830e-01 1.927e-05 3.422e-06
(3.480e-04)  (2.699¢-06) (1.301e-02) (1.566¢-02)

Table 2: Fitting of univariate GARCH(1,1) to asset returns. The standard deviation
of the parameters are given in parentheses. The last two columns provide the p-values
of the Box-Ljung test (BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for
normality applied to the residuals

L
o o |
[=)
<
o <
o
@ |
o g,
> >
N N
=) A
51 -
Q| <
e T T T T T T T e T T T T T T
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4 6
X X

Fig. 1. Kernel density estimator of the residuals and of the normal density from TKA
(left) and VOW (right). Quartic kernel, h = 2.786n 2.

Fig. 2. Residuals € and fitted copulae: Gaussian (p = 0.462), Clayton (0 = 0.880),
Gumbel (6 = 1.439).
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X
Fig. 3: Dependence parameter 9, estimated using the IFM method, Gaussian (upper

panel), Gumbel (middle panel) and Clayton (lower panel) copulae, moving window (w =
250).

20



VaR - Clayton Copula

2.32 5.06 7.8
Il Il

PaL
-0.41
L1

-3.15

-5.89

-8.63

TT T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007
time

Fig. 4: %7—2(@) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0424.
P&L samples generated with Clayton copula.

VaR - Gumbel Copula

P&L
-0.41 2.32 5.06 7.8
L1 Il Il

-3.15

-5.89

-8.63
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Fig. 5: @(a) (solid line), P&L (dots) and exceedances (crosses), a = 0.05, & = 0.0508.
P&L samples generated with Gumbel copula.
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VaR - Normal Copula
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Fig. 6: @(a) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0464.
P&L samples generated with Gaussian copula.

7.2 3-dimensional Portfolio

In this section, the Value-at-Risk of portfolios composed of 3 positions (Merck (MRK),
Tyssenkrupp (TKA) and Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed
using a time-varying simple Gumbel copula and time-varying hierarchical Archimedean
copula with generators from the Gumbel family.

The estimation of the parameters of the 3-dimensional copula was done by the IFM
method. Concerning the HAC, we determine the structure under each window and re-
estimate the parameters.

The fit of a GARCH(1,1) model to the sample of log returns {X; }7_;, X; = (X1, Xoy, X34) ',
T = 2500, gives the estimates w;, &; and Bj, as in Table 2, and empirical residuals {&;}L,,
where &, = (€14,94,€3,)", as in upper right part of Figure 8. The marginal distributions
are specified as normal, €; ~ N(fi;,5;) with the estimated parameters 5j = (f15,0;).

The estimated Value-at-Risk at level a together with the P&L function are plotted in
Figure 9 for the simple Archimedean Copula (AC) and on 10 for the HAC. As can be seen
from the backtesting results for different VaR levels, HAC outperforms the simple AC in
all levels. This implies the necessity of dependence flexibility in modelling of log-returns.

8 Summary

To conclude, a summary of the main findings of this paper. We calculated the Value-
at-Risk for the static and dynamic portfolio constructed by different methods. Three
different copulae - Gumbel, Clayton and Gaussian - were used to estimate the Value-at-
Risk from the two- (MRK and TKA) and three- (MRK, TKA and VOW) dimensional
portfolios. From the time series of estimated dependence parameters, we can verify that
the dependence structure is represented in a similar form with all copula families, as in
Figure 3.
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Fig. 7: Dependence parameter é, estimated using the IFM method, Clayton (upper panel)
and Gumbel (lower panel) copulae, moving window (w = 250).

Using backtesting results to compare the performance in the VaR estimation, we remark
that on average the Clayton and Gaussian copulae overestimate the VaR. In terms of
capital requirement, a financial institution computing VaR with those copulae would be
requested to keep more capital aside than necessary to guarantee the desired confidence
level.

The estimation with Gumbel copula, on another side, produced results close to the de-
sired level. Gumbel copulae seems to represent specific data dependence structures (like
lower tail dependencies, relevant to explain simultaneous losses) better than Gaussian and
Clayton copulae.
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CONFIDENCE BANDS IN
QUANTILE REGRESSION

WOLFGANG K. HARDLE AND SONG SONG
Humboldt-Universitat zu Berlin

Let (X1,Y}),...,(Xn,Yy) be independent and identically distributed random vari-
ables and let /(x) be the unknown p-quantile regression curve of ¥ conditional on X.
A quantile smoother [, (x) is a localized, nonlinear estimator of /(x). The strong uni-
form consistency rate is established under general conditions. In many applications
it is necessary to know the stochastic fluctuation of the process {/,; (x) —{(x)}. Using
strong approximations of the empirical process and extreme value theory, we con-
sider the asymptotic maximal deviation supg< < |/n(x) —{(x)|. The derived result
helps in the construction of a uniform confidence band for the quantile curve /(x).
This confidence band can be applied as a econometric model check. An economic
application considers the relation between age and earnings in the labor market by
means of parametric model specification tests, which presents a new framework to
describe trends in the entire wage distribution in a parsimonious way.

1. INTRODUCTION

In standard regression function estimation, most investigations are concerned with
the conditional mean regression. However, new insights about the underlying
structures can be gained by considering other aspects of the conditional distribu-
tion. The quantile curves are key aspects of inference in various economic prob-
lems and are of great interest in practice. These describe the conditional behavior
of a response variable (e.g., wage of workers) given the value of an explanatory
variable (e.g., education level, experience, occupation of workers) and investigate
changes in both tails of the distribution, other than just the mean.

When examining labor markets, economists are concerned with whether dis-
crimination exists, e.g., for different genders, nationalities, union status, etc. To
study this question, we need to separate out other effects first, e.g., age, educa-
tion, etc. The crucial relation between age and earnings or salaries belongs to
the most carefully studied subjects in labor economics. The fundamental work
in mean regression can be found in Murphy and Welch (1990). Quantile
regression estimates could provide more accurate measures. Koenker and Hallock
(2001) present a group of important economic applications, including quantile
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Engel curves, and claim that “quantile regression is gradually developing into a
comprehensive strategy for completing the regression prediction.” Besides this,
it is also well known that a quantile regression model (e.g., the conditional me-
dian curve) is more robust to outliers, especially for fat-tailed distributions. For
symmetric conditional distributions the quantile regression generates the nonpara-
metric mean regression analysis because the p = 0.5 (median) quantile curve co-
incides with the mean regression.

As first introduced by Koenker and Bassett (1978), one may assume a para-
metric model for the p-quantile curve and estimate parameters by the interior
point method discussed by Koenker and Park (1996) and Portnoy and Koenker
(1997). Similarly, we can also adopt nonparametric methods to estimate condi-
tional quantiles. The first one, a more direct approach using a check function such
as a robustified local linear smoother, is provided by Fan, Hu, and Troung (1994)
and further extended by Yu and Jones (1997, 1998). An alternative procedure
is first to estimate the conditional distribution function using the double-kernel
local linear technique of Fan, Yao, and Tong (1996) and then to invert the con-
ditional distribution estimator to produce an estimator of a conditional quantile
by Yu and Jones (1997, 1998). Beside these, Hall, Wolff, and Yao (1999) pro-
posed a weighted version of the Nadaraya—Watson estimator, which was further
studied by Cai (2002). Recently Jeong and Hirdle (2008) have developed the
conditional quantile causality test. More generally, for an M-regression function
that involves quantile regression as a special case, the uniform Bahadur repre-
sentation and application to the additive model are studied by Kong, Linton, and
Xia (2010). An interesting question for parametric fitting, especially from labor
economists, would be how well these models fit the data, when compared with
the nonparametric estimation method.

Let (X1,Y1),(X2,Y2),...,(X,,Y,) be a sequence of independent and iden-
tically distributed (i.i.d.) bivariate random variables with joint probability den-
sity function (pdf) f(x, y), joint cumulative distribution function (cdf) F(x,y),
conditional pdf f(y|x), f(x|y), conditional cdf F(y|x), F(x|y) for ¥ given X
and X given Y, respectively, and marginal pdf fx(x) for X, fy(y) for Y where
x € J and J is a possibly infinite interval in R? and y € R. In general, X may
be a multivariate covariate, although here we restrict attention to the univariate
case and J = [0, 1] for convenience. Let /(x) denote the p-quantile curve, i.e.,
1(x) = Fy(p).

Under a “check function,” the quantile regression curve /(x) can be viewed as
the minimizer of L(6) &ef E{p,(y —0)|X = x} (with respect to &) with p, (1) =
pul{u € (0,00)} — (1 — p)ul{u € (—o0,0)}, which was originally motivated by
an exercise in Ferguson (1967, p. 51) in the literature.

A kernel-based p-quantile curve estimator /,,(x) can naturally be constructed
by minimizing:

Ly@)=n""Y pp(Yi —0)Kn(x — X;) @)
i=1
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with respect to € € I where [ is a possibly infinite, or possibly degenerate, inter-
val in R and K}, (u) = h~'K (u/ h) is a kernel with bandwidth 4. The numerical
solution of (1) may be found iteratively as in Lejeune and Sarda (1988) and Yu,
Lu, and Stander (2003).

In light of the concepts of M-estimation as in Huber (1981), if we define

w(u) as
ypu) = pl{u € (0,00)} = (1 = p)1{u € (=00, 0)}
=p— 1{” € (—O0,0)},

l,,(x) and I(x) can be treated as a zero (with respect to 6) of the function

H,0,0) 07" Ky(x = Xy (Vi —0), )
i=1
~ def
A,x) & /R FOy) (v —0)dy, 3)
correspondingly.

To show the uniform consistency of the quantile smoother, we shall reduce the
problem of strong convergence of [, (x) — [(x), uniformly in x, to an application
of the strong convergence of H,(#, x) to H(0, x), uniformly in x and 0, as given
by Theorem 2.2 in Hérdle, Janssen, and Serfling (1988). It is shown that under
general conditions almost surely (a.s.)

sup |l (x) — [(x)| < B* max {(nh/(logn))_l/z,h&}, as n — o,
xeJ

where B* and o are parameters defined more precisely in Section 2.
Note that without assuming K has compact support (as we do here) under sim-
ilar assumptions Franke and Mwita (2003) obtain

In(x) = Fy4(p).

i Kn(x = Xi)1(Y; <y)
;’121 Kp(x —X;)

Fylx) =

b

sup |1, (x) — 1(x)] < B**{(nh/(s,, 1ogn))—1/2+h2}, asn — 00

xelJ

for a-mixing data where B** is some constant and s,,n > 1 is an increasing
sequence of positive integers satisfying 1 < s, < n/2 and some other criteria.
Thus {nh/(logn)}~"? < {nh/(s,logn)}~ /2.

By employing similar methods to those developed in Hardle (1989) it is shown
in this paper that

P ((2510gn)1/2 [supr(x)l{l,, () = 1)}/ A(K)V? —d,,] < z)
xelJ

— exp{—2exp(—z)}, asn— oo 4
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from the asymptotic Gumbel distribution where r(x), J, A(K), d, are suitable
scaling parameters. The asymptotic result (4) therefore allows the construction
of (asymptotic) uniform confidence bands for /(x) based on specifications of the
stochastic fluctuation of /,(x). The strong approximation with Brownian bridge
techniques that we use in this paper is available only for the approximation of the
two-dimensional empirical process. The extension to the multivariate covariable
can be done by partial linear modeling, which deserves further research.

The plan of the paper is as follows. In Section 2, the stochastic fluctuation of the
process {/,,(x) —[(x)} and the uniform confidence band are presented through the
equivalence of several stochastic processes, with a strong uniform consistency rate
of {l,,(x) —1(x)} also shown. In Section 3, in a small Monte Carlo study we inves-
tigate the behavior of /,(x) when the data are generated by fat-tailed conditional
distributions of (Y| X = x). In Section 4, an application considers a wage-earning
relation in the labor market. All proofs are sketched in the Appendix.

2. RESULTS

The following assumptions will be convenient. To make x and X clearly distin-
guishable, we replace x by # sometimes, but they are essentially the same.

(A1) The kernel K (-) is positive and symmetric, has compact support [—A, A],
and is Lipschitz continuously differentiable with bounded derivatives.

(A2) (nh)~'%(logn)*>? — 0, (nlogn)'?h3? — 0, (nh3)~'(ogn)> < M,
where M is a constant.

(A3) h=3(logn) f|y|>an fr(y)dy = O(1), where fy(y) is the marginal density
of Y and {a,};° ; is a sequence of constants tending to infinity as n — oo.

(A4) infie;lg(@)] = g0 > 0, where (1) = 0 E{y (Y —0)|t}/30lo=i(1y - fx (1) =
FU@)e} fx @)

(A5) The quantile function /() is Lipschitz twice continuously differentiable
forallt e J.

(A6) 0 <my < fx(t) < M| < o0, t € J; the conditional densities f(-]y), y €
R, are uniform local Lipschitz continuous of order a (ulL-a) on J, uniformly in
yeR, withO <a < 1.

Define also

a?(t) = E[y*(Y —1()}1] = p(1 = p),

Hy() = (nh)™" Y, K{(t — X))/ Ryp (Y = 1(1)},

i=1

Dy(t)=0(nh)™" Y K{(t = X;)/ h}y{Y; — 0}/30lo=i()

i=1

and assume that o 2(¢) and fx (r) are differentiable.
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Assumption (A1) on the compact support of the kernel could possibly be re-
laxed by introducing a cutoff technique as in Csoérgo and Hall (1982) for den-
sity estimators. Assumption (A2) has purely technical reasons: to keep the bias
at a lower rate than the variance and to ensure the vanishing of some nonlinear
remainder terms. Assumption (A3) appears in a somewhat modified form also
in Johnston (1982). Assumptions (A5) and (A6) are common assumptions in ro-
bust estimation as in Huber (1981) and Hérdle et al. (1988) that are satisfied by
exponential and generalized hyperbolic distributions.

For the uniform strong consistency rate of /,(x) —I(x), we apply the result
of Hirdle et al. (1988) by taking f(y) = w(y—6), yeR,for0 e I =R, g =
g2 = —1, 71(y) = max{0, —y (y — 0)}, y2(y) = min{0, —y (y — 0)}, and 2 = 00
to satisfy the representations for the parameters there. Thus from Hirdle et al.’s
Theorem 2.2 and Remark 2.3(v), we immediately have the following lemma.

LEMMA 2.1. Let I-Nln @,x) and I-NI(H,x) be given by (2) and (3). Under
Assumption (A6) and (nh/logn)_l/2 — o0 through Assumption (A2), for some
constant A* not depending on n, we have a.s. as n — o0

sup sup }1-7,,(9, x)— H(, x)| < A" max{(nh/logn)_l/z, h } 5)
Oel xeJ

For our result on /,,(-), we shall also require

inf | [ yly =10+ e} dF(s10)| > lel,  for Je] <1, ®
X

where J; and g are some positive constants; see also Hardle and Luckhaus (1984).
This assumption is satisfied if there exists a constant ¢ such that f(I(x)|x) > g/p,
xel.

THEOREM 2.1. Under the conditions of Lemma 2.1 and also assuming (6),
we have a.s. as n — 00

sup |1, (x) —1(x)| < B*max{(nh/logn)—l/Z’h&} -
xeJ

with B* = A*/mq not depending on n and m a lower bound of fx(t). If addi-
tionally a > {log(y/logn) —log(~/nh)}/logh, it can be further simplified to

suply (x) —1(x)| < B*{(nh/logn)~/?}.
xeJ
THEOREM 2.2. Leth=n"" + <o < 1 A(K) = [, K*(u)du, and
1
d, = (26logn)'/? + (26logn)~'/? {log {c] (K)/x 1/2} + E{1og5+1oglogn} ,

ifc1(K) ={K*(A)+ K*(—A)}/{2A(K)} > 0;
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d, = (261ogn)'/? —1/2
e gn) '~ +(20logn)™ /“log{c2(K) /27 }

otherwise with ¢;(K) = ffA{K’(u)}zdu/{Ll(K)}. Then (4) holds with

r(x) = (k)" FL() M fx (x)/ p(1 = p)}/2.

This theorem can be used to construct uniform confidence intervals for the
regression function as stated in the following corollary.

COROLLARY 2.1. Under the assumptions of Theorem 2.2, an approximate
(1 —a) x 100% confidence band over [0, 1] is

12 .

LO£@n) ™2 p=p)aK)/ f®} O {di+ () @otogn T2},

where c(a) =log2—log|log(l —a)| and fx @), f{l(t) |t} are consistent estimates

Jor fx (o), fL(@D)]t}.

In the literature, according to Fan et al. (1994, 1996), Yu and Jones (1997,
1998), Hall et al. (1999), Cai (2002), and others, asymptotic normality at inte-
rior points for various nonparametric smoothers, e.g., local constant, local linear,
reweighted Nadaraya—Watson methods, etc., has been shown:

V(L (t) = 1(t)} ~ N(0, 7%(r))

with 72(t) = A(K) p(1 — p)/[ fx () f>{l(2)|t}]. Note that the bias term vanishes
here as we adjust 4. With 7 (¢) introduced, we can further write Corollary 2.1 as

Ly(t) £ (nh)_l/z{dn +c(a)(2510gn)_1/2}f(t).

Through minimizing the approximation of asymptotic mean square error, the
optimal bandwidth /), can be computed. In practice, the rule of thumb for £, is
given by Yu and Jones (1998):

1. Use ready-made and sophisticated methods to select optimal bandwidth
hmean from conditional mean regression, e.g., Ruppert, Sheather, and Wand
(1995);

2. hy=[p(- )/ (p)N'/3 - himean with ¢, @ as the pdf and cdf of a
standard normal distribution

Obviously the further p lies from 0.5, the more smoothing is necessary.

The proof is essentially based on a linearization argument after a Taylor series
expansion. The leading linear term will then be approximated in a similar way
as in Johnston (1982) and Bickel and Rosenblatt (1973). The main idea behind
the proof is a strong approximation of the empirical process of {(X;, ¥;)!_,} by a
sequence of Brownian bridges as proved by Tusnady (1977).
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As 1,(t) is the zero (with respect to ¢) of H,(0,1), it follows by applying
second-order Taylor expansions to H, (@, t) around /(¢) that

(1) = 1(t) = {Hn(t) — EH, (1)} /q (t) + Ry (1), ®)
where {H,(t) —E H,,(t)}/q(¢) is the leading linear term and
R (1) = Hy(t){q (1) — Dn(0)}/{Dn (1) - q (1)} + E H, (1) /q (1)

1
+ 5 1l (®) — (1)) (D (1)} )

A(nh)™V Y K= X0)/ Yy (Y = 1) +ra (1)}, (10)
i=1

[rn (D] < 11 (t) = 1(1)]
is the remainder term. In the Appendix it is shown (Lemma A.1) that |R,| =

sup,e s | Rn(1)] = 0, { (nhlogn)~'/2}.
Furthermore, the rescaled linear part

Y (t) = (nh) 2 {a?(t) fx ()}~

is approximated by a sequence of Gaussian processes, leading finally to the
Gaussian process

Y2 (H, (1) — E H, (1)}

Ys,n(t)=h—‘/2/K{(t—x)/h}dW(x). a1

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.
We also need the Rosenblatt (1952) transformation,

T(x,y)={Fxpy(xly), Fr(»)},

which transforms (X;,Y;) into 7'(X;,Y;) = (X}, Y/) mutually independent uni-
form random variables. In the event that x is a d-dimensional covariate, the trans-
formation becomes

T(x1,x2, ..., %4, ) ={Fx, 1y x11y)s Fxoly(21x1, ¥) ooy Fxylxg_t,ox1,y

(xXklxa—1,...,x1,¥), Fy (y)}. 12)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied
to obtain the following lemma.

LEMMA 2.2. On a suitable probability space a sequence of Brownian bridges
B,, exists such that

SUp 17, (x, ) = BalT (v, ) = O{n™"2(logn*}  as.,
xel,yeR
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where Z,(x,y) = n'/*{F,(x,y) — F(x,y)} denotes the empirical process of
{(Xi, Y}z,

For d > 2, it is still an open problem that deserves further research.

Before we define the different approximating processes, let us first rewrite (11)
as a stochastic integral with respect to the empirical process Z, (x, y):

Y (1) = {hg' (1)} ~/2 / K{(t—x)/hyy{y —1(t)}dZ,(x, ),

g =) fx ().

The approximating processes are now

You(0) = thg()™2 [ KL=/ By ly =10}z (5, ), (13)
where I, = {|y| <an}, ¢(t) = Ely*{y =1()} - 1(1y| < an)|X =1]- fx (1)

Va0 = g} [ KA =)/ Mty = 1OV dB T (. ), (14)
{B,} being the sequence of Brownian bridges from Lemma 2.2.

Vau(®) = hg@) ™2 [ KL=/ By ly = 1O} (TG, ) 15)

{W,} being the sequence of Wiener processes satisfying

Bn(x/a y/) = Wn(x/y y/) _x/y/Wn(la 1)5

Y3.(1) = {hg ()} ™2 / KL=/ By (y =1} AWT (3, ), (16)
Yan(r) = (hg (1))~ / ¢ () 2K (1 — x)/ h) dW(x), (17)
Ysa(t)=h"1/2 / K{(t —x)/ h}dW(x), (18)

{W(-)} being the Wiener process.
Lemmas A.2—A.7 in the Appendix ensure that all these processes have the same
limit distributions. The result then follows from the next lemma.

LEMMA 2.3 (Theorem 3.1 in Bickel and Rosenblatt, 1973). Let d,,, A(K), J as
in Theorem 2.2. Let

Ysn(t) = h_‘/z/K{(t —x)/h}dW(x).
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Then, as n — 00, the supremum of Ys ,,(t) has a Gumbel distribution.:

P{(Zélogn)l/2 [sup|Y5’n(t)|/{/1(K)}l/2 —dn} < z} — exp{—2exp(—2)}.
teJ

3. A MONTE CARLO STUDY
We generate bivariate data {(X;, ¥;)}?_,n = 500 with joint pdf:

flx,y)=¢ (y—Vx+2.5) 1(x € [-2.5,2.5)), 19)

9 1
=— — 9).
g(w) = 1,00) + 550 /9
The p-quantile curve /(x) can be obtained from a zero (with respect to ) of
90 (0)+ D(@/9) = 10p,

with @ as the cdf of a standard normal distribution. Solving it numerically gives
the 0.5-quantile curve /(x) = +/x + 2.5 and the 0.9-quantile curve /(x) = 1.5296+
X +2.5. We use the quartic kernel:

15
K(u)=R(1—u2>2, lul <1,

=0,  |ul> 1.

In Figure 1 the raw data, together with the 0.5-quantile curve, are displayed.
The random variables generated with probability % from the fat-tailed pdf

%go(u /9) (see eqn. (19)) are marked as squares whereas the standard normal ran-
dom variables are shown as stars. We then compute both the Nadaraya—Watson
estimator m (x) and the 0.5-quantile smoother /,(x). The bandwidth is set to
1.25, which is equivalent to 0.25 after rescaling x to [0, 1] and fulfills the require-
ments of Theorem 2.2.

In Figure 1 I(x), m} (x), and [, (x) are shown as a dotted line, dashed-dot line,
and solid line, respectively. At first sight m, (x) has clearly more variation and has
the expected sensitivity to the fat tails of f(x, y). A closer look reveals that m; (x)
for x &~ 0 apparently even leaves the 0.5-quantile curve. It may be surprising that
this happens at x &~ 0 where no outlier is placed, but a closer look at Figure 1
shows that the large negative data values at both x &~ —0.1 and x = 0.25 cause the
problem. This data value is inside the window (4 = 1.10) and therefore distorts
m} (x) for x = 0. The quantile smoother /,,(x) (solid line) is unaffected and stays
fairly close to the 0.5-quantile curve. Similar results can be obtained in Figure 2
corresponding to the 0.9 quantile (k2 = 1.25) with the 95% confidence band.
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(x), and the 0.5-quantile smoother 7, (x).

*
n

FIGURE 1. The 0.5-quantile curve, the Nadaraya—Watson estimator m
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4. APPLICATION

Recently there has been great interest in finding out how the financial returns of
a job depend on the age of the employee. We use the Current Population Survey
(CPS) data from 2005 for the following group: male aged 25-59, full-time em-
ployed, and college graduate containing 16,731 observations, for the age-earning
estimation. As is usual for wage data, a log transformation to hourly real wages
(unit: U.S. dollar) is carried out first. In the CPS all ages (25-59) are reported
as integers. We rescaled them into [0, 1] by dividing 40 by bandwidth 0.059 for
nonparametric quantile smoothers. This is equivalent to setting bandwidth 2 for
the original age data.

In Figure 3 the original observations are displayed as small stars. The local
0.5 and 0.9 quantiles at the integer points of age are shown as dashed lines,
whereas the corresponding nonparametric quantile smoothers are displayed as
solid lines with corresponding 95% uniform confidence bands shown as dashed-
dot lines. A closer look reveals a quadratic relation between age and logged
hourly real wages. We use several popular parametric methods to estimate the
0.5 and 0.9 conditional quantiles, e.g., quadratic, quartic, and set of dummies
(a dummy variable for each 5-year age group) models; the results are displayed
in Figure 4. With the help of the 95% uniform confidence bands, we can con-
duct the parametric model specification test. At the 5% significance level, we
could not reject any model. However, when the confidence level further decreases
and the uniform confidence bands get narrower, the “set of dummies” paramet-
ric model will be the first one to be rejected. At the 10% significance level,
the set of dummies (for age groups) model is rejected whereas the other two
are not. As the quadratic model performs quite similarly to the quartic one, for
simplicity it is suggested in practice to measure the log(wage)-earning relation
in mean regression, which coincides with the approach of Murphy and Welch
(1990).
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APPENDIX

Proof of Theorem 2.1 . By the definition of /,,(x) as a zero of (2), we have, for ¢ > 0,
if I,(x) >1(x)+e, then ﬁ,,{l(x) +é&,x} > 0. (A1)
Now

Hp{l(x) +&,x} < H{l(x) +&,x} +sup | Hy (0, x) — H(O,x)|. (A2)
el
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Also, by the identity H{l(x),x} = 0, the function H{l(x) + ¢, x} is not positive and has

a magnitude > mge by Assumption (A6) and (6), for 0 < ¢ < d;. Thatis, for 0 < & < Jy,

H{l(x)+e,x} < —mge. (A3)
Combining (A.1)-(A.3), we have, for 0 < & < Jy,

if I,(x) > [(x)+e, then supsup|Hy(0,x)—H(®,x)|>mge.
Oel xelJ

With a similar inequality proved for the case I, (x) < I(x)+¢, we obtain, for 0 < & < Jy,

it sup |ln(x)—1(x)| > &, then supsup|Hy(0,x)—H(©,x)| > mge. (A4
xelJ Oelxel
It readily follows that (A.4) and (5) imply (7). n

Subsequently we first show that || Ry, [|co = sup;c s | R (t)| vanishes asymptotically faster
than the rate (nhlog n)~1/2; for simplicity we will just use || - || to indicate the sup-norm.

LEMMA A.1. For the remainder term Ry (t) defined in (9) we have

I Rall = Op{ (nhlogn)=1/2}. (A.5)
Proof. First we have by the positivity of the kernel K,

-1
||Rn||<[ inf {IDn(l)I-q(t)}} {IHnll - llg = Dpll + 11 Dull - | E Hp 1}
0<r<1

£ Ol =12-{_int 1Dy} -1l
1-1ltn o<r<1 n Jnlloo,

where f,(x) = (nh) "' 3| K{(x — X;)/h}.
The desired result, Lemma A.1, will then follow if we prove

| Hall = 0p{ (ah) ™2 (togm) /2, (4.6)
lg = Dall = 0 { i)~ 10gm) =112}, A7
IE Hull = O(h?), (A8)
I =112 = 0p { (ah) =2 togm) =12, (49

Because (A.8) follows from the well-known bias calculation
EH(0)=h™" [ Ki=u)/hElyly —1O}X = ul fx () du = O(h?),
where O(hz) is independent of 7 in Parzen (1962), we have from Assumption (A2) that
IE Hull = 0p{(a) ="/ 2 (logn) = /2.
According to Lemma A.3 in Franke and Mwita (2003),

sup| Hi (1) — E Hy ()] = O{ (ah) ™2 (logm) /2 |
teJ
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and the following inequality

| Hnll < |Hn — EHyll + | E Hyl

- O{(nh)_l/z(logn)]/z} +(9p{(nh)_l/2(logn)_l/2}

=0{wh) ™" (0gm' 2},

statement (A.6) thus is obtained.

Statement (A.7) follows in the same way as (A.6) using Assumption (A2) and the
Lipschitz continuity properties of K, v, I.

According to the uniform consistency of /,, (¢) —I(t) shown before, we have

1y =11l = Op{(nh) =2 (logn) /2y,

which implies (A.9).
Now the assertion of the lemma follows, because by tightness of D, (f), infy< <1
| Dy, (1) = qo a.s. and thus

IRl = Op{(nhlogn) ™21 + || full).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), || || = Op(1); thus the desired
result || R, | = Op{(nhlogn)~'/2} follows. |

We now begin with the subsequent approximations of the processes Y( ,~Y5 ;.

LEMMA A.2.

1Yo, = Y10l =O{ )2 10gm?}  as.

Proof. Let ¢ be fixed and put L(y) = w{y —1I(¢)} still depending on . Using integration
by parts, we obtain

//F LO)K{(t =)/ h}dZu (x, y)
A an
= | LK@z ey
A ay
—— [ [ zat=heuydiLmk w
A
+ L(an)(an) / Zn(t = h-u, an) dK(u)
—A
A
— L(=an)(~an) / Zn(t —h -, —an) dK(u)
—A
sk { [" zya-n-ayao)

+ L(an)(an)Zn,(t —h-A,an) — L(=an)(—an) Zn(t —h - A, —an)}
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—K(=A) {/_a Zu(t+h- A, y)dL(Y) + L(an)an) Zn(t +h- A, ay)

— L(—=ap)(=an)Zy(t+h-A, _an)} .

If we apply the same operation to Y , with B,{T (x,y)} instead of Z,(x,y) and use
Lemma 2.2, we finally obtain

sup hl/zg(t)1/2|Y0’n(t) =Y ()] = O{n_l/z(logn)z} a.s. |
0<r<1
LEMMA A3. Y], — Yol = Op(h'/?).
Proof. Note that the Jacobian of 7' (x, y) is f(x,y). Hence
Vi (0) = Yo, (1) = '{g(t)h}—”z//r w{y—l(t)}K{(t—x)/h}f(x,y)dxdy"IWn(l, Dl
It follows that

HV2IY = Yl < IWa (1117172

- sup h“//r lurly —LOVK(t = x)/ B} £ (x. y) dx dy.

0<r<1

Because ||g_1/2|| is bounded by assumption, we have
RV = Yol < IWa (1, 1)] - C4 -7 /K{(z—x)/h}dx= Op(D). u
LEMMA A 4. ||Y2, —Y3,] = Op(h!/?).
Proof. The difference |Y; ,,(¢) — Y3, (¢)| may be written as
'{g(z)h}—‘/z//rn[w{y—l(z)}—w{y—l(x)}]K{(r—x)/h}dwn{T(x,y)} .

If we use the fact that / is uniformly continuous, this is smaller than
W12 15712 0p(h),
and the lemma thus follows. u

LEMMA A5. ||Yy,, — Y5, ] = Op(h!/?).

/ {M}l/z_l
g(®)

A 0 gt —hu) /2

Proof.

Y, (t) = Y5, (1) = h™1/2 K{(t —x)/ h}dW(x)

<h~12 K (u)du
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_ 1/2
K(A)W(t—hA) {M} -1
g()

{g(z+Ah)}1/2_l
g(1)

Sl,n )+ S2,n(t) + S3,n (t), say.

{g(z—Ah)}‘/z_l
8() '

a1

+h~ V2 K (=AWt +hA)

The second term can be estimated by

h=V2)1Sy.,1l S K(A)- sup |W(t—Ah)|- sup h~!
0<r<1 0<r<1

By the mean value theorem it follows that
W12 182, = Op (D).

The first term Sy , is estimated as

W28y () = h_l/i Wt —uh)K' (u)

gt —uh)\'/?
) _1} a

1 /A gt —um) Y V2 ( g'(t —uh)
'5/_AW“‘“'”K(”){ ) } { 50) }d”

= |T1,n([) - T2,n(t)|> say;

1751l < Cs ~ffA |W(t — hu)|du = Op(1) by assumption on g(t) = 02(t) - fx (). To
estimate T ,, we again use the mean value theorem to conclude that

t—uh)\'/?
sup A~ {M} —1| < Cg-lul;
0<r<1 g(1)
hence
A /
71,0l < Ce - sup Wt —hu)| K" (u)u/du = Op(1).
0<r<1/—A
Because 83 ,,(t) is estimated as S, ,, (¢), we finally obtain the desired result. n

The next lemma shows that the truncation introduced through {a,} does not affect the
limiting distribution.

LEMMA A.6. ||V, — Yo Il = Op{(logn)~1/2).

Proof. We shall only show that g'(t)~1/2h=1/2 [fp 1 wi{y —1(0)}K{(t —x)/h}dZ,
(x, y) fulfills the lemma. The replacement of g’(t) by g(¢) may be proved as in Lemma A.4
of Johnston (1982). The preceding quantity is less than 2~ 1/2 | g=1/2|| . Iy any vy =
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[()}KA{(-=x)/h}dZ(x,y)]. It remains to be shown that the last factor tends to zero at a
rate Op{(logn)_l/z}. We show first that

Va0 = (Qogm) 20712 [ty 1)K (¢ =)/ W) dZa (. v)

{lyl>an}

£0 foralls,

and then we show tightness of Vj,(¢). The result then follows:

V() = (ogm) 2 um) ™2 3 [y (Y; — 1OLAYi] > an)K (¢ = X;)/ )

i=1

—Ey{Y; —1(O(Yi| > an)K{(r — X;)/ h}]

n
= 2 Xn,t (1),
i=1

where {Xn,;(t)}l'.':l are i.i.d. for each n with EX;, ;(t) =0 for all # € [0, 1]. We then have

EXZ (1) < (logn)(nh) " Ey?(Y; —1(OYL(Y;] > an) K*{(t = X;)/ 1)

< sup K2()-(logn)(nh) T E (Y —1(0OYL(Y;| > ap).
—A<u<A

Hence

n 2
Var{V, (1)} = E{ Y Xn,t(l)} =n-EX; (1)

i=1
< s K2hTogn) [ fy(dy My,
—A<u<A {lyl>an}

where My, denotes an upper bound for 1//2. This term tends to zero by Assumption (A3).
Thus by Markov’s inequality we conclude that

Vo) 20 forallze[0,1].

To prove tightness of {V,,(t)} we refer again to the following moment condition as stated
in Lemma A.1:

E(IVa () = Va ()1 [V (t2) = Va (D1} < €'+ (1 = 11)?
c’ denoting a constant, telt,n]

We again estimate the left-hand side by Schwarz’s inequality and estimate each factor
separately:

E{(V(t) = Va(1)}* = (logn) (nh) ' E 2 P (11, Xi, Y) - 1(1Y; | > ap)
i=1

—E{Wn (@, 11, X, Y1) - 1(1Y;| > an)} |
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where Wy (1,11, X, Y;) = y{Yi = IOYKA( = X;)/ h} — y{Y; = L)} K{( — X1)/ k).

Because y, K are Lipschitz continuous except at one point and the expectation is taken
afterward, it follows that

[E{V () — Vi (17))*1"/2

< €7+ (logn) 232 —m-{/{

If we apply the same estimation to V, (#p) — V;,(t1) we finally have

1/2
fy(y)dy} .
[yI>an}
E{|Vn(t) - Vn(t1)| . |Vn(t2) - Vn(t)”

< C2(logmh ™3|t —1|[t2 — 1] x /{ )y
dap

[y1>
<C -1 |2 because 7 € [t],1,] by Assumption (A3). |

LEMMA A.7. Let A(K) = [ Kz(u)du and let {dy,} be as in Theorem 2.2. Then
(20logn) ' 2[I1¥3 4 1/ (2(K)}/? = dy]
has the same asymptotic distribution as
(201ogn) 211 Yy I AAKOY? = dy].
Proof. Y3 ,(t) is a Gaussian process with
E¥3,(1) =0
and covariance function
r3(t1, 1) = EY3 5 (1) Y3, (22)
= g™ 207 [[ 2ty =1 K i —0/h)
Ty
x K{(tp —x)/h} f(x,y)dxdy
= (8ng@) ™21 [ Py =1@) Ol dKi( =)/ 1)
r?l
x K{(tp —x)/h} fx (x)dx
= (8g @)™ 20" [ (K (1 = 0)/ MK (12 = )/

=r4(ty, 1),

where r4(t1, 1) is the covariance function of the Gaussian process Y4 ,(¢), which proves
the lemma.
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INVESTORS’ PREFERENCE: ESTIMATING AND
DEMIXING OF THE WEIGHT FUNCTION IN
SEMIPARAMETRIC MODELS FOR BIASED SAMPLES

Ya’acov Ritov and Wolfgang K. Hardle

The Hebrew University of Jerusalem and Humboldt- Universitat zu Berlin

Abstract: We consider a semiparametric model for the weight function in a biased
sample model. The object of our interest parametrizes the weight function, and
it is non-Euclidean. The model discussed is motivated by the estimation of the
mixing distribution of individual utility functions in the DAX market. We discuss
the estimation rate of different functionals of the weight functions.

Key words and phrases: Empirical pricing kernel, exponential mixture, inverse
problem, mixture distribution, risk aversion.

1. Introduction

A sample X1,..., Xy is considered biased if it is sampled from a density p
which is represented as : @)
’ _ q(z)w(z
PE) = Fofu(wdu S
Here g is some ‘natural’ pdf (probability density function) for the problem, rep-
resenting the ‘true’ underlying distribution, while w is a given weight function
that biases the sample. In a standard example, X represents the severity of
the disease, and ¢ is the density of X among patients at admission to the hos-
pital. However, it may be more convenient to take a random sample from the
population of patients who are in the hospital at a given time. If the time of hos-
pitalization is proportional to the severity of the case, then the sample is taken
from the density p, which is equal to g ‘length biased’ with w(z) = z. Vardi
(1985) was the first to systematically analyze these models; asymptotic theory
was developed in Gill, Vardi and Wellner (1988); Gilbert, Lele and Vardi (1999)
extended the model to the situation where the weight function depends on some
parameter, w(z) = w(z; f); the large sample properties were discussed in Gilbert
(2000). Equation (1.1) has some similarities to the classical choice-based sam-
ple problem, Manski and Lerman (1977), or retrospective case-control studies,
Mantel (1973). In fact one can consider the situation as if one has an infinite
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Distribution of the Switching Points (2000)
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Figure 1. The DAX data, 24/03/2000 half a year look ahead: (a) p, the
historical density; (b) g, the risk neutral density; (c) The estimate of f, the
mixing density. Figures are taken from DHM.

sample from the control group, and hence ¢ is known, and a finite sample from
the control, the biased sample. The likelihood ratio between the two is the given
w(z; f). The main difficulty we face in this paper is the particular form of w(z; f)
we have.

Technically speaking, our paper is about estimating f, the parameter of the
weight function, w(z) = w(z; f). In the model we consider, g is taken as known,
while the weight function is parametrized by a non-Euclidean parameter. This
brings us to an inverse problem of estimating and demixing the weight function.

In subject matter, our model is motivated by the research on risk aversion
and proclivity, and more precisely on the empirical pricing kernel (EPK), see
Detlefsen, Héardle and Moro (2007) (hereafter DHM). The EPK describes the
apparent utility behavior as function of the individual investors utility function.
In this model ¢ is the risk neutral density of asset pricing, and is derived from
theoretical considerations. The density p on the other hand is the density of the
empirical (historical) prices. See parts (a) and (b) of Figure 1 for an example.
In asset pricing the EPK links a risk neutral investor’s behavior to individual
utilities, which gives in our notation a semiparametric modeling of the weight
function w. The integral function of the pricing kernel ¢/p is the utility function
used by a representing individual. Knowing p and g yields the exact form of the
utility function, cf. Ait-Sahalia and Lo (2000), and Rosenberg and Engle (2002).
The risk neutral (state price) density (SPD) g can be calculated from market
data on European options. There are more than 5,000 observations each day for
maturity from one week to two years. The SPD can therefore be estimated very
precisely. Much empirical research work has demonstrated the so called EPK
paradox: the resulting utility function is partially concave and partially convex,
more precisely of the Friedman and Savage type, Friedman and Savage (1948).
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Figure 2. The utility function U(-;€) of (3.5) (a1 = 2, ag = 2.25, ¢ = 2)
for two different values of £ (solid lines), and of (3.8) for two values broken
lines.

This so called risk aversion puzzle has also been recently discussed in Chabi- Yo,
Garcia and Renault (2008); a recursive utility approach to dynamic pricing kernel
estimation is published in Gallant and Hong (2007); a fundamental reference on
asset pricing theory is the book by Cochrane (2005).

It is assumed in DHM that the observed density of the DAX value has density
of the form p(z) = cq(x)w(z; f), where ¢ € {g,,v € N C R%} is the theoretical
derived risk neutral density, assumed to follow a given parametric function, and
¢ is a normalization factor, that is, of the type (1.1). The weight function is

theoretically derived as
1

w(z: f) = g (@), (1.2)
where U is the market utility function, and prime denotes derivative. The mar-
ket utility is estimated for option data and available historical data, and it also
showed the risk aversion puzzle for the DAX stock market. In DHM an aggre-
gation mechanism was proposed that similarly to Chabi-Yo, Garcia and Renault
(2008) uses a switching point {. This point characterizes the investors switch
from a bearish (low return) to a bullish (high return) risk aversion pattern. A
graph of two different utility functions u(-;€) with switching points §; < & is
presented in Figure 2.
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Simply averaging the utilities is not possible since utilities for different in-
vestors are incomparable. One therefore specifies first a utility level % and aggre-
gates the outlooks on the returns R; with u = UlR:&), i=1,92,.. .. The aggre-
gate estimator of the switching return equals average{U!(u,&),i =1, -
all investors have the same market power. Denoting the investors inverse utility
function by g and assuming a distribution of éwitching points, the market utility
function Uy is itself assumed to be a function of the mixture of the individual
investors:

v =U7 ) = [ gus)fie)ae. (13)

Here £ € E denotes an investor type, f is the density of the investors’ distribution,
and {g(;€) : £ € E} is the (known) class of possible inverse utility functions of
the different investors. A subject of type ¢ has the inverse utility function g(-;¢€)
or, equivalently, he has the utility function u(;€) satisfying g{u(z;€): £} = 2.
The problem we consider is finding the density f. We obtain from (1.1)—(1.3)
the representation:

p(@) = cale) [ 2ol &) (E)de,
where u solves

r= [ 9(u; €)£(€)de. (14)

See Figure 1 for an example taken from DHM of estimates of D, ¢, and f. See
also Figure 2 for an example of g1+ €).

Aggregation problem (1.3) is a way of aggregating preferences that is not
based on the equilibrium theory usually associated with Walras (1874). The
situation considered here is of a different type and is hypothetical when applied
to real markets. The DAX market data were mentioned as suitable for testing
the disaggregation techniques described in the paper.

Aggregation procedure (1.3) relates to the situation where the price of an
asset is obtained as the result of a survey of investors (or experts) before they
made trades. Thus, this price should be considered as a forecast for the next
period, not a reflection of the struggle for limited resources in the market between
investors with different preferences and endowments.

The survey proceeds as following. Each market participant is asked what the
price will be if the conditions in the market are, for example, extremely good.
Extremely good corresponds to some utility level @; in the minds of investors. In
this way all investors agree that they are discussing an economic situation with
the same utility level. As the next step, each investor forms his forecast about
how high the prices would be in such a situation. Those forecasted prices are
recorded and averaged to produce an aggregate opinion of all market participants

is |
{‘/1'
the
tha

vV 1f
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(or experts). If the investors have equal market power, their individual opinions
will be averaged with equal weights. The forecast for different economic situations
corresponding to other utility levels is formed in a similar way.

To sum up, (1.3) describes a mechanism for forming a forecast about future
prices. It gives an idea of which opinions prevailed in a group of investors or
experts that was able to predict prices correctly before trading, for example if
they were more optimistic or pessimistic investors (experts), and to what degree.

In this paper we investigate the estimation of the non-Euclidean parameter
f of a few utility functions. The result is typical for inverse problems, in that
slightly different assumption yield completely different results. In fact, we present
three similar models, similar to those investigated in DHM, that exhibit these
behaviors:

(i) there is no consistent estimator of f;

(ii) f can be estimated at a regular nonparametric rate of n=%;

1

(iii) f can be estimated, but at a very slow rate.

Interestingly, there is a a sort of uncertainty principle: the better we can
estimate the function U~ (u), the worse we can demix it and estimate f. This
is not unexpected. We cannot estimate f well when large differences in f have
only minor impact on [ g(+; &) f(£)d¢.

The structure of the rest of the paper is as follows. In Section 2, we suggest an

algorithm for calculating the generalized maximum-likelihood estimator (GMLE)
for the semiparametric weight function of the model suggested by DHM. Rates
of convergence of the demixing estimator for the DHM’s model are discussed in
Section 3, as well as of estimates of the mixture itself.

2. EPK: Model and an EM estimator

We consider the EPK problem. We start from (1.4) and we assume that g
is known. In practice, it is assumed only to belong to some parametric family
{a,}. However, we deal in the following with rates that are much slower than
the parametric \/n rate, and the estimate of v is based on a much larger sample
than the estimates of the rest of the parameters. Therefore, the assumption that
v is known considerably simplifies the discussion without impacting the results.

Rewrite (1.4) as
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where p is some dominating -measure (e.g., Lebesgue or the counting measure).
Noting that the LHS of (2.1) integrates to 1, ¢ can be found to yield

_ " _ 9w ) f(©)du(©)} [ £a(u; &) F(€)du(€)
o [otworemo] T ] 9w FQAEN] Zo(w: )7 €)duie)Pdo

The market utility U(z) = U(x; f) is given by

v= [ o{Ut@i i€} 1@ante) = v, {vii 1)),
We obtain
9@) [ 5w9(U(@: 1 F©du©)  _ al@wi{v; (@)}
JaW) | 529Uy £:0F©)du(€)dy — [alw)v {67 () }dy’

The statistical model assumed by DHM is that we obtain a simple random sample
from p, where p is parametrized in (2.2) by the non-Euclidean parameter f. A
natural approach is to estimate f by the MLE or a variant of it, which we
develop now. Note that Vivg(u) = g(u;-), and by taking the gradient of z =
J 9{w7 (); €} £(£)dp(€) we obtain

0=g{vr' (@)} + ¥{v; (2)} Vv (2).
The derivative of the log-likelihood is given therefore by

p(z) = (2.2)

(€)= ! TN W PRl v
£p(€) = ; m [ag{wf "X 43 7, {¥7 (X }e{v; (X0); €}

- TLAf(ﬁ),

& merr o ome
{ oty - 7 U998 | =n(o),

with U; = 7,{);1{X%-), and for all § € suppf, where A(£) is the mean of the first
term under f. Since the density of U; is given by

, {9 () Hup (u) )2
i) =gyt = e b

we obtain that
_ S el HY () & 9w ) — 9 (u)g(u; €) ydu
[ a{ws () H', (0) o '

We discusse now how a GMLE can be constructed, and suggest a pseudo-EM
algorithm, that is justified as being the limiting result of proper EM algorithms
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u(€) }2dv

7 (2.2)
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applied in approximate models. To be clear, the approximation introduced in the
following is needed only as a justification for an algorithm applied to the formal
model. The algorithm itself is “exact” and maximizes the exact likelihood. The
technical problem we want to circumvent is the exact functional dependency of X;
and U; which affects the EM. As an intermediate step we weaken the functional
dependency into a proper statistical dependency.

The model of a random sample from the density p can be well-approximated
aso — 0byaX; =9p(U;)+e;,i=1,...,n, where ey, ..., &, is a random sample
from N(0,0?) independent from the random sample Uy, ...,U, taken from the
density ry. Now, the log-likelihood of the joint density is given by

i n

ffZZ[logq{wf i)} + 2log{v}(U;)} TnCE=59

i=1 =1

(X1 — Wf(Ul))za

where Cf = logfql{z[)f('u)}{w}(v)}de. By a well-known formula for the Bayes
estimator in the Gaussian measurement error model, here the distribution of
1/) f( i) —Xi, given X, i 1&; normal with mean o2 f 4 (Xi)/ fx(X;) and second moment

% (Xi)/fx(X;) + 0%, where fx is the marginal density of X;. At the limit
as 02 — 0, the conditional expectation of the log-likelihood, given the X,’s,
amounts therefore to replacing U; by vy L(X;). We conclude that the limiting
EM algorithm iterates therefore between the following steps.

The E step:

Ui — 97 (Xy), i=1,...,n, (2.3)
The M step:

f < argmax [Z { log g{v¢(U3)} + 210g{1[)f(U )}} - an}

Let U = (Uy,...,Un), X = (X1,...,X,), and denote the E-step by U =
w;l(X )- The M-step can be accomplished by solving the likelihood equation:

e i iU ST S
0=(60) =3 | o0 + s o) - 6], @4

for all £ € suppf, where

J1(@{r@)} a{ws(0) (v €) + (2/w}(v))%g(v,a)m{wf(fv)}{w;(v)}?dv

Crlt)= T 1)} 0, @))do
@) 2 o
= | U)}Q(U’f”w}(U)W(U’@J

=E ¢ {T§(U;¢)}, say.
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However, there is no need in the M-step to find the exact maximizer of the
log-likelihood. All that is needed is that the likelihood be strictly increasing
(if possible at all) at every M-step. Therefore, the exact M-step given above
can be replaced by an approximate M-step, that is obtained by considering an
approximate Newton-Raphson solution of (2.4), where the Op(+/n) terms in the
Hessian of the log-likelihood are discarded. That is the term

n

% {Vfo(Uf;f) - EfoTf(U;é)}-

i=1
We consider therefore the Newton-Raphson EM (NR-EM) algorithm:
7 “1pMy.. —1
PO {fi £ S+ H 597 (X)) € > 4y,

the solution of (2.3) otherwise,
where Hy : Ly(u) — Lo(u) is the operator Helf, C) =Coy HTHU; ), T (U3 0) -

3. EPK: Rates of Convergence

In the previous section we considered the MLE estimate of f. In this sec-
tion we consider simple estimators of the type suggested by DHM. Using these
estimators we will be able to discuss possible minimax rates of convergence. In
essence, we start with a naive nonparametric estimator of the mixture, and in
the second step we improve it or demix it for i

One simple method for demixing the EPK is to start with (1.4) which can
be written as

e | gatsorew{ [wosen) = cgunt [ st o).

Hence q/p{ [ g(u; §)f(€)dE} = a + Pu for some « and 3, or

[ swored = (2) @+ ou, (31)

The utility function of an individual is defined up to affine transformation. To
assure that it is well defined, we assume that that at the return of 1 the value
of the utility is 0, and that of the derivative is 1. In terms of the inverse utility
function this translates to g(0,¢) = Q—ig(o,g) = 1. Hence
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The parameter f is therefore the solution of

] 0(u; €) F(€)dE = () (3.3)

for some 9 given explicitly by (3.1) and (3.2). Since q is estimated as a parametric
density (based on a much larger sample), and p can be estimated at a standard
non-parametric rate based on a direct sample from p, v can as well be estimated
at a regular density estimation rate.

The analysis of this section starts with (3.3). We assume that 1 and its rele-
vant derivatives can be estimated at a polynomial rate || — || = Op(n=%)
for some a; > 0. The natural estimator suggested by DHM is given by the in-
verse function of a weighed density estimator. Under strict monotonicity and
boundness, the inverse function inherits most properties from the density kernel
estimator.

Note that model (3.3) looks like a linear model. For example, if f is ap-

proximated by a finite distribution with point mass at &;,...,&n, and (3.3) is
considered at the k points u1,...,u, then it can be written as
m
dlw) =) Biglus &) +&,  i=1,...,k (3.4)
j=1

(3.4) looks like a standard linear model and, indeed, we suggest estimating f by
solving it. However, it is not. Most linear model assumptions are violated, e.g.,
€1,...,Ek are not i.i.d. and they are not independent of the random wuq, ..., ug.

The basic idea of this section is as follow. We assume that we have.some
naive nonparametric estimator of 1». We then proceed to use the pseudo linear
model (3.4) to to estimate the mixing distribution and to improve the estimate
of 1) itself. We show that this method yields the minimax rates.

How fast can f be estimated? In the rest of the section we present simple
examples following DHM. These examples show that in a very similar models
very different types of behavior can be obtained. It can be that (i) There is no
consistent estimator of f; (ii) f can be estimated at a regular nonparametric rate
of n~%; (iii) f can be estimated but at a very slow rate. Thus one can suspect
that any optimistic result of demixing depends too heavily on assumptions, and
are a priori not robust (at least in the minimax sense). In particular, any result
should be checked to stand against different changes in the model.

3.1. Switching between two utilities

Following DHM assume that for z,£& > 0,

U@:§) = (1= ) Vo {le g { V@ -9/} —ap(1-c),  (35)
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where ay > oy > 1 are given, ¢ < 0, and [z]4 = zl(x > 0). See Figure 2. Then
9(05€) = min {5 {u + aa(1 = ) +¢, B {u+ar(l )} +¢),

where § = oy 11 — ¢~/ Ty simplify the notation and generalize the dis-
cussion, we consider a slightly more general case.

Theorem 3.1. Suppose q is known and bounded away from 0 on a open interval,
P has s > 2 bounded derivatives, and

9(u;€) = {gz(u) mHRAIE i) £>0,

n@+Eé  co>u>h@E)’
where g1, ga are continuous with bounded derivatives, and h given by
hl=g—g (3.6)

is a strictly increasing function. Then, f can be estimated with an O,
(n=(=2)/@s+1)) eppop,

Proof. Note that g(u;€) is continuous in ¢. Equation (3.3) can be translated to

h™1(u)
v = [ e + ) ) + ({1 - ),

where F' is the cdf corresponding to the pdf f. Changing variables and consid-
ering (3.6),

${h(s)} = ] “EF(E)dE — sF(s) + ga{h(s)}.

Taking a derivative gives F(s) = h'(s){gh{h(s)} — v'{ h(s)}}. Hence estimating
F at s is equivalent to the estimation of ¢/ at h(s). In other words, f(-) can be
estimated at the same rate as the rate of the estimation of second derivative of
v, which in turn is governed by the rate of estimation of the second derivative of
p. Since, by assumption, p has s bounded derivatives, f can be estimated with
an Op(n~(#=2/(2s+)) error, cf. Silverman (1986).

3.2. Polynomial and exponential inverse utility function

Theorem 3.1 described a relatively optimistic example. However, modest
changes in the inverse utility function may create situations in which f can hardly
be estimated, or even not at all.

Here is a pessimistic example:
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Theorem 3.2. Suppose the CRRA (constant relative risk aversion) utility

90 = (@ )N+~ ¢*} +1, ueR ¢eRY,  @37)

where a is a known integer. Then there is no consistent estimator of f.

Note that g in (3.7) is scaled such that both its value and its derivative at zero
are equal to 1, that is, it represents one branch of (3.5). The proof of Theorem
3.2 is simple. Since « is an integer, ¥(-) is a function of f only through its first
o moments. Hence, these moments can be estimated, but no other aspects of f
can be estimated or identified.

Seemingly, more and more moments are revealed as a — oo, and therefore,
by the above argument, f is going to be identified at the limit. However, it
is not clear that the high moments can be estimated effectively. We consider
the limiting case explicitly. The limiting form of the inverse utility function, as
a — 00 and /¢ — &, is given by

9(u;§) = €7 (e —1) + 1. (3.8)

The density f is now identified. For example, all its moments can be estimated,
eg., by [£'f(¢)de = v+ (0). We are now going to analyze this model in some
detail. We will argue that if f(-) is assumed to have two bounded derivatives,
then its value at a point can indeed be estimated, but this can be done only at
a very slow convergence rate, slower than any polynomial rate.

Theorem 3.3. Assume that g is given by (3.8) and f is bounded and has two
bounded derivatives. Suppose the minimaz rate of estimation of v is n", v €

(0,1/2). Then there is an estimator f such that f(s)—j(s) =0, (n~loglogn/logn)

for some «, and for any o > 0 there is no estimator f(s) such that f(s) — f(s) =
Op(n—u/ log log n).

The proof is given in the on-line supplement, see http://www.stat.sinica.
edu.tw/statistica.

3.3. Smoothing the empirical estimate and an uncertainty principle

We start, as in the previous subsections, with a nonparametric @ The
purpose of this subsection is to show that this initial estimator can be improved
considerably by a simple projection.

We argued in Subsection 3.2 that there is no reasonable estimator of f for g
given in (3.8). If (3.8) is believed to be true, does this means that there is nothing
to do? The surprising answer is no. Although f cannot be estimated per-se, many
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of its functionals can be estimated quite easily and quite well. For example, as

mentioned in Subsection 3.2, its moments. Similarly 1(u), another functional of

[, can be estimated quite easily, considered as a simple linear functional.
Suppose that f is supported on some compact interval [a,b]. Then one can

approximate ¥ (u) = 3", Biu’ + Rp(u), where, for some @ € (0, u);

1 pm Bub

b -
V@) = G, O < s 09)

< R (1) = !

(m+1)!

Generally speaking, the faster the coefficients 3 converge to 0, the easier it is to
estimate ¢ and the harder it is to estimate the mixing density g. As (3.9) shows,
we need only a few terms to approximate v quite well. In fact we show that in
this smooth case, where as on the one hand f can be hardly estimated, 1 can

be estimated almost at the parametric rate. This is not an accident — these are .

two faces of one phenomena. The shape of the observable 1 hardly depends on
the fine details of f, and essentially depends only on a few aspects of f. These
aspects can be estimated well (and hence 1 can be estimated quite precisely).
The other aspects can hardly be estimated and hence f cannot be estimated in a
reasonable rate. This yields an uncertainty principle — the more you are certain
about ¢ the less certain you are about f.

Recall that a function g is called completely monotone if (—1)*g*) > 0, and
it is called a Bernstein function if its first derivative is completely monotone.
It is well-known (Feller (1966)) that g is completely monotone if, and only if,
g(u) = [;7e ™ dF(¢). In other words, 1 is a Bernstein function. Nonpara-
metric maximum likelihood estimation for an exponential mixture (and hence
completely monotone density) was discussed in Jewell (1982). Balabdaoui and
Wellner (2007) discussed the estimation of a k-monotone density.

We assume that there is an estimate w = 1, at our disposal. For any
U1, ..., up > 0, let L(ug,...,ux) € R¥** where Bij(ut,. .., u) = Cov{(w),
J)(uj)}. Consider the following assumption:

Assumptions 1. For any n there is k = &, and uy,...,u; € (c, d), 0 < e @
such that the spectral radius of X(uy,...,ux) is O(k/n), and max; |E(u;)
¥(w)[* = O(logn/n).

Assumption 1 is satisfied by many nonparametric density and regression esti-
mators, when they strictly under-smooth. We care much more about bias than
about variance of the original estimator ¢. Thus, we have in mind a kernel es-
timator with bandwidth of order n=1/4*¢. The spectral radius is based on the
assumptions that the estimator at points that are a multiple of the bandwidth
apart are (almost) independent, for example this is trivially the case with ker-
nel estimators having a compact support. The relationships in the assumption
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obtain when the bias of the estimator is O(0?), the variance is O(1/no), and
E=0O(c1). ;

Consider now the least squares regression of ¥ = {9)(uy),..., w(uk)}T on the
design matrix Z € kamh Zij = u. That is, § = (Z'Z)7'Z'Y, where 3 € R™,
Finally let 1(u) = Z;n:;[ Biw’, u > 0. We argue that the error achieved by 1 is

almost the parametric rate even though 3 can be estimated at a strictly lower
rate.

Theorem 3.4. Suppose glurl) = £ (e — 1) and that f is supported on
a compact interval. Assume 1 holds and m — mp = logn/loglogn. Then

K71 (D) — ()} = O,{(logm)?/n}.
Proof. Let 8% be the true value ﬁ? = [&71F(€)de/5). Write Y = Z3+e, where

¢ includes both the random error and the bias terms due to both the estimator

and the truncation. The latter term is given in (3.9). By standard least squares
results,

. T} it 1o a1 T 72(7T 7 —1,T
k Eg{w( 2 = 1)} k E{ Z(Z7 2) zg}

= k! trace {Z(ZTZ)_IZTE (EET)}.
Since Z(ZTZ)"1Z7 is a projection matrix on a m-dimensional space, the RHS

is bounded by the largest eigenvalue of E (eeT) times m/k. This has three com-
ponents (variance and two biases) and hence

fle i {(us) - w(ui)}z —0 [%{S 4 plosm k(@f}]

n m!

The factor k before the last two terms is due to the norm of the unit vector in Rk,
and, the last term is by (3.9). The theorem follows by taking m = logn/loglog n.

A more general result can be based on an assumption like the following.

Assumptions 2. For some ¢, d and each ¢ there are he1,..., he M(e) such that

M(e)

9(u; &) = > ysh;(u)
j=1

Sup min max

< 8
¢ Y e<u<d

Note that clearly the assumption ensures the existence of y(-) such that MaXccqy<d
A(e
lg(u; &) — Z?:(I)ﬁ/j(g)hj(u)l < &, but then there are also Bi = [ (&) f(&)de,

J=1,...,M(e), such that max,c,4 [¥(u) — Z?i(f) Bih;(u)| <e.
The following theorem can be proved similarly to Theorem 3.4:
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Theorem 3.5. Suppose Assumptions 1 and 2 hold. Let En = argmin {M(e)
/n+e}, and let 1 be the least squares estimate of the regression of 1 on he,, 1,.

P M (en)- Then k20 {h(ui) — d(us)}? = Op(en).

‘g

In practice, Theorems 3.4 and 3.5 may seem to be of limited use — &, knowl-
edge of the structure of the span of the individual utility functions is needed, and
the regression is based on an identified efficient base, which may not be natural.
For example, we used a polynomial base for the exponential utility function. The
practical approach is a histogram or discrete approximation of f. Does such a
procedure yield an effective estimator, an estimator which is both statistically
speaking efficient, but at the same time easy to compute and can be be used in
off-the-shelf manner?

This is indeed the case. Let &1,...,¢ M(e) be reasonably spaced points in the
support of f. With the notation introduced after Assumption 2, and by a similar
argument, for a vector 3 on the simplex

M(z) M(e)  M(e)
sup| 3 Big(ui &) — > 6 Y nl)hi(w)| <e.
volg= j=1 =1
Hence, one can use the base function g(:; E1 )i s a4 EM(e)) as well.
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Abstract: We propose a new nonlinear classification method based on a Bayesian
“sum-of-trees” model, the Bayesian Additive Classification Tree (BACT), which
extends the Bayesian Additive Regression Tree (BART) method into the classi-
fication context. Like BART, the BACT is a Bayesian nonparametric additive
model specified by a prior and a likelihood in which the additive components are
trees, and it is fitted by an iterative MCMC algorithm. Each of the trees learns
a different part of the underlying function relating the dependent variable to
the input variables, but the sum of the trees offers a flexible and robust model.
Through several benchmark examples, we show that the BACT has excellent
performance. We apply the BACT technique to classify whether firms would be
insolvent. This practical example is very important for banks to construct their
risk profile and operate successfully. We use the German Creditreform database
and classify the solvency status of German firms based on financial statement

information. We show that the BACT outperforms the logit model, CART and



the Support Vector Machine in identifying insolvent firms.

Key words and phrases: Classification and Regression Tree, Financial Ratio,

Misclassification Rate, Accuracy Ratio
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1 Introduction

Classification techniques have been popularly used in many fields. Standard classification
tools include linear and quadratic discriminant analysis and the logistic model. The support
vector machine (SVM) (Vapnik, 1995, 1997) recently arises as an important nonlinear classi-
fication tool. It maps the input space nonlinearly into a high dimensional feature space, and
tries to find linear separating hyperplanes for the classes in the feature space, penalizing the
distances of misclassified cases to the hyperplanes. The SVM has been widely and success-
fully applied to classification problems in many domains and often shown to have excellent
performance compared to other classification methods.

Decision trees compose an important category of nonlinear classification methods. Ever
since the introduction of the classification and regression tree (CART) by Breiman et al.
(1984), it has attracted strong interest from researchers and practitioners. Figure 1 shows
an example of a classification tree, where the root node (1) contains all training observations,
and the training data are recursively partitioned by values of the input variables (z’s) until
reaching the leaf (terminal) nodes (t3, t4, ts and t7) where the classification decision (for y) is
made for all observations contained therein. For regression problems in which the dependent
variable is continuous, a predicted value for the dependent variable would be assigned for all
observations contained in each leaf node.

Traditional search methods for CART models use locally greedy algorithms to find the
partitions. The Bayesian approaches for CART models (Chipman et al., 1998; Denison et al.,
1998; Wu et al., 2007) specify a formal prior distribution for trees and other parameters and

use Markov Chain Monte Carlo methods to sample them from the posterior distribution.
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Figure 1: Example of a classification tree.

Chipman et al. (2006) proposed the Bayesian Additive Regression Tree (BART), in which
the mean of a continuous dependent variable is approximated by a sum of trees rather
than a single tree. This “sum-of-trees” model is defined by a prior and a likelihood, and
fitted by iterative MCMC algorithm. Each individual tree explains a different portion of the
underlying mean function, but the sum of these trees turns out to be a flexible and adaptive
model. Chipman et al. (2006) showed that BART outperforms several competitive models,
including LASSO (Efron et al., 2004), gradient boosting (Friedman, 2001), random forests
(Breiman, 2001), and neural networks with one layer of hidden units. We will extend BART
into the classification context, and therefore term the resulting classification technique as
the Bayesian Additive Classification Tree (BACT).

To investigate the differences among the logit model, SVM, CART and BACT, we plot
in Figure 2 the contours of these models trained to classify the solvency status of German
firms using the German Creditreform database based on only two variables — the ratio

of operating income to total assets (3 in Figure 2) and the ratio of accounts payable to



total sales (224 in Figure 2). Details of this application will be discussed in Section 4. The
contours for the logit model are linear, thus making it inflexible for complex applications.
The SVM finds flexible smooth curves in the input space (linear hyperplanes in the feature
space) that can separate the classes. The CART is based on a single tree which recursively
partitions the observations by the input variables, and hence the contours are piecewise
linear. The BACT is based on the sum of many trees, so the contours are not constrained
to be piecewise linear as in CART; although these contours are not as smooth as in SVM,
they are quite flexible in explaining complex structure.

The rest of this paper is organized as follows. Section 2 will describe the BACT in
detail. Section 3 will use several benchmark examples from the UCI Machine Learning
Repository to compare the performance of the BACT with the logit model and the SVM.
Section 4 will discuss our application to classification of solvency status of Germany firms

using the German Creditreform database. Section 5 then concludes.

2 The Bayesian Additive Classification Tree (BACT)

2.1 The Model

Consider a binary classification problem in which an dependent variable Y € {1,0} needs
to be predicted based on a set of input variables * = (zy,---,7,)". The majority of

classification models assume that there is a latent continuous variable Y* that determines
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Figure 2: The contour plots for the logit model,

stars represent insolvent firms and solvent firms respectively. The numbers by the contours

indicate the probabilities of insolvency.



the value of Y as follows

Y=1ifY*>0
Y=0ifY*<0
In the context of generalized linear models (GLM), the relationship of Y* and @ is

Y* =060+ bz + - + By + €,

where the distribution of € determines the link function, e.g. logit or probit. The generalized
additive models (GAM, Hastie and Tibshirani (1990)) replace each linear term in the GLM

by a more generalized functional form and relate Y* to @ by

Y* =06+ fi(w) + -+ fplzp) + &,

where each f; is an unspecified smooth function.

Following the idea of the BART in Chipman et al. (2006), we assume that Y* is related
to x through an additive model, where each additive component is a tree based on all input
variables (rather than a flexible function based on a single input variable as in GAM). In
order to formally introduce the model, we first introduce some notation. Let m denote the
number of trees to be used. For j = 1,--- ,m, let T; denote the j'th tree with a set of
partition rules based on the input variables, and let L; denote the number of leaf nodes in
Ty for i =1,---,Lj, let pj denote the (continuous) predicted value associated with the ’th
leaf node in T}, and let Mj; = {1, ptjo, -+, iz, ;. For a given value of x, let g(x, T}, M;)
denote the predicted value associated with the leaf node that an observation with input
variables being & would land in based on the partition rules for 7;. Thus Y™ is formally

modelled as

Y* = g(x;Th, My) + g(x; To, Ma) + - - + g(x; Thny Myy,) + €, (2)

7



and we further assume that ¢ ~ N(0, 1), using a probit-like link.

2.2 Prior Specification

In order to make inferences from the model given by (1) and (2) in a Bayesian way, we
need to specify a joint prior distribution for the unknown tree structures and leaf nodes
parameters. We assume a priori that the tree structures and the leaf node parameters have

independent distributions, so the full prior distribution can be written as

m mL

p{(Th, My), (T3, Ma), - -+, (T, M) } = HP(TJ) HHP(NJJ)-

j=1 j=11=1

<

We further assume that every tree follows the same prior distribution, and every p;; follows
the same prior distribution. So the task of prior specification is reduced to specifying the
prior distribution for a single tree 7" and that for a single uj; parameter.

For a single tree T, we need to specify the prior distributions for its partition rules,
including whether to further split a node or leave it as a leaf node, and if a further split is
needed, which input variable and what values to be used for that split. We use the prior
distribution for a single tree 7" as in Chipman et al. (2006). The prior probability of splitting
any node n in tree 7T is

psplit(na T) X 05(1 + dn>_ﬁa

where d,, is the depth of node n in tree T (the depth of node n is the length of the path
from the root node to node n; e.g., in Figure 1, the node t; has depth 0, and the nodes
and t3 have depth 1). « and [ here are positive hyperparameters, hence the deeper a node
is, the smaller probability there is to further split it, or the larger probability that this node

becomes a leaf node. It turns out that the performance of BACT is not very sensitive to the

8



Table 1: Prior distribution on number of terminal nodes based on different values of a and

G.
Setting 1 Setting 2 Setting 3

a 0.5 0.95 0.95
16} 2 2 0.1

prior probability of trees with 1 terminal node 0.5 0.05 0.05
prior probability of trees with 2 terminal nodes 0.383 0.552 0.012
prior probability of trees with 3 terminal nodes 0.098 0.275 0.004
prior probability of trees with 4 terminal nodes 0.017 0.092 0.002
prior probability of trees with > 5 terminal nodes 0.003 0.031 0.932

choice of alpha and beta. We tried three different settings listed in Table 1 where a priori
the trees range from small size to large size, and the resulting performance was quite similar.
So we just pick o = .95 and § = 2 as in Chipman et al. (2006). If a node needs to be split,
the prior for the associated splitting rules assigns equal probability to each available input
variable and equal probability on each available rule given the variable.

The prior distribution of pj is taken to be a conjugate normal distribution p;; ~
N(0,07) (conjugate because ¢ in (2) follows a normal distribution). From (2), we can see
that the expected value of Y* is equal to the sum of m different p;; parameters (recall that
g(x,T;, M;) is the pj; parameter associated with the leaf node that an observation with
input variables being @ would land in based on the partition rules for 7}); because of the a
priori independence of ji;;’s, the prior distribution for the expected value of Y* is N (0, moﬁ).
Combining this with (1), it can be inferred that a priori each observation has probability 0.5
belonging to class 1 and probability 0.5 belonging to class 0.

To specify 03, we use the following procedure. We first estimate the range of Y* (to be

explained soon), and then choose O'i such that there is at least 95% prior probability that the



expected value of Y* is in the estimated range. Let the training data be D = {(z;, vi)}Y,,
where N is the number of observations in the training data. We first randomly sample y; for
each observation 7 in the training data from truncated standard normal distributions such
that the relationship in (1) holds between y; and the observed y;. Suppose that the sam-
pled values are y*© = {y~ © N |, and denote the minimum and maximum values of ¥ ©) as
min(y*(?) and max(y*©@) respectively. Then [min(y*®), max(y*(?))] is a very rough estimate
of the range of Y*. We choose an initial O'Z(O) such that there is at least 95% prior prob-
ability that the expected value of Y* is in this interval, i.e., [—2\/503(0), 2\/505(0)] covers
[min(y*®), max(y*®)] and therefore 020 = max {— min(y*?)/2y/m, max(y*)/2/m}.
We then run the Markov Chain Monte Carlo (MCMC) algorithm to be described in Section
2.3 to generate posterior samples of ¥, and suppose that we obtain one posterior draw of
gy = {y (1)}?;1 after dropping the first By posterior draws used to reach convergence.
We assume this set of y can be used to estimate reasonably the range of the true under-
lying Y*, and choose the value of O'i for further analysis such that there is at least 95%

prior probability that the expected value of Y* is in the interval [min(y*®")), max(y*M)], i.e.,

02 = max { — min(y*™)/2y/m, max(y*V)/2y/m}.

2.3 Generation of Posterior Samples and Inference

We use the data augmentation method (Tanner and Wong, 1987) by treating y* = {y; }¥,
as missing data, and then use the Gibbs sampler to generate samples from the posterior
distribution p{(Tl, Ml), (TQ, MQ), ety (Tm, Mm), y*|D}

Let T(; denote the m — 1 trees other than 7}, and let M(; denote the parameters

10



associated with the leaf nodes in 7{;). The Gibbs sampler composes of drawing m successive
draws of (T}, M;) for j = 1,--- ,m from p{(7}, M;)|T{;), M(;),y*, D} followed by draw of
y* from p{y*|(Th, My),(T5, Ms),- -+, (T, M,,), D}. The draws of (T}, M;) can be generated
similar to Chipman et al. (2006). Let g; = >'", g(@; T}, M;) denote the fitted value for
observation ¢ from the m trees. Then y (i = 1,---,N) can be independently generated

from truncated normal distributions:

yf ~ N(gf,1)andyf >0 ify, =1

yi ~ NG 1) and yf <0 if g, =0
After ai has been chosen according to the procedure described in Section 2.2, we can
drop the first By posterior draws used to reach convergence, and use subsequent S posterior
draws for inference. Denote these S posterior draws as {(T\”, M\V), - (T, MG},
Given the s’th draw, the probability that an observation with input variables & belongs to
class 1is ® {Z;”:l g(x, Tj(s), M J(S)) }, where ® is the cumulative distribution function of stan-
dard normal distribution. Therefore, the posterior average probability that an observation
with input variables & belongs to class 1 can be estimated as

1S m
§Zq>{zg(w,Tf),Mf>)}. (3)

s=1 j=1
We can use (3) to classify observations in training data or other data: if the probability

calculated from (3) is larger than 0.5, then the observation is classified into class 1; otherwise

it is classified into class 0.
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Table 2: For five benchmark data sets from the UCI Machine Learning Repository, the

number of cases, the number of variables, and the average misclassification rates for the test
data using the logit model, the SVM and the BACT.

Data Set # Cases # Variables Logit SVM BACT
breast cancer 683 9 3.8% 28%  3.3%
ionosphere 351 34 12.8% 45%  7.2%
diabetes 768 8 21.8% 25.2% 24.8%
sonar 208 60 29.8% 19.4% 17.2%
German credit 1000 30 23.6% 27.3% 23.6%

3 Benchmark Examples

To compare the performance of the BACT with the logit model and SVM (in which radial
basis function is used as the kernel, and the parameters are chosen by cross-validation),
we use five data sets for binary classification from the UCI Machine Learning Repository
(Asuncion and Newman, 2007): breast cancer, ionosphere, diabetes, sonar, and German
credit. Columns 2-3 in Table 2 summarize the number of cases and the number of variables
for these data sets. Throughout the rest of the paper, in the BACT method, we fix m = 200,
B; =500, By = 1000 and S = 1000.

We partition each data set randomly into 80% of training data and 20% of test data.
The training data is used to fit the models, and misclassification rate on the test data is
calculated. Such procedure is repeated for 20 times, and columns 4-6 in Table 2 report
the average misclassification rates on the test data using the logit model, the SVM and the
BACT. We can see that the BACT has comparable performance with the SVM, and has no

worse performance than the logit model except for the “diabetes” data set.
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4 Classification of Solvency Status of German Firms

We use the German Creditreform database, which contains financial statement information
on 20,000 solvent and 1,000 insolvent firms in Germany and spans the period from 1996 to
2002. Information on the insolvent firms were collected two years prior to insolvency. Chen
et al. (2007); Hardle et al. (2008) applied SVM to classify the solvency status of German
firms, with the former using the German Creditreform database. We will preprocess the
data set in the same way as Chen et al. (2007) do, and compare the results of our BACT
with those of the logit model, CART and SVM.

Following Chen et al. (2007), we clean the data of firms whose characteristics are very
different from the others. We first eliminate firms within industries with small percentage
in the industry composition and are left with 949 insolvent firms and 16583 solvent firms in
four main industries — Construction, Manufacturing, Wholesale & Retail Trade and Real
Estate. We then exclude those firms whose asset size is less than 10> EUR or greater than
10® EUR, because the credit quality of small firms often depends as much on the finances
of a key individual as on the firm itself and largest firms rarely go bankrupt in Germany.
We further exclude the solvent firms in 1996 due to lack of insolvent firms in that year. We
also eliminate firms with zero value for some variables used as denominators in calculating
financial ratios to be used in classification. Several apparent outliers are then deleted and
we end up with a data set with 783 insolvent firms and 9,575 solvent firms (due to slightly
different ways of deleting outliers, our remaining solvent firms differ a little from the 9,583
solvent firms in Chen et al. (2007)).

We adopt the same set of financial variables to be used for classification as in Chen et al.
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(2007) and list them in Table 3. The five number summary of these financial variables are
listed in Table 4 for insolvent firms and solvent firms separately. In order to avoid sensitivity
to outliers in applying the SVM, Chen et al. (2007) truncated each financial variable to be
between its 5% quantile and 95% quantile. The BACT, however, only uses the ordering of
values of the input variables in the partition rules, so there is no need to do such truncation.

We use the data from 1997 to 1999 to train the model, and use the data from 2000
to 2002 to test the resulting model. The training set contains 387 insolvent firms and 3535
solvent firms, and the test set contains 396 insolvent firms and 6040 solvent firms. Because
the density of insolvent firms is rather low, we need to oversample the insolvent firms in
order for the models to pick up the patterns predictive of insolvency (e.g., Berry and Linoff
(2000), chap. 5). This is done through the bootstrap technique (Efron and Tibshirani, 1993;
Sobehart et al., 2001). For each bootstrap sample, a training subset is constructed as follows.
We use all 387 insolvent firms in the training set and randomly sample 387 solvent firms from
the training set. This subset of 774 firm with 50% being insolvent is then used to train the
model. When training the CART model, the training subset is further randomly partitioned
into two parts stratified by the solvency status of the firms. The first part comprises of 80%
of the training subset and is used to grow the tree, and the second part comprises of the
remaining 20% of the training subset and is used to prune the tree. Performance measures
are then evaluated using all observations (396 insolvent firms and 6040 solvent firms) in the
test set. The average performance measures over 30 bootstrap samples are then calculated.
We can compare average performance measures across different models.

We consider two performance measures: Accuracy Ratio (AR) (Sobehart and Keenan,
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Table 3: Definition of financial variables to be used for classification for the Creditreform

data.
Var. Definition
x1  Net Income/Total Assets
x2  Net Income/Total Sales
x3  Operating Income/Total Assets
x4 Operating Income/Total Sales
xb  Earnings before Interest and Tax/Total Assets
x6  Earnings Before Interest, Tax, Depreciation and Amortization/Total Assets
x7  Earnings before Interest and Tax/Total Sales
x8  Own Funds/Total Assets
9 (Own Funds — Intangible Assets)
x /(Total Assets — Intangible Assets — Cash and Cash Equivalents — Lands and Buildings)
x10  Current Liabilities/Total Assets
x11  (Current Liabilities — Cash and Cash Equivalents)/Total Assets
x12  Total Liabilities/Total Assets
x13  Debt/Total Assets
x14  Earnings before Interest and Tax/Interest Expense
x15  Cash and Cash Equivalents/Total Assets
x16  Cash and Cash Equivalents/Current Liabilities
x17  (Cash and Cash Equivalents — Inventories)/Current Liabilities
x18  Current Assets/Current Liabilities
x19  (Current Assets — Current Liabilities)/Total Assets
x20  Current Liabilities/Total Liabilities
x21  Total Assets/Total Sales
x22  Inventories/Total Sales
x23  Accounts Receivable/Total Sales
x24  Accounts Payable/Total Sales
x25  log(Total Assets)
x26  Increase (Decrease) in Inventories/Inventories
x27  Increase (Decrease) in Liabilities/Total Liabilities
x28 Increase (Decrease) in Cash Flow/Cash and Cash Equivalents
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Table 4: Five number summary (minimum, lower quartile, median, upper quartile, maxi-

mum) of the financial variables for insolvent firms and solvent firms.

Insolvent Firms

Solvent Firms

Var. min Q1 mdn. Q3 max min Q1 mdn. Q3 max
x1 -1.51  -0.02 0.00 0.02 1.13 -4.82  0.00 0.02 0.06 5.92
x2 -5.41 -0.02 0.00 0.01 6.10 -17.13  0.00 0.01  0.03 15.91
x3 -0.97 -0.04 0.00 0.03 1.14 -4.82  0.00 0.03 0.09 5.97
x4 -3.38 -0.02 0.00 0.02 10.15 -44.81  0.00 0.02 0.04 20.39
XD -0.99 -0.01 0.02 0.05 1.15 -1.51  0.02 0.056 0.11 5.95
x6 -0.91  0.03 0.07 0.11 1.17 -1.46  0.06 0.11 0.18 5.95
x7 -3.55 -0.01 0.01 0.04 10.27 -39.63  0.01  0.02 0.05 14.53
x8 0.00 0.00 0.06 0.14 0.96 0.00 0.05 0.14 0.28 0.99
x9 -0.86  0.00 0.05 0.17 2.31 -2.68 0.05 0.16 0.37 49.18
x10 0.01 037 052 0.73 1.00 0.00 025 042 0.64 4.13
x11 -0.35 033 049 0.69 0.99 -0.86  0.17 0.36  0.58 4.12
x12 0.01 054 0.76 0.89 1.00 0.00 042 0.65 0.82 4.37
x13 0.00 0.09 021 0.37 0.91 0.00 0.02 0.15 0.33 0.98
x14 -17658.06 -0.56 1.05 1.92 433.40 -22796.04 086 2.16 6.55 516896.73
x15 0.00 0.00 0.02 0.06 0.44 0.00 0.01 0.03 0.11 0.90
x16 0.00 0.01 0.03 0.12 25.01 0.00 0.01 0.08 0.30 40.61
x17 0.01 043 0.68 0.97 57.44 0.00 0.59 094 1.58 238.37
x18 0.03 1.00 1.26 1.84 62.63 0.06 1.11 1.58 2.67 989.76
x19 -0.69 0.00 0.15 0.36 0.92 -3.45  0.06 0.25 047 0.98
x20 0.07 062 084 0.99 1.18 0.01 056 0.85 1.00 1.00
x21 0.07 040 0.61 094 97.26 0.02 032 048 0.74 828.76
x22 0.00 0.08 0.16 0.34 89.96 -0.14  0.05 0.11 0.21 451.09
x23 0.00 0.07 0.12 0.18 0.87 0.00 0.05 0.09 0.14 21.85
x24 0.00 0.09 0.14 0.19 43.96 0.00 0.04 0.07 0.11 61.29
x25 11.72 14.07 14.87 15.76  18.25 11.51 14.25 1541 16.62 18.42
x26 -46.89 -0.09 0.00 0.26 2.83 -282.51 -0.01 0.00 0.06 145.12
x27 -12.75 -0.04 0.00 0.11 1.00 -2891 -0.04 0.00 0.10 1.00
x28  -1283.20 -0.61 0.00 0.18 1.00  -2513.39 -0.27 0.00 0.26 1.75
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2001; Engelmann et al., 2003) and misclassification rate. AR is calculated using the Cumu-
lative Accuracy Profiles (CAP) (Sobehart and Keenan, 2001; Engelmann et al., 2003) curve.
To obtain the CAP curve, the firms are first ordered by risk scores from riskiest to safest. For
BACT and the Logit model, the risk score is simply the predicted probability of insolvency;
for SVM, the risk score can be calculated as distance to the separating hyperplane. The
higher the risk score is, the riskier the firm is. For a given fraction ¢ of the total number of
firms, the CAP curve is constructed by calculating the fraction r(gq) of the insolvent firms
whose risk scores are equal to or larger than the minimum score at fraction q.

Figure 3 plots the CAP curve for the test set of the Creditreform data where the scoring
model is the BACT model trained using one bootstrap training subset. In the ideal case, the
insolvent firms will be assigned the highest risk scores, and therefore the CAP curve would
be increasing linearly and then stay at one. For a random model without any discriminative
power, the fraction ¢ of all firms with the highest risk scores will contain fraction ¢ of all
insolvent firms, and therefore the corresponding CAP curve will be a straight line connecting
the points (0,0) and (1,1). AR is defined as the ratio of the area between the CAP curve
for a scoring model and that for the random model to the area between the CAP curve for
the ideal case and that for the random model. The value of AR lies between zero and one,
with zero indicating no discriminative power of the scoring model and one indicating perfect

discriminative power. Mathematically, AR is defined as

fol Tmodel(Q>dq - %

AR = =5 =,
f() T’ideal(Q>d )

(4)

where 7,,04e1(q) and 7r4eq1(q) indicate 7(g) for the scoring model and the ideal case respec-

tively, and the integrals can be approximated by % Zf\il r(i/N) where N is the number of
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observations in the test set.

1.0

ideal case

0.8

scoring model

random model

fraction of insolvent companies

0.2
1

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

fraction of all firms

Figure 3: The CAP curve for the test set of the Creditreform data where the scoring model

is the BACT model trained using one bootstrap training subset.

We also consider three types of misclassification rates: the overall misclassification rate,
the type I misclassification rate and type II misclassification rate. Here type I misclassifica-
tion refers to the case when the firm is in fact insolvent, but the model classifies the firm as
solvent; whereas type II misclassification refers to the case when the firm is in fact solvent,
but the model classifies the firm as insolvent. Financial institutions usually seek to keep
either type of misclassification rate as low as possible (Sobehart et al., 2001).

Table 5 reports the average values of AR in (4) and the three types of misclassification
rates for the Logit model, CART and BACT. Apparently, BACT outperforms the Logit
model and CART in all aspects except for average Type I misclassification rate for which

BACT is slightly worse than CART.
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Table 5: The average values of AR and the three types of misclassification rates for the Logit
model, CART and BACT.

Performance Measure Logit CART BACT
AR 52.1% 58.7%  60.4%
Overall Misclassification Rate  30.2% 33.8%  26.6%
Type I Misclassification Rate  28.3% 27.2% 27.6%
Type II Misclassification Rate 30.3% 34.3%  26.5%

Rather than using all data from 2000 to 2002 as the test set, Chen et al. (2007)
used a test subset for each bootstrap sample, which comprises of all insolvent firms and a
random sample of the same number of solvent firms in the test set. They reported that the
median AR value for 30 bootstrap samples was 60.5%, using % Zlﬂl p(i/10) to approximate
the integrals in calculating the AR value. The median overall misclassification rate was
calculated as 28.2%. If we adopt the same procedure, BACT yields a median AR value of

66.5% and median overall classification rate as 27.2%. So BACT also outperforms SVM in

identifying the insolvent firms.

5 Concluding Remarks

In this paper, we propose the Bayesian Additive Classification Tree as a general nonlinear
classification method. We show that, based on the sum of many trees, the BACT can yield
flexible class boundaries, and that it has excellent performance compared with the logit
model, CART and SVM, as demonstrated through several benchmark examples and a real
application to credit risk modelling.

Because the partitions in each tree depend only on the ordering of the values of the
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input variables rather than the values themselves, the BACT is robust to extreme values
in the input variables, and the results do not change with monotone transformation of any
input variable. Hence little data processing is needed when using the BACT technique.
Another thing to note is that although we only discuss binary classification in this paper,

extension to multi-class classification is straightforward and left as future research.
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ABSTRACT

Recently, support vector machine (SVM), a novel artificial neural network
(ANN), has been successfully used for financial forecasting. This paper deals
with the application of SVM in volatility forecasting under the GARCH frame-
work, the performance of which is compared with simple moving average,
standard GARCH, nonlinear EGARCH and traditional ANN-GARCH models
by using two evaluation measures and robust Diebold—Mariano tests. The real
data used in this study are daily GBP exchange rates and NYSE composite
index. Empirical results from both simulation and real data reveal that, under
a recursive forecasting scheme, SVM-GARCH models significantly outper-
form the competing models in most situations of one-period-ahead volatility
forecasting, which confirms the theoretical advantage of SVM. The standard
GARCH model also performs well in the case of normality and large sample
size, while EGARCH model is good at forecasting volatility under the high
skewed distribution. The sensitivity analysis to choose SVM parameters
and cross-validation to determine the stopping point of the recurrent SVM
procedure are also examined in this study. Copyright © 2009 John Wiley &
Sons, Ltd.

KEY WORDS (recurrent) support vector machine; GARCH model; volatility
forecasting; Diebold—Mariano test

INTRODUCTION

Volatility is important in financial markets since it is a key variable in portfolio optimization, securi-
ties valuation and risk management. Much attention of academics and practitioners has been focused
on modeling and forecasting volatility in the last few decades (see Franses and McAleer, 2002, and
Poon and Granger, 2003, for a comprehensive review). So far in the literature, the predominant
model of the past is the GARCH model by Bollerslev (1986), who generalizes the seminal idea on

*Correspondence to: Shiyi Chen, China Center for Economic Studies, School of Economics, Fudan University, Guoquan
Road 600, Shanghai, China 200433. E-mail: shiyichen@fudan.edu.cn
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ARCH by Engle (1982), and its various extensions; see Li et al. (2002) for recent surveys of the
models. The GARCH family models, together with the simplest historical price model prevalent in
the pre-GARCH era' and stochastic volatility model studied a decade later than GARCH develop-
ment,” comprise one of the two broad categories of methods widely used in volatility forecasting,
the so-called time series volatility model; another is the market determined option implied volatility
model.* This paper limits itself mainly to the analysis within the GARCH framework.

The popularity of the GARCH model is due to its ability to capture volatility persistence or clus-
tering, supported by many studies (Akgiray, 1989; Bollerslev et al., 1992; West and Cho, 1995;
Andersen and Bollerslev, 1998; Marcucci, 2005). However, some empirical studies report that the
GARCH model provides poor forecasting performance (Jorion, 1995, 1996; Brailsford and Faff,
1996; Figlewski, 1997; McMillan et al., 2000; Choudhry and Wu, 2008). To improve the forecasting
ability of the GARCH model, some alternative approaches have been advocated by innovating the
model specification and estimation, by using different evaluation metrics and definitions of realized
volatility,” or by enriching the informational content of the model.®

As for GARCH model specification and estimation, for example, many financial returns are
skewed distributed and nonlinearly dependent such that the linear GARCH model cannot cope with
them and therefore forecast of symmetric GARCH model would be biased (Pagan and Schwert,
1990; Bollerslev et al., 1992). To deal with this problem the regime-switching (RS) volatility model
is proposed to detect nonlinear behavior in the variance by various tests for asymmetry or threshold

'This includes simple moving average method, exponential smoothing method, random walk model, ARMA model,
exponentially weighted moving average (EWMA) method and its current extension of Riskmetrics™ model, etc.

>The stochastic volatility (SV) model has an additional innovative term in the volatility dynamics (Taylor, 1986). For a
detailed discussion on the SV model and its relation to the GARCH class models, see the survey articles by Ghysels et al.
(1996) and Chib et al. (2002), among others.

3The time series volatility model is based on historical price information only, while the option implied volatility (IV) model
uses market traded option information alone or in addition to historical price sets to forecast volatility. Many studies examine
the relative performance of the IV model to forecasting volatility (Day and Lewis, 1992; Lamoureux and Lastrapes, 1993;
Pong et al., 2004; Dotsis et al., 2007; Becker et al., 2009; Neely, 2009). This paper limits itself mainly to analysis within
the GARCH framework.

“Except for the introduction below, other relatively sophisticated GARCH models and estimations include the multivariate
GARCH model (Bauwens et al., 2006; Rosenow, 2008), outlier-corrected GARCH model (Park, 2002; Zhang and King,
2005; Ané et al., 2008), Markov chain Monte Carlo (MCMC) sampling techniques to estimate the GARCH model (Gerlach
and Tuyl, 2006), other semiparametric or nonparametric specification and estimation such as genetic algorithm, wavelet
smoother, kernel density etc. (Franke et al.,, 2004; Lux and Schornstein, 2005; Reno, 2006; Chen et al., 2008; Feng and
McNeil, 2008; Corradi et al., 2009) and combination forecasts from competing approaches (Hu and Tsoukalas, 1999; Dunis
and Huang, 2002).

*Many studies find that the relative accuracy of various models is also highly sensitive to the measures used to evaluate
them (Taylor, 1999; Brooks and Persand, 2003). Most comparisons are based on the average figure of mean absolute error
(MAE) and mean square error (MSE) etc. Diebold and Mariano (1995) and West (1996) show how standard errors for MAE
and MSE are derived taking into account serial correlation in the forecast errors for statistical inference. Lehar et al. (2002)
applies value-at-risk (VaR)-oriented evaluation measures to compare the out-of-sample performance. In addition to the sym-
metric measures of MAE and MSE, Balaban (2004) also uses asymmetric evaluation criteria such as mean mixed error sta-
tistics to compare the forecasting performance, penalizing under/over-predictions of volatility more heavily. Recent research
has also suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify
correctly the true volatility measure against which forecasting performance is measured. It is argued that the standard
approach of using ex post daily squared returns as the measure of true volatility includes a large noisy component. An alter-
native measure for true volatility has therefore been suggested based on the cumulative squared returns from intra-day data,
also referred to as realized, or integrated volatility (Andersen and Bollerslev, 1998; Andersen et al., 2003; Meddahi, 2003;
McMillan and Speight, 2004; Galbraith and Kisinbay, 2005; Ghysels et al., 2006).

°In many instances, the researchers find the inclusion of implied volatility or trade volume as an exogenous variable in the
framework of the GARCH model to be beneficial (Brooks, 1998; Fleming, 1998; Blair et al., 2001; Koopman et al., 2005;
Gospodinov er al., 2006; Becker et al., 2007).
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nonlinearity (Franses and Dijk, 2000). The first class of RS volatility model assumes that the regime
can be determined by an observable variable, including the nonlinear exponential GARCH (EGARCH)
model of Nelson (1991), threshold GJR-GARCH model of Glosten ef al. (1992) and quadratic
GARCH model of Engle ef al. (1993) and Sentana (1995). The second class of RS model for volatil-
ity implements GARCH with a Hamilton (1989) type framework that assumes the regime is the
realization of a hidden Markov chain, such as (double) Markov switching GARCH model of Gray
(1996), Klaassen (2002) and Chen et al. (2008).

Both the linear and nonlinear GARCH model described above are parametric and normally esti-
mated jointly by maximum likelihood estimation (MLE). That is, they make specific assumptions
about the functional form of the data generation process and the distribution of error terms that is
necessary for MLE. Such parametric models are easy to estimate and readily interpretable, but these
advantages may come at a cost. Perhaps nonparametric models are better representations of the
underlying data generation process. Instead of specifying a particular functional form and making a
priori distributional assumption, the nonparametric model will search for the best fit over a large set
of alternative functional forms. Thus, in the literature, many nonlinear nonparametric GARCH
models are developed and still developing fast, among which the artificial neural network (ANN) is
extensively used. This paper focuses on one of the neural network algorithms, the support vector
machine (SVM), and investigates its forecasting ability of volatility as compared with the simplest
moving average method, standard linear GARCH model, nonlinear EGARCH model and traditional
recurrent ANN-based nonlinear GARCH model. The moving average method is chosen as the
benchmark because some studies find that it provides more accurate forecasts than GARCH models
(Dimson and Marsh, 1990; Tse and Tung, 1992; Figlewski, 1997). Among the number of nonlinear
parametric GARCH models the EGARCH model is also the most commonly used (Cao and Tsay,
1992; Cumby et al., 1993; Heynen and Kat, 1994; Chong et al., 1999; Hu and Tsoukalas, 1999;
Gokcan, 2000; Balaban, 2004).

In recent years, ANN has been successfully used for forecasting financial time series; for
recent work, see Fernandez-Rodriguez er al. (2000), Qi and Wu (2003), and Pantelidaki and
Bunn (2005). The studies in favor of ANN-based GARCH model as opposed to parametric
GARCH model in forecasting conditional volatility include Donaldson and Kamstra (1997),
Schittenkopf et al. (2000), Taylor (2000), Dunis and Huang (2002), Hamid and Igbal (2004), Ferland
and Lalancette (2006), Tseng et al. (2008). However, the traditional ANN algorithm also suffers
from its own weaknesses such as the need for many controlling parameters, difficulty in obtaining
a global solution and the danger of over-fitting (Tay and Cao, 2001). Thus, SVM that can obtain a
unique global solution by solving a quadratic programming is developed by Vapnik and his co-
workers (1995, 1997). Naturally, SVM also keeps the advantages of conventional ANN such as the
flexibility in approximating any nonlinear function arbitrarily well, without a priori assumptions
about the properties of the data and without the requirement of large sample size that MLE-based
parametric GARCH models have. Unlike traditional ANN implementing the empirical risk minimi-
zation (ERM) principle, the most particular principle of SVM is to implement the structural risk
minimization (SRM), which seeks to achieve a balance between the training error and generalization
error, leading, theoretically, to better forecasting performance than traditional ANN (Gunn, 1998;
Haykin, 1999). Recently, SVM has gained popularity in predicting financial variables owing to such
attractive features (Cao and Tay, 2001; Hirdle et al., 2005, 2007; Chen et al., 2009). Pérez-Cruz
et al. (2003) also propose an SVM-based GARCH (1, 1) model and shows that it provides better
volatility forecasts than the standard GARCH model. However, they use the feedforward SVM
procedure, which has the same structure as the autoregressive (AR) process and has poor ability

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
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to model a long-time memory. Inspired by the merit of recurrent ANN (Kuan and Liu, 1995; Dunis
and Huang, 2002; Bekiros and Georgoutsos, 2008), in this paper we propose a recurrent SVM pro-
cedure which can model the ARMA process and apply it to forecast the conditional variance equation
of the GARCH model in real data analysis.

The forecasting accuracy of the recurrent SVM-based GARCH model in one-period-ahead volatil-
ity forecasting is compared with the competing models in terms of two evaluation metrics of mean
absolute error (MAE) and directional accuracy (DA). The statistical hypothesis of equal forecasting
accuracy between pairwise models is also investigated by using the Diebold and Mariano (1995)
test, calculated according to the Newey—West procedure (Newey and West, 1987). The Diebold and
Mariano (DM) test is one of the most important contributions to the study of out-of-sample forecast-
ing accuracy evaluation over the past two decades, and has been further generalized and extensively
used in many studies since then (Corradi and Swanson, 2004; Awartani and Corradi, 2005; Preminger
and Franck, 2007; Taylor, 2008; Groen et al., 2009; Wong and Tu, 2009).

This paper is organized as follows. The next section briefly introduces the theory of SVM. The
third section specifies the empirical model and forecasting scheme. The fourth section uses the Monte
Carlo simulation to evaluate how the models perform under controlled conditions. The fifth section
describes the GBP exchange rates and NYSE composite index data and discusses the volatility
forecasting performance of all models for the real data. The paper concludes with the sixth
section.

SUPPORT VECTOR MACHINE

The support vector machine (SVM) originates from Vapnik’s statistical learning theory (Vapnik,
1995, 1997), which has the design of a feedforward network with an input layer, a single hidden
layer of nonlinear units and an output layer, and formulates the regression problem as a quadratic
programming (QP) problem. SVM estimates a function by nonlinearly mapping the input space into
a high-dimensional hidden space and then running the linear regression in the output space. Thus,
the linear regression in the output space corresponds to a nonlinear regression in the low-dimensional
input space. The theory denotes that if the dimensions of feature space (or hidden space) are high
enough, SVM may approximate any nonlinear mapping relations. As the name implies, the design
of the SVM hinges upon the extraction of a subset of the training data that serves as support vectors,
which represent a stable characteristic of the data.

Given a training dataset (X, y,), where input vector x; € R” and output scalar y, € R'. Indeed, the
desired response y, known as a ‘teacher’, represents the optimum action to be performed by the
SVM. We aim at finding a sample regression function f(x), or denoted by y, as below to approximate
the latent, unknown decision function g(x):

fx)=w'o(x)+b ey

where the superscript 7 is a transposing operator that should be differentiated from the sample size
T of the time series used later in this paper. In equation (1), ¢(x) = [¢(X), ..., X)), w=[w,, ...,
w,]". The ¢(x) is known as the nonlinear transfer function which represents the features of the input
space and projects the inputs into the feature space. The dimension of the feature space is /, which
is directly related to the capacity of the SVM to approximate a smooth input—output mapping; the
higher the dimension of the feature space, the more accurate the approximation will be. Parameter
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w denotes a set of linear weights connecting the feature space to the output space, and b is the
threshold.

To get the function f(x), the optimal w* and b* have to be estimated from the data. First, we define
a linear &-insensitive loss function, L., originally proposed by Vapnik (1995):

ly—f(x)|-¢ forly—f(x)=¢
0 otherwise

L(x,y, f(x))= { 2

This function indicates the fact that it does not penalize errors below &. The training points within
the &-tube have no loss and do not provide any information for decision. Therefore, these points do
not appear in the decision function f(x). Only those data points located on or outside the &-tube will
serve as the support vectors and are finally used to construct the f(x). This property of sparseness
algorithm results only from the &-insensitive loss function and greatly simplifies the computation of
SVM. The non-negative slack variables, & and £’ (below or above the &-tube, or denoted together
by &”; see Figure 1) are employed to describe this kind of e-insensitive loss.

The derivation of SVM follows the principle of structural risk minimization (SRM) that is rooted
in the Vapnik—Chervonenkis (VC) dimension theory (Haykin, 1999). Structural risk is the upper
boundary of empirical loss, denoted by &-insensitive loss function, plus the confidence interval (or
called margin), which is constructed in equation (3). The primal constrained optimization problem
of SVM is obtained below:

min
weR’, &()eR?", beR

C(w,b,&, 6{)=%IIWII2+CZ(§ +8) 3)

Figure 1. Principle of structural risk minimization (SRM) of SVM
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such that
WT¢(Xt)+b_yt $5+§ “)
-wo(x)-b<e+& ()
£=0,E=0,t=1,2,...,T (6)

The formulation of the cost function C(-) in equation (3) is in perfect accord with the SRM principle,
which is illustrated in Figure 1 (in which the dark circles are data points extracted as support vectors).
In equation (3), the first term indicates the Euclidean norm of the weight vector w(||w||*> = w’w) and
measures the function flatness; to minimize it is equivalent to maximizing the separation margin
@/ llwll), that is, maximizing the generalization ability. The second term represents the empirical risk
loss determined by the &-insensitive loss function and is similar to the sum of residual squares in the
objective function of ANN. Finally, SVM obtains the tradeoff between the two terms; as a result, it
not only fits the historical data well but also forecasts the future data excellently. As shown in Figure
1, both regression lines 1 and 2 can classify the data points correctly and then minimize the empirical
loss; however, the separation margin of the two lines are different, in which the regression line 1 has
the larger margin. It is the special design of minimizing the structural risk that endows SVM with the
excellent forecasting ability among all candidates. In addition, the convex quadratic programming and
linear restrictions in the above primal problem ensure that SVM can always obtain the global unique
optimal solution, which is different from the usual networks that easily get trapped in local minima.
The penalty parameter C > 0 controls the penalizing extent on the sample points which lie outside &-
tube. Both € and C, the free parameter of SVM, must be selected by the user.

The corresponding dual problem of the SVM can be derived from the primal problem by using
the Karush—-Kuhn—Tucker conditions as follows:

1 T T , T , T )
nin, Ezz o —OCS)(OQ—(Xr)K(XS-x,)+82(OC[+(X[)—Zy,((xt—at) (7)
€ s=1 =1 =1 P
such that
T
Y (a,—a)=0 (8)
=1
0oy, 0/<Cs,1=12,....T 9)

where ¢, and o] (or ¢”) are the Lagrange multipliers. The dual problem can be solved more easily
than the primal problem (Scholkopf and Smola, 2001; Deng and Tian, 2004). Making use of any
solution of ¢, and ¢, the optimal solutions of the primal problem can be calculated in which w* is
unique and expressed as follows:

T

wE= (0 —,)p(x,) (10)

t=1
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However, b* is not unique and formulated in terms of different cases. If i € {t|(x, € (0, O)}, then

b=y, = (o~ o) K (x %)+ € an

t=1

If j e {tl &) €(0, C)}, then

b*zyj—i(a,'—a,)l((xt-xj)—e (12)

t=1

The cases of both i, j € {tlo’ = 0} and i, j € {t|or’ = C} rarely occur in reality.
Thus the regression decision function f(x) will be computed by using w* and b* in the following
forms:

f(x)=w¥o(x)+b*

= 200 - ) (x)9(x)+ * (13)

=Y (0 o) K (x.x) + b

t=1

where K(x,, X) = ¢"(x)¢(x) is the inner-product kernel function. In fact, the SVM theory considers
only the form of K(x, X) in the feature space without specifying explicitly ¢(x) and without computing
all corresponding inner products. Therefore, the kernel function greatly reduces the computational
complexity of high-dimensional hidden space and becomes the crucial part of SVM. The func-
tion which satisfies the Mercer theorem can be chosen as the SVM kernel. No analytical method
is currently available to determine the most suitable kernel for a particular dataset. This paper
experiments with three different kernels to investigate the effect of a kernel type in Monte
Carlo simulation:

Linear: K (X, X)=x'x (14)
Polynomial: K (x,,X)=(x{x+ l)d (15)

G ian: K _ _"X_Xt”2
aussian: (%, X) =exp T (16)

where d and o are the parameters for the polynomial and Gaussian kernel. Before implementation
of the SVM, the appropriate values of the coefficients &, C, d and 6 must be determined in advance
through cross-validation. The sensitivity analysis of the parameters and the kernel type will be illus-
trated by using the simulated data below (‘Monte Carlo Simulation’).
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EMPIRICAL MODELING

In this study, the forecasts are obtained first by applying the Monte Carlo Simulation, following the
suggestions in Andersen and Bollerslev (1998) and Clements and Smith (1999, 2001). The main
motivation for conducting a simulation experiment is that, since the true volatility is known, the
candidate volatility measures can be compared with certainty. We then fit each of the models to the
daily returns on the GBP exchange rate and NYSE stock indexes and forecast their respective
volatility. The empirical modeling and forecasting scheme described below are employed for both
simulation and real data.

Model specification
In this paper the real data we analyze are the daily financial returns, y, converted from the
corresponding price or index, I,, using continuous compounding transformation as

y, =100x(log1,,, —log1,) (17

Empirical findings suggest that GARCH is a more parsimonious model than ARCH, and GARCH
(1, 1) specification is sufficient to model the variance changing over long sample periods and has
become the most popular structure when capturing financial volatility (Akgiray, 1989; Franses and
Dijk, 1996; Brooks, 1998; Gokcan, 2000; Andersson, 2001; Brooks and Persand, 2003; Poon and
Granger, 2003; Gerlach and Tuyl, 2006). As such, throughout the paper, the analysis is restricted to
the case of the GARCH (1, 1) process for the second conditional variance function and the AR(1)’
process for the conditional mean equation, for the sake of candidate comparison under the same
conditions.

Thus the linear standard GARCH (1, 1) model is specified as follows:

Ve=c+ ¢y +u  u ~NQO,h) (18a)
h, = K+5]h,,1 + Ollu,z,l (18b)

where ¢, ¢, k, 0, and ¢ are constant parameters. Such restrictions on the parameters that x, 6, and
o are non-negative and 0, + o < 1 prevent negative variances (Bollerslev, 1986).

All odd moments of u, in the standard GARCH model equal zero, and hence u, and y, are sym-
metric time series. The nonlinear EGARCH (1, 1) model that is able to capture the asymmetry is
similar to the linear GARCH model but the A, process is given by

log(h,)=x+9, log(ht1)+ocl(\|7%—\/2/7r)+ﬂlM}V;T:l_1 (19)

where K, 8;, o and J; are the constant parameters. The EGARCH model is fundamentally different
from the standard GARCH model in that the standardized innovation serves as the forcing variable
for the conditional variance. Also, there are no restrictions on the parameters to ensure non-negativity

"Franses and Dijk (1996) also denote that the order of autoregression in the first conditional mean equation of the GARCH
framework is usually O or small. Thus, the order 1 is specified for this study.
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of the variances. The coefficient §, is introduced to capture the asymmetry. If 8, = 0, a positive return
shock has the same effect on A, as the negative return shock of the same amount; if 8, < 0, a positive
return shock actually reduces h,; if 8, > 0, then a positive return shock increases h,. Previous studies
have viewed this coefficient as typically negative, indicating that negative return shocks normally
generate more volatility than positive return shocks, so generating the so-called leverage effect.

The conditional variance of u, is given by h, = E,_ju? = it},_,. Roughly speaking, in a GARCH
process the conditional variances can be modeled by an ARMA type process (Franses and Dijk,
1996). For instance, the ARMA process of the conditional variance of u, in a linear GARCH model
can be expressed as below (Hamilton, 1997; Enders, 2004):

u,z =K+ (61 + (Xl)u,z,l +w, — 51W,,1 (20)

where w, = u? — 6i,., = u> — h,, which is white noisy error. Inspired by this, the nonparametric recur-
rent ANN and SVM based nonlinear GARCH (1, 1) model is specified as the following form:

ye=f(y)+u (21a)
uj = g (Ui, wi)+w, (21b)

where f(-) and g(-) are nonlinear nonparametric function forms for conditional mean and variance
equations, respectively. Note that equation (21b) is adopted for the analysis of real data because the
actual volatility /4, is unobservable, while in the case of simulation the conditional variance equation
is just specified as &, = f(h,_,, ui;) due to h, being known. Because of the way GARCH (1, 1) class
models are constructed, the volatility is known at time # — 1. Thus the one-step-ahead forecast of
volatility is readily available.

The moving average method uses weighted moving averages of past squared innovations to fore-
cast volatility (Niemira and Klein, 1994). For simulated data, the moving average forecast for the
next-day volatility, using the five most recent observations, is expressed as

N
3 = 3 > (22)

For real data, the moving average forecast for the next-day volatility is expressed as (Engle et al.,
1993)

N e _
U = g 2 (v =¥ )2 (23)
j=t-4
where
_ 1
Vs =7 2 Yj
5 4

The recurrent ANN used in this study is the feedback multilayer perceptrons (MLP) network with
the addition of a global feedback connection from the output layer to its input space. We specify
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this kind of recurrent back-propagation network with the following architecture: one nonlinear
hidden layer with four neurons, each using a tan-sigmoid differentiable transfer function to generate
the output, and one linear output layer with one neuron. As a training algorithm, the fast training
Levenberg—Marquardt algorithm is chosen. The value of the learning rate parameter used in the
training process is set to be 0.05. These specifications and choices are standard in the neural network
literature.

Recurrent SVM procedure

As Haykin (1999) said, the standard SVM described above usually appears in the design of a simple
network in which an input layer of source nodes projects onto an output layer of computation
node, but not vice versa (see Figure 2(a)). This process is known as feedforward SVM and could be
easily employed to estimate such AR process as the first conditional mean function (21a),
v, = fiy.1) + u,, and the second conditional variance function in the situation of simulation, &, =
f(hey, u>,). However, because the unobservable error term w, is introduced into the GARCH
model which indeed exhibits the nonlinear ARMA process, how to estimate the conditional volatility
model (21b) for real data?

To estimate the nonlinear ARMA model, a feedback process of SVM with unobservable moving
average part as inputs, not addressed before our application®, has to be described, which distinguishes
itself from feedforward SVM in that it has at least one feedback loop (see Figure 2(b)). In this paper,
we abuse terminology and refer to this process as ‘recurrent SVM’. The feedback loops involve the
use of particular branches composed of one-delay operator, 7', which result in nonlinear dynamical
behavior and have a profound impact on the learning capability of SVM. Thus the recurrent SVM
will capture more dynamic characteristics of y, than does feedforward SVM.

To overcome the problem that the series of error term w, is unavailable, we employ the model
residuals as estimates of the errors in an iterative way, which is similar to the way that the linear
ARMA model is iteratively estimated by MLE (Box et al., 1994; Hamilton, 1997). Likewise, the

9(x) W
x O > O > O fix)
(a)
oo Y o s
Z-1
(b)

Figure 2. Signal-flow graphs of feedforward and recurrent SVM. (a) Signal-flow graph of a feedforward SVW.
(b) Signal-flow graph of a single-loop recurrent SVW

8Suykens and Vandewalle (2000) proposed the algorithm of recurrent least squares SVM. The difference between the two
recurrent SVM algorithms is their sparseness solutions.
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error term is initially set to be its expectation: zero. The empirical procedure of the recurrent SVM
executed during the training phase is described as follows. The letter i indicates the iterative epoch
and ¢ denotes the period:

 Step 1: Set i = 1 and star with all residuals at zero: w'" = 0.

* Step 2: Run an SVM procedure to get the decision function f to the points {x, y,} = {uZ,, u?}
with all inputs x, = {u?,, wi’;}.

* Step 3: Compute the new residuals wi*" = u? — @,

e Step 4: Terminate the computational process when the stopping criterion is satisfied; otherwise,
set i =i+ 1 and go back to Step 2.

Note that the first iterative epoch is in fact a feedforward SVM process and results in an AR (1)
model and that the following epochs provide results of the ARMA (1, 1) model, being estimated by
the recurrent SVM.

In general, the procedure cannot be shown to converge, and there are no well-defined criteria for
stopping its operation. Rather, some reasonable criteria can be found, although with its own practical
drawback, which may be used to terminate the computational process.

To formulate such a criterion, it is logical to think in terms of the properties of the estimated
residual series. After sufficiently long iterative steps, the autocorrelation displayed behind the residu-
als during the first AR epoch should disappear, and the information in the residual behavior has been
completely adopted and the final residual series should be white noisy. Accordingly, we may suggest
a sensible convergence criterion for the recurrent SVM procedure as follows:

The recurrent SVM procedure is considered to have converged when the corresponding residuals
become white noisy, or has no autocorrelation.

To quantify the measurement of white noise, we use the formal hypothesis test, the Ljung—Box—
Pierce Q-test, to investigate a departure from randomness based on the ACF of the residuals. Under
the null hypothesis of no autocorrelation in residuals, the O-test statistic is asymptotically distributed
as chi-square. In fact, we just check the actual p-values (exact level of significance) of the Q-test of
lag 1. It is reasonable to think there is no higher-order autocorrelation if there is no one-order auto-
correlation in residuals. Only if the p-values of the Q-test for five consecutive epochs are simultane-
ously higher than 0.1 is the iterative computational process stopped. To overcome the drawback of
this convergence criterion, we use cross-validation to avoid the possible over-fitting problem; see
‘Real data analysis’ below for the iterative process in detail.

Forecasting scheme

To illustrate the forecasting scheme, the SVM-GARCH model is also exemplified. First, estimate
the conditional mean equation (21a) by using the feedforward SVM in the full sample period
(1, 2,..., T) to obtain residuals, uy, u,, . .., ur. Then, recursively run the SVM-GARCH (1, 1)
model for squared residuals thus obtained to forecast the one-period-ahead volatility. The
recursive forecasting scheme is employed with an updating sample window; the estimating and
forecasting process is carried out recursively by updating the sample with one observation each
time, rerunning the SVM approach and recalculating the model parameters and corresponding
forecasts. Here, the SVM approach to estimate the conditional volatility is feedforward for simula-
tion and recurrent, as described in the above subsection, for real data. The first training sample is
wioud, ., uzrl (Ty, < T). The observations of T — T, are retained as a forecasting or test sample.
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Therefore, we can estimate and forecast the SVM-based conditional volatility equation forn=7T—-T)
times. We set n = 60 for both simulation and real data in this study. Thus, 60 one-period-ahead
forecast volatilities, @25y, #rsg, ..., Ury, H7, will be acquired for out-of-sample forecasting
evaluation.

Evaluation measures and pairwise comparison of competing models

We evaluate the forecasting performance using two standard statistical criteria: mean absolute fore-
cast error (MAE) and directional accuracy (DA), expressed as follows (Brooks, 1998; Moosa,
2000):

1 o
MAE = — 2|ut2+l - ul‘2+l (24)

=T,

100 S
DA(%)=— .4, (25)

=T}

where

oo {1 (s =1 ) (82 —2) = 0
0 otherwise

MAE measures the average magnitude of forecasting error which disproportionately weights
large forecast errors more gently relative to MSE; and DA measures the correctness of the
turning point forecasts, which gives a rough indication of the average direction of the forecast
volatility.

The fundamental problem with the evaluation of volatility forecasts of real data is that volatility
is unobservable and so actual values with which to compare the forecasts do not exist. Therefore,
researchers are necessarily required to make an auxiliary assumption about how the actual ex post
volatility is calculated. In this paper, we use the square of the return minus its mean value as the
surrogate of actual volatility against which MAE and DA can be calculated. This approach is similar
to the standard one, squared returns, because the mean of returns is usually close to zero. The proxy
of actual volatility in real data is expressed as

u? =(y,-y) (26)

where y, is returns and ¥ is mean of returns. This proxy has been used in many recent papers, such
as Pagan and Schwert (1990), Day and Lewis (1992), Chan et al. (1995), West and Cho (1995),
Chong et al. (1999), Brooks (2001) and Brooks and Persand (2003).

To test for equal forecasting accuracy of two competing models, we use the two-sided DM test
statistic proposed by Diebold and Mariano (1995) for the difference of MAE loss function. The null
and alternative hypotheses in this case are

H,: MAE, —MAE, =0 versus H: MAE, —MAE, #0

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
DOI: 10.1002/for



418 S. Chen, W. K. Hdirdle and K. Jeong

where the subscript O denotes the benchmark model and 1 the competing model. The DM statistic
in a robust form is then based on the following large sample statistic:

1 1 T-1 . R
DM = —=—— 3" (|11 = 7| = 721 = 83,011]) ~ N (0, 1) 27)

n \/S:Tt:n

where $? denotes a heteroscedasticity and autocorrelation consistent (HAC) robust (co)variance
matrix which is estimated according to the Newey—West procedure (Newey and West, 1987). We
use Andrews’ (1991) approximation rule to automatically select the number of lags for the HAC
matrix. If n grows at a rate such that as 7 — e, n — oo and n/T; — 0, then the DM statistic converges
in distribution to a standard normal.

MONTE CARLO SIMULATION

Data-generating process

In this section we investigate the forecasting performance of all candidates using artificial simulated
data under controlled conditions. To generate the data, we first need to parameterize the GARCH
(1, 1) model in equation (18) with the following settings (¢, ¢y, &, &;, &) = (0, 0.5, 0.0005, 0.8, 0.1)
for medium persistence and a disturbance term u, distributed first as Gaussian and then as a Student’s
t with five degrees of freedom (kurtosis = 5). The second distribution tries to model the skewness
and excess of kurtosis that usually appears in real financial series. Using the same specified models,
two artificial samples of size 500 and 1000 are created under a two-distributions assumption, giving
a total of four situations. To limit the computational burden, each situation is replicated only 50
times. Then the multiple simulated y, and 4, are 500 X 50 and 1000 x 50 element matrices for
different distribution.

Parameter selection

The use of cross-validation is appealing particularly when we have to design a somewhat complex
approach with good generalization as the goal. For example, here we may use cross-validation to
determine the values of free parameters of SVM with the best performance. One series of 50 simu-
lated returns and volatility of 1000 size and Student’s ¢ distribution, one of the four situations, is
exemplified as below. The first training data, that is, the former 940 observations, are used to deter-
mine the appropriate values taken by the free parameters. The training data are further randomly
partitioned into two disjoint subsets: estimating sample and validating sample (700 and 240 observa-
tions, respectively).

As shown above, two free parameters (€ and C) and two kernel coefficients (d and 62) have to be
selected by users before running the SVM procedure. The motivation for using cross-validation here
is to validate the model on a dataset different from the one used for parameter estimation. In this
way we may use the training set to assess the performance of various values of parameters, and
thereby choose the best one. The sensitivity investigation of SVM (represented by the generalization
error, MAE) with respect to four parameters is illustrated in Figures 3 and 4 for conditional mean
and variance estimation, respectively.

Figure 3 describes the sensitivity analysis for the conditional mean equation. Parameter C varies
from a very small value of 0.0001 to infinity, with € being fixed at 0.0001 and o 0.4. Clearly, when
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Figure 3. Sensitivity analysis of SVM in conditional mean estimation

C = 0.05, MAE of the validation sample obtains the lowest value, 0.046. Parameter ¢ takes values
in the range [0.00001, 0.00005, 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.005, 0.01, 0.05,
0.1], with C = 0.05 and o = 0.4. The values of & to the left of the point = 0.0001 have no influence
on the performance of SVM. Coefficient 67 varies from values of 0.001 to 1000, with C being 0.05
and 0.0001. Obviously, the value of 6 = 0.4 leads to the best validation performance. If we set C
=0.05 and 0.0001 and the polynomial kernel parameter d = [0.1, 0.5, 1, 2, 3,4, 5, 6, 7, 8, 10, 100],
the validating MAE attains the minima when d = 8; after that, over-fitting the training set occurs.
Note that the polynomial kernel with d = 1 is similar to the linear kernel. Thus, the appropriate
parameters of SVM for the conditional mean returns are: C = 0.05, € = 0.0001, ¢* = 0.4 and
d=28.

Figure 4 describes the parameter selection process for conditional variance series. Similar to the
return series, the MAE of both estimating and validating sample decreases as the values of C increase
and become stable when C takes a value greater than 10; in contrast to C, as the values of € increase,
both MAE of SVM are considerably more stable before the point of € =0.0001 and increase slowly,
and sharply after £=0.001. The value of 6>=0.01 results in the best validation performance; namely,
its MAE reaches the minimum value, about 0.000065. The values of d taken between 100 and 1000
have not much effect on the performance of SVM but after that range the over-fitting phenomenon
becomes serious. Likewise, when one parameter is analyzed, the others are set to be fixed. Therefore,
the correct parameters chosen for the conditional variance series are C = 10, £ = 0.00005, o> = 0.01
and d = 250, respectively.
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Figure 4. Sensitivity analysis of SVM in conditional variance estimation

Thus far we discuss the sensitivity investigation of parameters by using the simulated data with
1000 observations and ¢ distribution. The parameter selection for the other three random samples is
similar to this and not reported here to save space.

EFFECT OF KERNEL TYPE AND FORECASTING EVALUATION

There is still the possibility of over-fitting after training. Therefore, the generalization performance
of the competing models is further measured and evaluated on the test set, which is different from
the validation subset. For the simulated data, the forecasting sample is the last 60 observations. For
each replication, the SVM-based GARCH (1, 1) model and the others are estimated, and the fore-
casting errors are calculated using the forecasting schemes described above. The results of out-of-
sample one-period-ahead volatility forecasting measures for four situations are shown in Table L.
The reported results are the mean values of 50 independent replications. Table II presents the p-
values of Diebold-Mariano (DM) test for the MAE difference, which are defined as the significance
levels at which the null hypothesis under investigation can be rejected. In calculating the DM sta-
tistic, the null hypothesis of equal forecasting ability is related to the four benchmark models: moving
average, standard GARCH, EGARCH and traditional ANN models. We report the results of the DM
test, say DM1, in the third and seventh columns for two simulated series, respectively, under the
null hypothesis that the absolute forecast error produced by the moving average method is equal to
those obtained using the other models. DM2, DM3 and DM4 are organized in the same manner and
show the test results when the benchmark models are respectively the standard GARCH, EGARCH
and recurrent ANN models. The DM tests in this study are investigated in a robust form, by simply
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Table I. Diebold—Mariano test for the MAE difference on real data

Models Sample Size = 500 Sample Size = 1000
Normality Student’s ¢ Normality Student’s ¢
MAE DA MAE DA MAE DA MAE DA

Moving Average 0.0001276  44.07 0.0001747 59.32  0.0001198 54.24  0.0002130  40.68
Standard GARCH  0.0000972  76.27  0.0001765 55.93  0.0000488 79.66  0.0001083  59.32
EGARCH 0.0001312  67.80 0.0002075 64.41 0.0000730  57.63  0.0001864  74.58
ANN-GARCH 0.0001517  72.88 0.0002481 57.63 0.0000904 62.71 0.0001442 67.80
SVMI-GARCH 0.0000960  76.27  0.0001369  71.19  0.0000501  74.58  0.0000715  72.88
SVMp-GARCH 0.0000924  76.27 0.0001371  71.19 0.0000479 71.19 0.0000714  77.97
SVMg-GARCH 0.0000796  86.44  0.0001397 81.36  0.0000456  83.05 0.0000769  98.31

Note: SVMI, SVMp and SVMg represent the SVM with linear, polynomial and Gaussian kernel, respectively, for short.

scaling the numerator by a heteroscedasticity and autocorrelation consistent (HAC) (co)variance
matrix calculated according to Newey-West procedures (Newey and West, 1987).

Table I firstly shows the effect of kernel functions on out-of-sample forecasting performance of
SVM. The linear kernel behaves better in the sample with 500 sizes and ¢ distribution based on DA
measure. The polynomial kernel is the most suitable for forecasting the #-distributed 1000 sample
size also based on DA. For all the other six cases, the Gaussian kernel looks promising, however,
which is not a general conclusion but only true for the case we are studying. As a whole, three types
of kernel-based SVM have a similar volatility forecasting performance and almost behave better
than the benchmarks. Since no single kernel function dominates all volatility predictions, practitio-
ners could try any kernel function. In the real data analysis later, for example, we only investigate
the performance of the Gaussian kernel-based SVM-GARCH model.

Now, based on Table I, we revert to comparing the volatility forecasting ability among all com-
peting models. In terms of the average ranking of MAE measures, the order of the forecasting ability
of the different methods from highest to lowest is displayed in turn as follows: SVMp-GARCH,
SVMg-GARCH, SVMI-GARCH?, standard GARCH, EGARCH, moving average and ANN-GARCH
model. Concretely, in the situation of normal distribution, the standard GARCH model behaves not
badly, which is ranked fourth (only inferior to three SVM models) in the 500 sizes and even ranked
third (only defeated by Gaussian and polynomial SVM models) in the series of 1000 sizes. Even
though the data satisfy the normality assumption that is required for MLE in the standard GARCH
model, the SVM-GARCH models still outperform it in forecasting the magnitude of the volatility
error. Nonlinear EGARCH and ANN-GARCH models perform worse than the linear GARCH
model. In the situation of ¢ distribution, the forecasting performance of the linear GARCH model
grows poorer and the difference of MAE values between SVM-GARCH and standard MLE-GARCH
models becomes larger than that under normality. Possibly this results from the fact that the normal-
ity assumption required for MLE is violated but it is not necessary for the SVM method. Not as
expected, the asymmetric EGARCH model is weak in reducing the forecasting error even in the case
of skewed distribution.

Based on the DA measures in Table I, on average, the Gaussian SVM-GARCH model ranks
highest (for all four situations) in forecasting volatility directions, followed by polynomial and linear

That is, corresponding to SVM-based GARCH models with polynomial, Gaussian and linear kernel function,
respectively.
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SVM-GARCH models, linear GARCH model, EGARCH model, ANN-GARCH model and moving
average, in turn. In the situation of the normal distribution, the standard GARCH model behaves
even better than forecasting error magnitude—ranked second for both the series of 500 sizes (only
inferior to Gaussian but equal to linear and polynomial SVM models) and 1000 sizes (worse than
Gaussian but better than the other two SVM type models). In the case of normality and large sample
sizes, particularly favorable for MLE, the standard GARCH model still cannot defeat the Gaussian-
based SVM-GARCH model. It is not surprising for EGARCH to behave badly in this case. As for
the situation of ¢ distribution, the linear GARCH model is ranked last for the 500 sizes (55.93%)
and second last for the 1000 sizes (59.32%); while the asymmetric EGARCH model is good at
forecasts of volatility turning points—ranked fourth for short series (only behind the three SVM
models) and even third for long series (inferior to Gaussian and polynomial but better than the linear
SVM-GARHC model). This time the ANN-GARCH model defeats the linear GARCH model. As
for the linear GARCH model and moving average method, in the situation of 500 sizes and 7 distri-
bution the standard GARCH model performs worse than the moving average, the simplest time series
method, in terms of both MAE and DA measures. The conclusions described above are obtained on
average based on 50 replications.

Table II displays the p-values of the DM test when the moving average method, standard GARCH,
EGARCH and ANN models are compared with each of the other models considered in the study.
We denote these tests DM1, DM2, DM3 and DM4, respectively. For instance, DM1 presents the
test results for the simple moving average, where a p-value no greater than 0.05 indicates that the
moving average method yields a higher forecast error (in terms of absolute error) relative to
the competing model at 5% significance level, a p-value no smaller than 0.95 means that the moving
average produces a lower forecast error at the 5% level, while a p-value between 0.05 and 0.95
implies that the benchmark and competing model have equivalent forecasting accuracy from the
viewpoint of statistics. The same interpretation applies to the p-values reported for DM2-DM4.

Table II. Diebold—Mariano test for the MAE difference on Monte Carlo simulation

Distribution ~ Models Sample size = 500 Sample size = 1000
bM1 DM2 DM3 DM4 DMl DM2 DM3 DM4
Normality Moving average 0.976  0.401  0.070 1.000 0.999 0.875
Standard GARCH  0.024 0.001  0.000  0.000 0.001  0.000
EGARCH 0.600  0.999 0.005 0.001  0.999 0.033
ANN-GARCH 0.930  1.000  0.995 0.125 1.000  0.967

SVMI-GARCH 0.018 0460 0.002 0.000 0.000 0574 0.002 0.000
SVMp-GARCH 0.023 0413 0.004 0.000 0.000 0.420 0.003 0.000
SVMg-GARCH 0.002  0.097 0.000 0.000 0.000 0.354 0.000 0.000

Student’s ¢ Moving average 0.480 0.036  0.000 1.000  0.822  0.984
Standard GARCH  0.520 0.054  0.003  0.000 0.000  0.001
EGARCH 0.964  0.946 0.021  0.178  1.000 0.966
ANN-GARCH 1.000  0.997 0979 0.016  0.999 0.034

SVMI-GARCH 0.043  0.037 0.002 0.000 0.000 0.019 0.000 0.000
SVMp-GARCH 0.056 0.043 0.001 0.000 0.000 0.025 0.000 0.000
SVMg-GARCH 0.070  0.050 0.000 0.000  0.000 0.033 0.000 0.000

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey—West procedures
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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Under the normal distribution, DM tests indicate that there is equivalent forecasting ability
between moving average and EGARCH for short series, and between moving average and ANN-
GARCH for long series. Such models as standard GARCH and the three SVM-GARCH all have
higher volatility forecasting accuracy than moving average for both series at least at the 5% signifi-
cance level. Moving average outperforms the ANN-GARCH model at the 10% level for a series of
500 size and EGARCH outperforms moving average at the 0.1% significance level for long series.
According to DM2, three SVM type models have statistically equivalent forecasting ability to stan-
dard GARCH model for both series, with only one exception that the Gaussian SVM-GARCH model
behaves better than the standard GARCH model at 10% significance level for short series. For both
series, the standard GARCH model outperforms EGARCH and ANN-GARCH models at extremely
low significance level. The DM3 statistic reveals that, for two series, three SVM-GARCH models
perform better than the EGARCH model and EGARCH better than the ANN-GARCH model all at
extremely significant levels. Finally, the ANN-GARCH model is found statistically and consistently
inferior to the three SVM models for any series based on DM4 tests.

In the case of Student’s ¢ distribution, the out-of-sample performance of the standard GARCH
model deteriorates. Now, according to DM2, the three SVM-GARCH models forecast volatility
significantly better than the standard GARCH model at the 5% level for both series. The standard
GARCH model cannot statistically defeat the moving average, either, for short series. However, both
EGARCH and ANN-GARCH models are still statistically inferior to the standard GARCH model.
In fact, according to DM1, DM3 and DM4, the three SVM-GARCH models all consistently outper-
form such benchmarks as moving average, EGARCH and ANN-GARCH models in forecasting
volatility for any series. In terms of DM, furthermore, the null hypothesis of equal forecasting
accuracy between moving average and EGARCH cannot be rejected for a series of 1000 size rather
500 size. Moving average is significantly better than the ANN-GARCH model for short series, but
the case is reversed for long series. In a series of 500 sizes, the ANN-GARCH model is significantly
outperformed by the EGARCH model, while for the series of 1000 size the ANN type model statisti-
cally defeats the EGARCH model.

In summary, it appears that the three SVM-GARCH models do a better job of forecasting volatility
than the moving average, standard GARCH, EGARCH and ANN-GARCH models in terms of MAE
measures, which is statistically supported by the DM1, DM3, DM4 tests and DM?2 in the case of ¢
distribution. The DM2 test reveals that under the normal distribution the three SVM-GARCH models
and standard GARCH model have similar volatility forecasting ability. Based on DA measures, the
standard GARCH model too has a better ability in forecasting volatility turning points under normal-
ity and large sample sizes, while the asymmetric EGARCH model behaves better under the skewed
t distribution. But both linear GARCH and nonlinear EGARCH cannot defeat all SVM-type models,
at least the Gaussian-based SVM-GARCH model, in forecasting volatility directions.

REAL DATA ANALYSIS

In this section, we investigate the volatility forecasting performance of all candidates by using real
data for two kinds of financial variables: GBP/USD exchange rates and NYSE average index.

Data description
The first dataset consists of the daily nominal bilateral exchange rates of British pounds (GBP)
against the US dollar for the period January 5, 2004 to December 31, 2007. The data are obtained

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
DOI: 10.1002/for



424 S. Chen, W. K. Hdirdle and K. Jeong

from a database provided by Policy Analysis Computing and Information Facility in Commerce
(PACIFIC) at the University of British Columbia, which contains the closing rates for a total of 81
currencies and commodities. The second dataset consists of the daily closing price of the New York
Stock Exchange (NYSE) composite stock index for the period January 8, 2004 to December 31,
2007. The data are downloaded directly from the Market Information section of the NYSE web
page.

It has been widely accepted that a variety of financial variables including foreign exchange rates
and stock prices are integrated of order one. To avoid the issue of possible nonstationarity, both sets
of raw real data are transformed into daily returns via equation (17), giving a returns series of 1001
observations and then a residual series is obtained from a fitted conditional mean equation of the
GARCH class models. For the squared residuals of 1000 observations, the recursive estimating
samples for the conditional volatility function are updated from the former 940 observations through
the former 999 and then 60 numbers of one-period-ahead volatility forecasts are obtained, corre-
sponding to an evaluation sample spanned from the 941st through the 1000th data points, that is,
out-of-sample period of October 3, 2007 to December 31, 2007 for GBP and October 5, 2007 to
December 31, 2007 for NYSE data.

The daily series for the log-levels and the returns of the GBP and NYSE are depicted in Figure
5. This figure shows that the returns series are mean-stationary, and exhibit the typical volatility
clustering phenomenon with periods of unusually large volatility followed by periods of relative
tranquility. Table III reports the summary of the descriptive statistics for the GBP and NYSE returns.
Both series are typically characterized by excessive kurtosis and asymmetry. The Bera and Jarque
(1981) tests all strongly reject the normality hypothesis. For GBP series, the Ljung—Box Q(6) statistic

4
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Figure 5. Log levels and returns of GBP exchange rates and NYSE stock index
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Table III. Descriptive statistics for daily financial returns

Returns GBP NYSE
Statistics p-value Statistics p-value

Mean —0.0092 0.0393

Variance 0.2827 0.6197

Skewness 0.1206 —0.3489

Kurtosis 3.7130 4.9343

Normality 23.1860 0.00001 174.7200 0.00000

Q(6) 3.0313 0.80490 12.7100 0.04788

0(6)* 31.6390 0.00002 150.2400 0.00000

ARCH(6) 28.9280 0.00006 101.8400 0.00000

Notes: Normality is the Bera-Jarque (1981) normality test; Q(6) is the Ljung-Box
Q test at 6 order for raw returns; Q(6)* is LB Q test for squared returns; ARCH(6)
is Engle’s (1982) LM test for ARCH effect.
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Figure 6. Iterative epochs of recurrent SVR procedure for real data

of raw returns indicates no significant correlation, but the Q(6) value of the squared returns reveals
that there is significant autocorrelation in the squared returns. The Q(6) tests of both raw and squared
returns of NYSE are all significant. Engle’s (1982) LM tests for ARCH effect show significant evi-
dence in support of GARCH effects (i.e., heteroscedasticity) for both series. Note that the number
in parentheses indicates testing at 6 lag order. This examination of daily returns on the GBP and
NYSE data reveals that returns can be characterized by heteroscedasticity and time-varying autocor-
relation; therefore, we expect the GARCH class models to capture it adequately. Furthermore, as
seen from Figure 5 and Table III, it seems that NYSE returns exhibit more variability, skewness,
kurtosis and volatility clustering than GBP series such that nonlinear asymmetric EGARCH model
should fit it more accurately.

Iterative epochs of recurrent SVM
Because the actual volatility 4, is unobservable for real data analysis, the second conditional variance
equation (21b) of the GARCH (1, 1) model should be estimated by using the recurrent SVM procedure,
as proposed above. Again, we use cross-validation to determine when the procedure is stopped.

With good forecasting performance as the goal, it is very difficult to figure out when it is best
to stop training only in terms of fitting performance. It is possible for the procedure to end up
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over-fitting the training data if the training session is not stopped at the right point. We can identify
the onset of over-fitting and the stopping point through the use of cross-validation. Figure 6(a) and
(b) describes the iterative epochs for volatility prediction of the first training sample of GBP and
NYSE, respectively. For the GBP series, the iterative process of recurrent SVM procedure is stopped
at the 51st epoch; while, for NYSE, the iterative process is longer and stopped after 121 iterative
steps, possibly due to higher kurtosis and more variability and noise behind the NYSE series. Now,
we could say, at about the 10% level of significance, the final residuals of equation (21b) obtained
from the recurrent SVM procedure have no autocorrelation. In addition, the p-value curves of both
estimating and validating samples exhibit a similar pattern (namely, increase with an increasing
number of epochs) and point to almost the same stopping point. That is to say, there is no over-fitting
phenomenon for the examples illustrated here; the recurrent SVM model does as well on the validat-
ing subset as it does on the estimating subset, on which its design is based.

The values taken by the free parameter of SVM and kernel coefficients are also selected according
to the sensitivity investigation, similar to that done in Monte Carlo simulation. We do not report the
parameter selection process here but present the formal results throughout the real data analysis. For
both conditional mean and variance estimation of GBP and NYSE series, fortunately, similar param-
eter values of feedforward and recurrent SVM procedure could be found as follows: C = 0.005,
€ =0.05 and 0? = 0.2. Note that in the analysis of financial returns only the Gaussian kernel is
employed for the sake of simplicity due to its best performance among linear, polynomial and
Gaussian kernels, as described in Monte Carlo simulation.

Comparing the forecasting ability

The results of out-of-sample volatility forecasting accuracy for each model by using real data are
presented in Table IV. Table V reports the p-values of the Diebold— Mariano (DM) test for the dif-
ference of MAE loss function in a robust HAC form from Newey—West procedures. In calculating
the DM statistic, the null hypothesis of equal forecasting accuracy is related to the four benchmark

Table IV. Measure of volatility forecasting performance for real data

Models Measures Moving average Standard GARCH EGARCH ANN-GARCH SVM-GARCH

GBP MAE 0.28895 0.24713 0.25719 0.24691 0.23257
DA 37.29 38.98 49.15 38.98 45.76

NYSE MAE 1.69610 1.51000 1.44880 1.62980 1.50410
DA 32.20 42.37 55.93 32.20 57.63

Table V. Diebold—Mariano test for the MAE difference on real data

Models GBP NYSE

DM1 DM2 DM3 DM4 DM1 DM2 DM3 DM4
Moving average 0.990 0.970 0.981 0.935 0.970 0.813
Standard GARCH 0.010 0.017 0.583 0.065 0.902 0.061
EGARCH 0.030 0.983 0.980 0.030 0.098 0.044
ANN-GARCH 0.019 0.417 0.020 0.187 0.939 0.956
SVM-GARCH 0.001 0.076 0.000 0.067 0.047 0.054 0.885 0.042

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey—West procedures
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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models: moving average, standard GARCH, EGARCH and ANN models. We specify them as DM1,
DM?2, DM3 and DM4, respectively. A p-value no greater than 0.05 indicates that the benchmark
model yields a higher forecast error (in terms of absolute error) relative to the competing model at
the 5% significance level, a p-value no smaller than 0.95 means that benchmark model produces a
lower forecast error at 5% level, while a p-value between 0.10 and 0.90 implies that the benchmark
and competing models have the equal forecasting accuracy at 10% significance level.

According to MAE measures in Table IV, the SVM-GARCH model is the best one for the GBP
series and second for the NYSE series in forecasting the magnitude of volatility error. DM tests in
Table V almost statistically favor the SVM-GARCH model as the best model, too, at least at 10%
significance level. Even though the MAE metric reveals that the EGARCH model outperforms the
SVM-GARCH model for the NYSE series, it is not supported by the DM3 test, which means both
models have equal forecasting ability. The better performance of the EGARCH model for NYSE is
perhaps due to its ability to capture higher skewness and asymmetry occurring in the SYSE series
than in GBP. The standard GARCH model performs modestly in terms of MAE measures, statisti-
cally inferior to EGARCH and superior to the ANN-GARCH model for NYSE and significantly
better than EGARCH and similar to the ANN-GARCH model for GBP according to DM?2 tests. The
moving average method is always ranked last in forecasting the magnitude of volatility error, the
evidence being significantly supported at least at the 10% level by the DM1 tests in Table V with
just one exception, that for NYSE series moving average and ANN-GARCH model have equal
forecasting ability. MAE measures and DM3 and DM4 tests denote that the EGARCH model also
significantly outperforms the ANN-GARCH model for highly skewed NYSE series but the case is
totally reverse for the GBP sample.

Based on DA measures in Table IV, on average, the moving average method is still ranked last,
the ANN-GARCH model is ranked second last and the standard GARCH model is ranked at the
middle position in forecasting volatility directions. For the GBP series, EGARCH performs best with
DA value to be highest 49.15%, followed closely by the SVM-GARCH model; while, for the NYSE
model, the best model to forecast volatility turning points is the SVM-GARCH model, with the
asymmetric EGARCH model is ranked second, their DA values being 57.63% and 55.93%,
respectively.

The empirical evidence of real data also confirms the conclusion obtained in Monte Carlo simula-
tion and favors the theoretical advantage of the SVM-GARCH model. Due to high skewness in
financial returns, the asymmetric EGARCH model normally behaves better than the standard GARCH
model, particularly in the case of higher skewness or in forecasting volatility turning points. The
moving average method always behaves worst and the ANN-GARCH model sometimes good in
forecasting one-period-ahead financial volatilities among all candidates.

CONCLUSIONS

In many applications, SVM has shown excellent forecasting performance due to its particular struc-
tural design of SRM principle rather than ERM employed by conventional ANN and MLE methods.
This inspires us to use it to improve the volatility forecasting ability of the parametric GARCH
models. Empirical applications are made for forecasting the simulated data and the real data of daily
GBP exchange rates and NYSE stock index.

To avoid the problem that the actual volatility for real data is unobservable, we propose a recur-
rent SVM procedure with a global feedback loop from the output layer to the input, as opposed to
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the feedforward one for simulation, to estimate the conditional volatility equation, that is the ARMA
process in nature, of the nonlinear GARCH model. The forecasting performance of the SVM-
GARCH model is compared with the moving average, standard GARCH, asymmetric EGARCH
and traditional ANN-GARCH models based on two quantitative evaluation measures and robust
Diebold—Mariano tests following the Newey—West procedure.

The real data results, together with the simulation evidence, consistently and significantly support
the use of the feedforward and recurrent SVM-based GARCH (1, 1) models in forecasting the one-
period-ahead volatility error magnitude and direction. The standard GARCH model also performs
well in the case of normality and large sample size, while the asymmetric EGARCH model is good
at forecasting volatility under the high skewed distribution; but they rarely exceed SVM-GARCH
models, at least the Gaussian-type SVM. The recurrent ANN-GARCH model and moving average
method behave well only in a few cases. Overall, empirical analysis is in favor of the theoretical
advantage of the SVM.

How to choose the appropriate values of free parameters and kernel coefficients and what effect
of kernel type in the SVM procedure are investigated by using the sensitivity analysis in Monte
Carlo simulation. The iterative process of the proposed recurrent SVM procedure in real data analysis
is also examined in detail by the cross-validation method, which is shown to be implemented very
easily and could be adopted as another standard SVM construction procedure in other
applications.
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Abstract

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. There are however limitations of some widely-used risk
management methods that either calculate risk measures under the Gaussian distributional
assumption or involve numerical difficulty. The primary aim of this paper is to present a
realistic and fast method, GHICA, which overcomes the limitations in multivariate risk
analysis. The idea is to first retrieve independent components (ICs) out of the observed
high-dimensional time series and then individually and adaptively fit the resulting ICs in the
generalized hyperbolic (GH) distributional framework. For the volatility estimation of each
IC, the local exponential smoothing technique is used to achieve the best possible accuracy
of estimation. Finally, the fast Fourier transformation technique is used to approximate the

density of the portfolio returns.

The proposed GHICA method is applicable to covariance estimation as well. It is compared
with the dynamic conditional correlation (DCC) method based on the simulated data with
d = 50 GH distributed components. We further implement the GHICA method to calculate
risk measures given 20-dimensional German DAX portfolios and a dynamic exchange rate
portfolio. Several alternative methods are considered as well to compare the accuracy of
calculation with the GHICA one.

Keywords: multivariate risk management, independent component analysis, generalized

hyperbolic distribution, local exponential estimation, value at risk, expected shortfall
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1 Introduction

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. Given a d-dimensional portfolio, the conditionally het-

eroscedastic model is widely used to describe the movement of the underlying series:
2(t) = Y2 (t)ea(t), (1)

where z(t) € IR? are risk factors of the portfolio, e.g. (log) returns of the financial instru-
ments. The covariance 3, is assumed to be predictable with respect to (w.r.t.) the past
information and e, (t) € IR is a sequence of standardized innovations with E[e, ()| F;_1] = 0
and E[e2(t)|F;_1] = I4. There is a sizeable literature on risk management methods. Among

others, we refer to Jorion (2001) for a systematic description.

In this paper, we focus on the calculation of two risk measures, value at risk (VaR) and
expected shortfall (ES). These two risk measures are inherently related to the joint density
of z(t). The VaR is in fact the distributional quantile of loss, i.e. —xz(t), at a prescribed level
over a target time horizon and the ES measures the size of loss once the loss exceeds the
VaR value. Indicated by formula (1), the joint density estimation depends on the covariance

estimation and the distributional assumption of the innovations.

The largest challenge of risk management is due to the high-dimensionality of real port-
folios. Above all, the covariance estimation is really computationally demanding as high
dimensional series, e.g. a dimension d > 10, is considered, see Hardle, Herwartz and
Spokoiny (2003). For example, the dynamic conditional correlation (DCC) model proposed
by Engle (2002), Engle and Sheppard (2001), which is one multivariate GARCH model, is
recommended due to the good performance of its univariate version. In the estimation, the
covariance matrix is approximated by the product of a diagonal matrix and a correlation
matrix, which reduces the number of unknown parameters much relative to the BEKK
specification proposed by Engle and Kroner (1995). In spite of the appealing dimensional
reduction, the mentioned estimation method is time consuming and numerically difficult to

handle given high-dimensional data.

Moreover, many widely-used risk management methods rely on the unrealistic Gaussian
distributional assumption, e.g. the RiskMetrics product introduced by JP Morgan in 1994.
In the Gaussian framework with an estimate 3, (t) of $,(t), the standardized returns é,(t) =
2 (t)x(t) are asymptotically independent and the joint distributional behavior can
be easily measured by the marginal distributions. However the Gaussian distributional
assumption is merely used for computational and numerical purposes and not for statistical
reasons. The conditional Gaussian marginal distributions and the resulting joint Gaussian

distribution are at odds with empirical facts, i.e. financial series are heavy tailed distributed.





The heavy tails are typically reduced but not eliminated as the series are standardized by
the estimated volatility, see Anderson, Bollerslev, Diebold and Labys (2001).

We illustrate this effect based on two real data sets, the Allianz stock and a DAX
portfolio from 1988/01/04 to 1996/12/30. The DAX is the leading index of Frankfurt
stock exchange and a 20-dimensional hypothetic portfolio with a static trading strategy
b(t) = (1/20,---,1/20)" is considered. The portfolio returns r(t) = b(t) " z(t) are analyzed
in the univariate version of (1). This simplified calculation is used in practice, but it often
suffers from low accuracy of calculation. Suppose now that the two return processes have
been properly standardized, by using a local volatility estimation technique discussed later.
The standardized returns are empirically heavy-tailed distributed, indicated by the sample
kurtoses 12.07 for the Allianz and 22.38 for the portfolio respectively.

Figure 1 displays the estimated logarithmic density curves under several distributional
assumptions. Among them, the estimate using the nonparametric kernel estimation is con-
sidered as benchmark. The comparison w.r.t. the Allianz stock shows that the GH estimate
is most close to the benchmark among others. The Gaussian estimate presents lighter tails.
To alleviate the limitation, the Student-¢(6) distribution with degrees of freedom of 6 has
been recommended in practice. However this distribution is found to over-fit the heavy
tails, namely the ¢(6) estimate displays heavier tails relative to the benchmark. The sim-
ilar result is observed w.r.t. the DAX portfolio. It is rational to surmise that the risk
management methods under the Gaussian and ¢(6) distributional assumptions generate low

accurate results.

To overcome these limitations, Chen, Hardle and Spokoiny (2006) present a simple VaR
calculation approach that achieves much better accuracy than the alternative RiskMetrics
method. In their study, univariate approaches that involve more realistic but complex
procedures can be easily extended for multivariate risk measurement. To be more specific,
financial risk factors are first converted to independent components (ICs) using a linear
filtering and the univariate method is applied to identify the distributional behavior of
each IC. We name here two univariate approaches which measure the risk exposure in the
realistic distributional framework. One is the univariate VaR calculation proposed by Chen,
Hérdle and Jeong (2005), which implements local constant model to estimate volatility
and fit the standardized returns under the GH distributional assumption. The other is
proposed by Chen and Spokoiny (2006), who apply the local exponential smoothing method
to estimate volatility and calculate the risk measure in the GH distributional framework.
The standardization of the Allianz and DAX returns in Figure 1 is in fact based on the

local exponential smoothing technique.

The primary aim of this paper is to present an realistic and fast multivariate risk manage-
ment method, GHICA, by implementing the IC analysis (ICA) to the high dimensional
series and adaptively fitting the ICs in the GH distributional framework. The GHICA
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Fig. 1. Density comparisons of the standardized returns in log scale based on the Al-
lianz stock (top) and the DAX portfolio (bottom) with static weights b(t) =
unit(1/20).  Time interval: 1988/01/04 - 1996/12/30.  The nonparamet-
ric kernel density is considered as benchmark. The GH distributional pa-
rameters are respectively GH(—0.5,1.01,0.05,1.11,—0.03) for the Allianz and
GH(-0.5,1.21,-0.21,1.21,0.24) for the DAX portfolio. ~Data source: FEDC
(http://stb649.wiwi.hu-berlin.de).

method improves the work of Chen et al. (2006) from two aspects. The volatility estima-
tion is driven by the local exponential smoothing technique to achieve the best possible
accuracy of estimation. The fast Fourier transformation (FFT) technique is used to ap-
proximate the density of the portfolio returns. Compared to the Monte Carlo simulation

technique used in the former study, it significantly speeds up the calculation.

In addition, the proposed GHICA method is easily applicable for covariance estimation.
Relative to the widely used DCC setup, the GHICA method is fast and delivers sensitive

estimates. We demonstrate the comparison based on simulated data. Furthermore, the





GHICA method is implemented to risk management on the base of DAX stocks and foreign
exchange rates. Several hypothetic portfolios are constructed by assigning static and dy-
namic trading strategies to the data sets. The results are compared with those calculated
using alternative methods, i.e. the RiskMetrics method, the method using the exponential
smoothing to estimate volatility and assuming the Student-#(6) distribution, and the method
using the DCC to estimate covariance in the Gaussian distributional framework. All the
results are analyzed from the viewpoints of regulatory, investors and internal supervisory.
The GHICA method, in general, produces better results than the others.

The paper is organized as follows. The GHICA method is described in Section 2, by
which the ICA method, the local exponential smoothing technique and the FFT technique
are detailed. Section 3 compares the covariance estimation using the GHICA and DCC
methods based on the simulated data with d = 50 GH components. The real data analysis
in Section 4 demonstrates the implementation of the GHICA method in risk management
based on the 20-dimensional German DAX portfolios and a dynamic exchange rate portfolio.
Several alternative methods are considered as well to compare the accuracy of calculation
with the GHICA one.

2 GHICA Methodology

Given multidimensional time series, for example prices of financial assets, s(t) € R, the
(log) returns are calculated as z(t) = log{s(t)/s(t — 1)}. Without loss of generality, the
drift of the returns is set to be 0. Given the time homogeneous model, z(t) = Eiﬂsx(t)
with standardized innovations £,(t), the maximum Gaussian likelihood estimate of the time
independent covariance >, is the sample covariance based on the whole past information.
Since the covariance is in fact time dependent, one considers the conditional heteroscedastic

model:
w(t) = S/ 2 (D)ea(t).

Many techniques have been used to approximate the local covariance by specifying a “local
homogeneous” interval (e.g. one year or 250 trading days). Inside the homogeneous interval,
the unknown covariance should be time-invariant and can be identified using the ML esti-
mation. Among many others, the multivariate GARCH setup such as the DCC is successful
in characterizing the clustering feature of covariance under the Gaussian distributional as-
sumption. As the dimension d increases, it however needs to estimate many parameters and
becomes numerically difficult. Moreover, the standardized returns &,(t) = X5 1/2 (t)z(t) are
empirically not Gaussian distributed. Under a realistic distributional assumption, on the
other hand, by which the distributional behaviors such as asymmetry and heavy tails are
well matched, it is hard to identify the unknown distributional parameters due to complex

density form.





The GHICA method proposes a solution to balance the numerical tractability and the
realistic distributional assumption on the risk factors. It first converts the return series
using a linear transformation and filters out ICs: y(¢) = Wx(¢). The transformation matrix
W is assumed to be time constant and nonsingular and y(¢) is the independent vector. The

heteroscedastic model is now reformulated as:
a(t) = Wly(t) = WS/ 2(t)ey (t) = WD, 2 (t)ey (1)

Due to the statistical property of independence, the covariance of the ICs ¥, (t) is a diagonal
matrix and is denoted as D,(t) to emphasize this feature. Its diagonal elements are the
time varying variances of the ICs. The stochastic innovations e,(t) = {gy, (t), -, ey, (t)} "
are cross independent and can be individually identified in the realistic and univariate
distributional framework. By doing so, the GHICA method converts the high dimensional

analysis to univariate study and significantly speeds up the calculation.

In this section, the building blocks of the GHICA method are detailed: The FastICA
procedure is used to estimate the transformation matrix W; The resulting ICs are indi-
vidually analyzed, by which the univariate volatility process is estimated using the local
exponential smoothing technique and the innovations are assumed to be GH distributed;

The quantile of the portfolio return is approximated using the FFT technique.

The GHICA algorithm is summarized as follows:

1. Do ICA to the given risk factors to get ICs.

2. Implement local exponential smoothing to estimate the variance of each IC

3. Identify the distribution of every IC’s innovation in the GH distributional framework

4. Estimate the density of the portfolio return using the FFT technique

5. Calculate risk measures

In addition, the GHICA method can be used to estimate the covariance matrix ¥(t).
Given the matrix estimate W in the ICA and the variance estimates of the ICs, the covari-
ance of the observed time series are: 3, (t) = VAVfllA)y(t)WflT. An alternative covariance

estimation approach, the DCC, is briefly described as well. We will compare the GHICA-

based covariance estimation with the DCC estimation in the later simulation study.

2.1 Independent component analysis (ICA) and FastlCA approach

The aim of ICA is to retrieve, out of high dimensional time series, stochastically ICs through

a linear transformation: y(t) = Wx(t), where the transformation matrix W = (wy, - - -, wq) "





is nonsingular. It is essential to use high order moments in the ICA. In the Gaussian
framework, high order moments are however fixed such as skewness with value of 0 and
kurtosis with value of 3. Therefore the ICs are assumed to be nongaussian distributed.
Furthermore, the ICA transformation has scale identification problem, i.e. the equation
holds true by simultaneously multiplying the same constants to the unknown terms y(t)
and W: {cy(t)} = {cW}z(t). To avoid this problem, it is natural to standardize the
dependent series and assume that every IC has unit variance E(y;) = 1 with j = 1,---,d.
The Mahalanobis transformation Z(t) = S Y 2ac(1t) helps to standardize the return series

and the resulting series are considered:
y(t) = Wi(t),

where ¥, is the sample covariance based on the available data. It is easy to show that
after the standardization the transformation matrix W turns to be an orthogonal matrix
with unit norm. The corresponding matrix w.r.t. the return series is W = Wi;lp. For
notational simplification, we eliminate the mark ~ in the following text in this section.
Various ideas have been proposed to estimate the transformation matrix W. Among
others, one intuitive ICA estimation is motivated by the definition of mutual information.

The mutual information is a natural measure of independence. It is defined as the difference

of the sum of marginal entropy and the mutual entropy:

d
I(y) = Z (y;) — H(y) (2)

where H(y;) = /fy] u)log fy,; (u)du

The mutual information is nonnegative and goes to 0 if the vector y is cross independent,
see Cover and Thomas (1991). Hence for a candidate transformation W, one can minimize
the mutual information to achieve independence. Based on the linear transformation of the

ICA, the mutual information in (2) can be reformulated as:
d
I(W,y) :Z () — log | det(WW)].

Notice that the entropy of the return series H (z) is a fixed value and does not depend on the
ICs, and the last term in the equation is 0 due to the orthogonality of the transformation
matrix W. The optimization problem is: miny Z;lzl H(y;) and can be further simplified

to d optimization problems according to the inequality:

d d
mm Z H(y;) > Z min H (y;)
X wy
7=1 7j=1





This simplification leads to some loss in the W estimation but it extensively speeds up
the estimation procedure by merely considering d elements of W every time. Equivalently,
one can formulate the optimization problem concerning negentropy J(y;) = H(yo) — H(y;)
since the entropy and the negentropy are in one-to-one correspondence, where yo ~ N(0, 1)
is a standard Gaussian vector and H(yg) is merely a constant. The negentropy is always
nonnegative since the Gaussian random variable has the largest entropy given the same

variance, see Hyvérinen (1998).
w; = argminH (y;) = argmaxJ(wj, y;).

In the estimation, the approximation of negentropy is used to construct the optimization

object function w.r.t. the j-th row of the transformation matrix W:

w; = argminH(y;) = argmaxJ(y;)
Jy) ~ const{EIG(y)] - E[G(yo)]}*
= const.{E[G( JT ) — E[G(y )]}2
G(y;) = logcosh(y)) (3)

This optimization problem is solved by using the symmetric FastICA algorithm, see
Hyvérinen, Karhunen and Oja (2001):

1. Initialization: Choose initial vectors w( ) for W = {wy, -, wg}" with j =1,---,d,

each has a unit norm.
2. Loop:

e At step n, Calculate ’lI)J(-n) =E [m—r(t)g {wj(-n_l)—rx(t)}} —E {g’ {uA)J(.n_l)Tx(t)H 12)](-”_1),

where g is the first derivative of G(y) in form (3) and ¢’ is the second derivative.

The expectation E[-] is approximated by the sample mean.

e Do a symmetric orthogonalization of the estimated transformation matrix W,

_1/2 ~

W — (e Ty 2 m)

e If not converged, i.e. det{W(") — W("_l)} # 0, go back to 2. Otherwise, the

algorithm stops.

3. Final result: the last (converged) estimate is the final estimate W.





2.2 Local exponential smoothing and dynamically conditional correlation

Suppose that the ICs and the transformation matrix W are given. The covariance matrices

of the ICs and the original return series are respectively:

Dy(t) = diag{oy (t), -, 05, (1)}
Y.(t) = WD, w1T (4)

where oy, (t) is the heteroscedastic volatility of the j-th IC with j = 1,---,d. Recall that
(4) has a similar decomposition structure as the often-used principal component analysis
(PCA), by which the covariance is decomposed as: ¥, = TAT' " with the eigenvector matrix
I' and the diagonal eigenvalue matrix A, see Flury (1998). Among other distinctions, the
PCA method orders the resulting PCs whereas the ICs have equal importance. In the

estimation of the unknown variance, the local exponential smoothing method is used.

Local exponential smoothing: Given the univariate conditional heteroscedastic model:
y;j(t) = oy, (t)ey, (t) with E[e,, (t)|F—1] = 0 and E[egj (t)|Fi—1] = 1, we now focus on the
adaptive estimation of the volatility oy, for j =1,---,d. For notational simplification, the

subscripts y; in 0y, and j in y; are eliminated here.

Suppose that a finite set {ng,k =1, -+, K} of values of smoothing parameter is given.
Every value n;, leads to a localizing weighting scheme {77,2_5} for s <t to the local Gaussian
MLE &) (1)

o o 1/2
sM(@t) = l{ Z_ mity?(t —m—1)}/{ Z_: n?}]

In practice, one truncates the smoothing window at M}, such that 772/‘[ <o 0:

. M, 1/2
5(k)(t) = [{ Z iy (t —m — 1)}/{ Z 7721}]
m=0 m=0

where the Gaussian log-likelihood function given 7y is:

~ (k) Ni () (112 1 s
L(ny,a\™(t)) = —7108; (2m{c"™(t)}7) — 2o (D)2 Syt —m—1)
m=0
My,
where N, = 2772” (5)
m=0
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The fitted log-likelihood ratio L (nk, k) (1), U(t)) reads as:

L(m,6M@®),00)) = L (P ) = Lk, o(t))

The idea of local exponential smoothing is to aggregate all the local likelihood estimate to
achieve the best possible accuracy of estimation. In this sense, the local MLEs () (¢) are

referred as “weak” estimates.

In our study, we concern the heavy-tailedness of financial time series and assume the
normal inverse Gaussian (NIG) distribution, one subclass of the GH distribution, see Section
2.3 for more details. Since the NIG distributional parameters of the innovations are unknown
at this stage, we use the quasi ML estimation instead of estimating the variance based on
the NIG density form. The quasi ML estimation is applicable if the exponential moment of

the squared innovations E[exp{pe®(t)}] exists. A power transformation guarantees that:

sign{y(t) Hy(t)[?
0(t) = Var{yy(t)|Fi-1} = E{y2(t)|Fi-1} = E{Jy(t)[*"|Fi—1}
= o) Ele(t)*? = o (t)C, (6)

<

—~
~

S—
I

where C), = E(|e(t)|?P|F—1) is a constant and only relies on 0 < p < 1/2. Notice that the
power transformed variable 6(t) is one-to-one correspondence to the variance o(t) and can

be estimated on the base of the transformed observations |y(t)|?":
00 = {> 'yt —m—1)PP}/Ny
m=0

Here the smoothing parameter 7 is designed to run over a wide range from values close
to zero to one, so that the variability of the unknown process 6(¢) reduces and at least one
of the resulting MLESs is good in the sense of small estimation bias. Polzehl and Spokoiny
(2006) show that the inverse of Ny in (5) is positively related to the variation of the MLEs.

This result is used to construct the sequence of the smoothing parameter {n}:

N; 1-
Lad Mk _ a>1, (7)
Ne 1 —nkm

where the coefficient a controls the decreasing speed of the variations.

The procedure is sequential and starts with the estimate é(l)(t) that has the largest
variability but small bias, i.e. we set 00 () = 6D (¢). At every step k > 2, the new
estimate 9()(t) is constructed by aggregating the next “weak” estimate %) (¢) and the
previously constructed estimate é(k_l)(t). Following to Belomestny and Spokoiny (2006),
the aggregation is done in terms of the parameter v = —1/(26) so that the variable y(t)
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belongs to the exponential distributional family with a density form: p(y,v) = p(y) exp{yv—

d(v)}:
W) = ™)+ (1 -y ()

-1
or equivalently, 0% (1) = (éu?)k(t) ' éikjlyft))

The mixing weights {7;} are computed on the base of the fitted log-likelihood ratio by
checking that the previously accepted estimate é(kfl)(t) is in agreement with the next
“weak” estimate 0()(¢), i.e. the difference between these two estimates is bounded by

critical values j:

Y& = Kag {L (771437 é(k) (t)v é(k_l)(t)) /5k}

The aggregation kernel K, guarantees that the mixing coefficient +;, is one if there is no
essential difference between %) (¢) and =1 (¢t), and zero if the difference is significant.
The significance level is measured by the critical value (. In the intermediate case, the
mixing coefficient ~; is between zero and one. The procedure terminates after step k if
v& = 0 and we define in this case 6™ (¢) = 64+~ (¢) for all m > k.

The critical values {(;} are calculated by using Monte Carlo simulation. We briefly
summarize the procedure here. Since the NIG distributional parameters of the innovations
are unknown and the transformed variable is close to Gaussian variable, we start from the

Gaussian assumption. To be more specific, we generate y(t) = o*e(t) with (t) ~ N(0,1) and

o* 1. The “weak” estimates are calculated given the sequence of {n}. For k =2,..., K
with (1,00, -+, 00, the value (7 is selected as the minimal one to fulfill
~ A(k QrT,
Eq-|Z (e, 09 (1), 65 (0) 1" < ==, (8)

where 7. = 2r [, ("le=Cd¢ = 2rI'(r), and 7 = 0.5 and o = 1 have been suggested
in Chen and Spokoiny (2006). Consequently for [ = k + 1,..., K with the parameters

(1, C,y00,...,00, we select (i as the minimal value which fulfills
~(l) "(l) r kOéTr
Eg-|L (m, 00 t), 00 (t))\ < T (9)

As said before, the transformed variable is close to Gaussian variable, we use the gener-
ated critical values under the Gaussian assumption to estimate the volatility. The constant
C) is calculated based on the estimates é(t) such that the innovation is standardized, i.e.
Var{é(t)} = Var [y(t){ép/é(t)}ﬁ} = 1. One then estimates the NIG distributional pa-

rameters of £(t) = y(t)/6(t) where 6(t) = {é(t)/ép}i To get more accurate results, one

12





generates NIG innovations with the estimated distributional parameters and recalculates

the critical values as in the Gaussian case.

The local exponential smoothing algorithm is described as follows:

1. Initialization: 61 (¢) = 61 (¢).

2. Loop: for k > 2,
R 1—
k) (1) — ~’Yk 4= Ve -1
0= G i

where the aggregating parameter 7 is computed as:

W = Kag(L(m, 0(8),07D(8)) /Ger) (10)
If v, = 0 then terminate by letting (%) (t)y=...= oK) (t) = é(k_l)(t).

t) =0 (t).

(¢
{0(t)/C }217, where the constant C), is computed such that
/6

(t) have a unit variance as assumed in the heteroscedastic

3. Aggregation estimate:

4. Final estimate: (t) =
the residuals £(¢) = y(t)

model.

Consequently, the covariance matrices D, (t) and ¥,(t) are calculated.

Dynamic conditional correlation (DCC) model: Alternatively, the covariance of the

return series can be estimated by the DCC model:

This technique first identifies the elements of the diagonal matrix D, (¢) in the GARCH(1,1)

setup and adaptively specifies the correlation matrix as:
Ro(t) = Ry(1— 01 — 02) + 01 {ex(t — Dex(t — 1) "} + 62R,(t — 1),

where R, is the sample correlation of the risk factors, e, € IR? are the standardized returns,
i.e. risk factors divided by the univariate GARCH(1,1) volatilities, or equivalently by the
squared diagonal elements in D, (t). The standardized returns are assumed to be Gaussian

distributed. The parameters 6, and 6o are identified by the ML estimation.

2.3 Normal inverse Gaussian (NIG) distribution and fast Fourier
transformation (FFT)

The estimated ICs are assumed to be NIG distributed. The NIG is a subclass of the
GH distribution with a fixed value of A = —1/2, see Eberlein and Prause (2002). With 4
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distributional parameters, the NIG distribution is flexible to well match the behavior of real
data. Compared to many other subclasses of GH distribution, the NIG distribution has a
desirable property, saying that the scaled NIG variable belongs to the NIG distribution as

well. The density of NIG random variable has a form of:

§ Kion/o% + (y — p)?
fNIc;(y;oa,ﬁ,&#):% 1{ ) }exp{5\/a2—ﬁ2+ﬁ(y—u)},

where the distributional parameters fulfill 4 € IR, 6 > 0 and |3| < a. The modified Bessel
function of the third kind K(-) with an index A = 1 has a form of:

Kx(y) = 5 /UOO y ! exp{*%(y +y N} dy

The characteristic function of the NIG variable is:

wﬂwzem{uu+aﬁﬂﬂ—ﬁr—¢M—wﬁ+uv}

Proof: The characteristic function of the GH random variable has a form of:

o2 M Ka{ove? = (BT}
a? — (B +1iz)? EA(0v/a? = B?)

Using the representation of the modified Bessel function with a fixed index A = —1/2 derived
in Barndorff-Nielsen and Bleesild (1981):

2 _ _
Kaf) = |/ 2y,

it is straightforwardly to show that the assertion holds. O

oy (2) = exp(izp) {

One desirable feature of the NIG distribution is its explicit scaling transformation. Mul-
tiplying the random variable by ¢, the resulting variable 3’ = cy belongs to the NIG distri-

bution as well:

INigW'se!, 80", 1) = faig ey /el B/e |eld, ep). (11)
Proof: It is easy to show the result by using the Jacobian transformation, see Hardle and
Simar (2003). Given the density of y and let o/ = «/|c|, ' = B/c, &' = |c|d and u' = cp,
the density of 3/ = cy has a form of:

o K1 O/\/ 52 + (y/ - M,)Q
f) = ify(%) _ o0 { } exp{d'\/o/* — 8% + B'(y — 1)}

’C‘ s 5’2 4 (y/ _ H/)Z
= NieWsd, B8, 1),
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To calculate risk measures, it requires the identification of the portfolio returns’ density.

Based on the GHICA model, the portfolio returns are calculated as:
r(t) = b(t) WDy (1) e, (1)

where b(t) is the trading strategy. Notice that the linear transformation of the NIG variable
is not necessarily NIG distributed. In other words, the density of the return is unknown
although the marginal densities are clear. On the meanwhile its characteristic function is
explicitly writable. This is the same case as approximating the a-stable distribution in
Menn and Rachev (2004), by which the Fourier transformation is used to approximate the
density of the variable based on its characteristic function. This motivates us to use the

technique to approximate the density of the return in the GHICA procedure.

Set a = (a1, -, aq) = b(t) TW 1D, (t)/2, the variable (; = a;¢; is NIG distributed with
j=1,---,d, according to (11):

¢ ~ NIG(G, &, B, 05, 1) = NIG(C, 5/ |ajl, B/ aj, |a;16;, ajuj).

The characteristic function of the return r = Z;l:l ¢; at time ¢ is:

d d d
or(2) = [T o (2) = exp iz ) jij + 253'{\/56? — 07— \/]2 — (B +1i2)?}
j=1 j=1 j=1
The density function is approximated by the Fourier transformation:

f(r) ! /+OO exp(—itr)y(z)dt ~ 2i /S exp(—itr)y(z)dt

21 J oo T J s

The procedure of quantile estimation is summarized as follows:

e Implement the discrete fast Fourier transformation (DFT) to approximate the density

of r at every time point ¢:

1. Let N = 2™ with m € IN and define an equidistance grid over the integral interval
2s

[—s, 5] by setting h = 57 and the grid points z; = —s + j * h with j =0,---, N.
2. Calculate the input of the DFT: y; = (—1)74(2}) with 2} = 0.5(z; + z;41) are
the middle points. Notice that the characteristic function is time dependent.
3. The density f(r) = £=CyDFT(y); with C = Z(-1)fexp(—%2)i with k =

0,---,N — 1. We refer to Borak, Detlefsen and Hérdle (2005) and Menn and

_Nm + Lk‘

Rachev (2004) for more details. The corresponding values of r = — 57 + ™

e The cumulative density function and the quantile are then approximated based on
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Structure shifts of covariance matrix
Sigma2 - f
Sigma1 T
Sigma3 -
0 4(;0 7(;0 10‘00 1 3‘00 14‘00 1 5‘00 16‘00 17‘00 18‘00 1900

Fig. 2: Structure shifts of the generated covariance through time. Notice that there are
shifts among matrices not up-and-down movements.

the resulting density.

3 Covariance estimation with simulated data

In this section, the GHICA versus the DCC, are implemented to estimate covariance of
simulated data. The dimension is set to be d = 50. The simulation study is designed
to include structure shifts of covariance. To be more specific, the designed covariance
changes among three matrices over time, one is an identity matrix denoted as ¥, meaning
uncorrelatedness, and two symmetric and semi-positive defined matrices ¥ and 33. (Here
we first generate d * d matrix U; whose elements are uniform random variables for o
and standard Gaussian variables for X3, then calculate a new matrix Uy = Uy * U] to
guarantee the semi-positiveness. The elements X(4, j) of the target matrix are calculated as
¥(i,7) = Ua(i,7)//U2(1,1)Ua(4,7).) The eigenvalues of these two matrices are distributed
in [5.92e — 004, 3.779] (32) and [0.002, 3.573] (X3) respectively. The off-diagonal values span
over [—0.433,0.468] in the first self-correlated matrix (X2) and [—0.447,0.464] in the second
one (X3). Temporal stationarity is assumed to be long for 400 time units and short for 100
units. The structure shifts of the generated covariance are illustrated in Figure 2. The level
of the shifts is either small with a shift from one self-correlated matrix (32 or ¥3) to the

identity matrix or contrariwise, e.g. at the point 700, or large with a shift between the two
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self-correlated matrices, e.g. at the point 1800.

Furthermore, two distributional parameters y and 3 of the standardized NIG innovations
e.(t) are set to be 0, meaning that the innovations are centered around 0 and symmetric
distributed, see Barndorff-Nielsen and Bleesild (1981). By doing so, the mean and variance

of the NIG innovations only depend on « and §:

)
Var(e,) — —— g8y

This result is used to generate the standardized innovations, by which o ~ U[1,2] is sug-

gested by our experience on real data analysis and § = a.

In the Monte Carlo simulation, we generate d = 50 NIG variables with the designed

covariance and distributional parameters:
x(t) = 532 (t)ea (D).

The sample size is T' = 1900 and the scenarios are repeated N = 100 times. The covariance

matrix is estimated using the GHICA procedure and the DCC method respectively.

The GHICA method first converts the underlying series to ICs by a linear transforma-
tion:
w(t) = Why(t) = WD, 2 (), (b),

by which the elements of Dy(t) on the diagonal are estimated using the local exponential
smoothing method. In the local exponential smoothing estimation, we set the involved
parameters ¢ = 0.01, a = 1.25 and p = 0.25. The sequence of the smoothing parameters
{nk} are 0.600, - - -,0.982 with K = 15, based on the condition (1—n;)/(1—nk+1) = ain (7).
The first 300 observations are reserved as training set for the very beginning estimations,
since the largest smoothing parameter used in this study corresponds to a window with 259

observations.

The covariance of z(t) is calculated by the basic statistical property:

Y. (t) =W D,tyw1T

The DCC method assumes that the underlying series are Gaussian distributed. It de-
composes the covariance matrix to a product of diagonal variance matrix and correlation

matrix:
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0.5

T T T
— — Sigma(2,5)(t)
— - DCC estimates

Sigma(2,5) d = 50 dimensions — GHICA estimates

0.2 ! ! ! ! ! !
300 400 700 1000 1300 1400 1500 1600 1700 1800 1900

Fig. 3: Realized estimates of (2, 5) based on the GHICA and DCC methods. The generated
data consists of 50 NIG distributed components.

where D,(t) consists of the variances of x(¢) on the diagonal that are estimated in the
GARCH(1,1) setup.

Figure 3 displays one realization of ¥(2,5), i.e. the covariance of the second and fifth
risk factors x2(t) and x5(t), based on one simulation data. The true values are 0.365 in
Yo and —0.124 in X3. As expected, the GHICA estimates are sensitive to structure shifts
through time. The DCC estimates, on the contrary, are over-smooth and slowly follow the
shifts. Given more often shifts around the last hundreds of time points, the DCC estimates
deliver less information on the movements. Recall that 100 points correspond to 4 months
observations of daily returns. It is rational to surmise that structure shifts happen so
often in the active financial markets, see Merton (1973). The similar estimation results are

observed in the other elements of the covariance, which are eliminated here.

To measure the accuracy of estimation, ratio of absolute estimation error (RAE) of the
estimates w.r.t. the true covariance are calculated pointwise.
T -GHICA
S [EEH A0 - 2y (1)

RAE(,j) = )
S s BRSC®) - S, ()]

If RAE(7, j) < 1, it means that the GHICA method reaches higher accuracy in the estima-
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Fig. 4: Boxplot of the proportion 22 (d><d (7)=D) for i,j = 1,--+,d. Here d = 50 and

the proportions on the base of 100 simulations are considered.

tion of X(4,7) than the DCC. To compare the general performance of these two methods in

covariance estimation, we check the proportion of the RAEs among the 2500 (d*d) elements

S 1(RAEG,)<1
that are smaller or equal to one, i.e. 22 (d><d )= for ¢,7 = 1,---,d. Notice that

the proportion with value of 0.5 indicates that half elements are better estimated by using
the GHICA and the other half are better done by the DCC. In other words, the considered
methods have a comparable accuracy of estimation. Figure 4 displays the boxplot of the
100 proportions. The mean of the proportion is 0.4904 among the 100 simulations. It states
that the DCC method performs a little bit better than the GHICA in the sense of accuracy.
On the meanwhile, the GHICA method is much fast and sensitive to structure shifts.

4 Risk management with real data

In this section, we implement the proposed GHICA method to calculate risk measures
using real data sets: 20-dimensional German DAX portfolio and 7-dimensional exchange
rate portfolio. The results are compared with those based on alternative risk management
models. The data sets have been kindly provided by the financial and economic data center
(FEDC) of the Collaborative Research Center 649 on Economic Risk of the Humboldt-
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Universitét zu Berlin (http://sfb649.wiwi.hu-berlin.de). Before giving detailed description
of the data sets, we analyze the risk measures from the viewpoints of regulatory, investors

and internal supervisory.

Regulatory requirement: Financial institutions generally face market risk that arises
from the uncertainty due to changes in market prices and rates such as share prices, foreign
exchange rates and interest rates, the correlations among them and their levels of volatility,
see Jorion (2001). The market risk is the main risk source and has a great negative influence
on the development of economic. The famous example is the stock crashes in the autumn
1929 and 1987 which caused a violent depression in the United States and some other
countries, with the collapse of financial markets and the contraction of production and
employment. To alleviate the down influence of market risks, regulation on banking and
other financial institutions has been strengthened since the mid-1990s. The goals of the
regulation are to restrict the happening of extremely large losses and require banks to
reserve adequate capital. In 1998 the Basel accord officially allowed financial institutions
to use their internal models to measure market risks. Among others, Value at Risk (VaR)

has been considered as industry standard risk measure:
VaRy,pr = —quantilep; {r(t)}.

where pr is the h = 1-day or h = 5-day forecasted probability of the portfolio returns.
Internal models for risk management are verified in accordance with the “traffic light” rule
that counts the number of exceptions over VaR at 1% probability spanning the last 250
days and identifies the multiplicative factor My in the market risk charge calculation, see
Franke, Hardle and Hafner (2004):

60
Risk charge, = max (MfGlO ; VaRt_i,l%, VaRt71%>
The multiplicative factor My has a floor value 3. It increases corresponding to the number
of exceptions, see Table 1. For example, if an internal model generates 7 exceptions at 1%
probability over the last 250 days, the model is in the yellow zone and its multiplicative
factor is My = 3.65. Financial institutions whose internal model is located in the yellow or
red zone, with a very high probability, are required to reserve more risk capital than their
internal-model-based VaRs. Notice that the increase of risk charge will reduce the ratio of
profit since the reserved capital can not be invested. On the meanwhile, an internal model
is automatically accepted if the number of exceptions does not exceed 4. This regulatory
rule in fact suggests banks to control VaR at 1.6% (i.e. 4/250) instead of 1% probability. It
is clear that 1.6%-VaR is smaller than 1%-VaR. Therefore an internal model is particularly
desirable by financial institutions if its empirical probability is smaller or equal to 1.6%,

and simultaneously requires risk charge as small as possible. Here a simplified calculation
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No. exceptions | Increase of M;  Zone
0 bis 4 0
5 0.4
6 0.5
7 0.65
8 0.75
9 0.85
More than 9 1 red

Tab. 1: Traffic light as a factor of the exceeding amount, cited from Franke, Hardle and
Hafner (2004).

on the average value of VaRs is used as risk charge for comparison:

Risk charge (RC) = mean (VaRy pr)

Investor: It is known that VaR is inappropriate for the measurement of capital adequacy,
since it controls only the probability of default, i.e. the frequency of losses, but not the size
of losses in the case of default. For this reason, investors concern expected shortfall (ES)

more than VaR to measure and control their risks.
ES = E{—r(t)] — r(t) > VaRypr}

Investors suffer loss once bankruptcy happens. Even in the “best” situation, their loss
equals to the difference between the total loss and the reserved risk capital, i.e. the value
of ES. Generally risk-averse investors care the amount of loss and thus prefer an internal
model with small value of ES. Risk-seeking investors, on the other hand, care profit and

hence the small value of risk charge favors their requirement.

Internal supervisory: It is important for internal supervisory to exactly measure the
market risk exposures before risk controlling. For this reason, internal supervisory prefers
the model delivering accurate probability prediction, i.e. the empirical probability pr is as

close to the expected values as possible:

No. exceptions

r =
No. total observations

Given two models with the same empirical probability, the model has a smaller value of
ES is considered better than the other. Here two extreme probabilities are considered, i.e.
pr = 1% for regulatory reason and pr = 0.5% used by financial institutions with AAA

rating.
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4.1 Data analysis 1: DAX portfolio

The primary target of the real data analysis is to compare the forecasting ability of the
GHICA method with two alternatives, the RiskMetrics method under the Gaussian dis-
tributional assumption and a modification with the Student-¢(6) distributional assumption
(abbreviated as t(6) method) in the market. The comparison is demonstrated based on 20
DAX stocks over a long time period, starting on 1974/01/02 and ending on 1996,/12/30
(5748 observations). The return series are all centered around 0 and have heavy tails
(kurtosis> 3), the smallest correlation coefficient is 0.3654. Hypothetical German DAX
portfolios are constructed with two static trading strategies b(t) = bV = (1/d,---,1/d)"
and b(t) = b ~ U[0,1]%. Such a simple portfolio construction eliminates the influence
of strategy adjustments on the calculation. The portfolio returns are analyzed using the
RiskMetrics or the ¢(6) method. Here the unknown volatility process of the portfolio is

estimated using the exponential smoothing method with n = 0.94:

r(t) = blz(t) = o.(t)eq(t)

M M
ar(t) = {D nmrt(t—m—=1} (0™
m=0 m=0

where the truncated value M fulfills the condition n™+1) < 0.01. Notice that given a
dynamic trading strategy, this simplification needs to repeatedly estimate the density of
the time varying hypothetical portfolio returns, and it often suffers from a low accuracy of

estimation.

Figure 5 depicts the one day log-returns of the DAX portfolio with the static trading
strategy b(t) = bM). The VaRs from 1975/03/17 to 1996/12/30 at pr = 0.5% are displayed
w.r.t. three methods, the GHICA, the RiskMetrics and the ¢(6). The most volatile time
period over ¢ € [3300,4300] is detailed in the bottom diagram. Recall that on the Monday,
19 October 1987, the worldwide downward jump of stocks happened. Dow Jones Industrial
Average for example dropped by over 500 points. At this market quiver around ¢t = 3446, the
GHICA method exactly achieves the locations of extreme losses whereas the RiskMetrics and
t(6) methods over-react to them. Such over reactions induce large risk charges unnecessarily.
On the other hand, it is observed that these two alternative methods give close forecasts to
some extreme losses, e.g. around time points 4000 and 4500. As a result, the associating

values of ES are small and satisfy the requirement of risk-averse investors.

Table 2 reports the risk measures based on the three methods. In general, the Risk-
Metrics is successful in fulfilling the minimal requirement of regulatory. The ¢(6) method
is preferred by investors who consider risk happened with 1% probability. The GHICA

method performs better than the other two for internal supervisory and requirement of
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Fig. 5: One day log-returns of the DAX portfolio with the static trading strategy b(t) = b(1).
The VaRs are from 1975/03/17 to 1996/12/30 at pr = 0.5% w.r.t. three methods,
the GHICA, the RiskMetrics and the ¢(6). Part of the VaR time plot is enlarged

and displayed on the bottom.
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GHICA RiskMetrics N(u, 0?) Exponential smoothing #(6)

h b(t) pr pr RC ES pr RC ES pr RC ES
1 v 1% 0.55%  0.0264 0.0456 1.18%° 0.0229” 0.0279 | 0.40% 0.0292

¥ 0.5% | 0.44%°  0.0297 0.75%  0.0254 0.0317 | 0.23% 0.0345 0.0506

@ 1% 0.59%  0.0265 0.0448 1.03%° 0.02317 0.0288 | 0.38%  0.0294

b@  05% | 0.42%°  0.0298 0.71%  0.0256 0.0315 | 0.21% 0.0347 0.0514
5 oY 1% | 0.83%  0.0550 0.0841 1.15%° 0.0481" 0.0602 | 0.19% 0.0665

b 05% | 0.51%°  0.0612 0.64%  0.0536 0.0683 | 0.09% 0.0784 0.1067

@ 1% 0.83%°  0.0554 1.18%  0.0488" 0.0613 | 0.16% 0.0673 0.0852

b@  05% | 0.50%° 0.0617 0.63%  0.0543 0.0676 | 0.07% 0.0794 0.1218

Tab. 2: Risk analysis of the DAX portfolios with two static trading strategies. The con-
cerned forecasting interval is h = 1 or A = 5 days. The best results to fulfill
the regulatory requirement are marked by . The method preferred by investor is
marked by ‘. For the internal supervisory, the method marked by ¢ is recommended.

risk-averse investors who care the extreme risk happened with 0.5% probability.

4.2 Data analysis 2: Foreign exchange rate portfolio

In financial markets, traders adjust trading strategy according to information obtained.
The GHICA is easily applicable to dynamic portfolios. We consider here 7 actively traded
exchange rates, Euro (EUR), the US dollar (USD), the British pounds (GBP), the Japanese
yen (JPY) and the Singapore dollar (SGD) from 1997/01/02 to 2006/01/05 (2332 obser-
vations). The foreign exchange rate (FX) market is the most active and liquid financial
market in the world. It is realistic to analyze a dynamic portfolio with daily time varying
trading strategy b (t). The strategy at time point ¢ relies on the realized returns at t — 1,

the proportions of which w.r.t the sum of returns:

z(t—1)

b(3) )=~
W= =1

where x(t) = {z1(t),---,24(t)} . Among these data sets, the returns of the EUR/SGD
and USD/JPY rates are least correlated with the correlation coefficient 0.0071 whereas
the returns of the EUR/USD and EUR/SGD rates are most correlated with the coefficient
0.6745. The resulting portfolio returns span over [—0.7962,0.7074].

The GHICA method is compared with an alternative method, abbreviated as DCCN,

that applies the DCC covariance estimation under the Gaussian distributional assumption.
r(t) = b(t)Ta(t) = b(t) TP ()eu (t)

where £, ~ N(u,Y.) with the diagonal covariance matrix ¥.. Notice that the quantile
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GHICA DCCN
h  b(t) pr pr RC ES pr RC ES
1 3@ 1% | 1.28%° 0.0453" 0.0778 | 1.59% 0.0494
b3 (t)  0.5% | 0.59%° 0.0493 0.94% 0.0547 0.0289
5 b)) 1% | 1.53%° 0.0806" 4.17% 0.0993 0.1735
b3 () 0.5% | 0.79%°  0.1092 3.44% 0.1100 0.1389

Tab. 3: Risk analysis of the dynamic exchange rate portfolio. The best results to fulfill the
regulatory requirement are marked by ". The recommended method to the investor

is marked by ‘. For the internal supervisory, we recommend the method marked by
S

vector with pr-quantiles of individual innovations does not necessarily correspond to the
pr-quantile of the portfolio return. Under the Gaussian distributional assumption, the
standardized DCCN returns are theoretically cross independent and the Gaussian quantiles
of the portfolio can be easily calculated. The dynamic mean, variance of the portfolio’s

returns have values of:

E{r(t)} = b(t)"={/?(8) E{ea(t)}
Var{r(t)} = b(t) =02 (¢) Var{e, (6)}£5/2T (0)b(1)

The GHICA method in general presents better results than the DCCN. Except the value
of ES at 1% level, the GHICA fulfills the requirements of regulatory, internal supervisory
and investors, see Table 3. For h = 1 day forecasts, the DCCN gives although a closer VaR
value to 1.6%, i.e. the ideal probability for regulatory, its risk charge with a value of 0.0494
is larger than that based on the GHICA, 0.0453. Therefore the GHICA is more favored in

fulfilling the minimal regulatory requirement.

The two real data studies show that the GHICA method fulfills the minimal regulatory
requirement by controlling the risk inside 1.6% level and requiring small risk charge, in
particular satisfies the internal supervisory requirement by precisely measuring risk level as
expected and favors the investors’ requirement by delivering small size of loss. In summary,
the GHICA method is not only a realistic and fast procedure given either static or dy-
namic portfolios but also produces better results than several alternative risk management
methods.
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