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Motivation 1-1

Why investors may wish to trade volatility?
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Figure 1: DAX level vs. DAX 1M realized volatility (20050103 - 20091230)
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Motivation 1-2

Volatility is an asset

"fear indices": VIX, VDAX, VSTOXX

3G volatility derivatives: gamma swaps,
corridor variance swaps, conditional variance
swaps

volatilitiy trading strategies: dispersion
trading
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Motivation 1-3

Research questions

� How to trade volatility?
� How to hedge (replicate) volatility?
� How good can we perform?
� How does dispersion trading work?
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Definition 2-1

Variance swap

Figure 2: Cash flow of a variance swap at expiry
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Definition 2-2

Variance swap

� forward contract
� at maturity pays the difference between realized variance σ2

R
and strike K 2

var (multiplied by notional Nvar )

(σ2
R − K 2

var ) · Nvar (1)

σR =

√√√√252
T

T∑
t=1

(
log

St

St−1

)2

· 100 (2)
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Definition 2-3

Example

3-month variance swap long
Long position in 3-month variance swap. Trade size is 2500
variance notional (represents a payoff of 2500 per point difference
between realized and implied variance).
If Kvar is 20% (K 2

var = 400) and the realized subsequent variance is
(15%)2 (quoted as σ2

R = 225), the long position makes loss 437500
= 2500 · (400 - 225)
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Replication and hedging 3-1

Replication and hedging - intuitive approach

� European option with Black-Scholes (BS) price
VBS(S ,K , σ

√
τ)

� variance vega:

∂VBS

∂σ2 =
S

2σ
√
τ
ϕ(y) (3)

where

y =
log(S/K ) + σ2τ/2

σ
√
τ

ϕ - pdf of a standard normal rv.
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Replication and hedging 3-2

Variance vega of options with different K
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Figure 3: Dependence of variance on S for vanilla options with K =

[50, 200], σ = 0.2, τ = 1
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Replication and hedging 3-3

Equally-weighted option portfolio
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Figure 4: Variance vega of option portfolio (red line) with options weighted
equally
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Replication and hedging 3-4

1/K -weighted option portfolio
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Figure 5: Variance vega of option portfolio (red line) with options weighted
proportional to 1/K
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Replication and hedging 3-5

1/K 2-weighted option portfolio
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Figure 6: Variance vega of option portfolio (red line) with options weighted
proportional to 1/K 2
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Replication and hedging 3-6

Replication and hedging - more rigorous
approach

� existence of futures market with delivery dates T ′ ≥ T
� stock price St (underlying) dynamics:

dSt

St
= µdt + σdWt (4)

� all strikes are available (market is complete)
� continuous trading
� risk free interest rate r = 0, w.l.o.g.
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Replication and hedging 3-7

Log contract

Define

f (St) =
2
T

{
log

S0

St
+

St

S0
− 1
}

(5)

derivatives:

f ′(St) =
2
T

(
1
S0
− 1

St

)
(6)

and

f ′′(St) =
2

TF 2
t

(7)

observe f (S0) = 0
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Replication and hedging 3-8

Itô’s lemma

f (St) = f (S0) +

∫ T

0
f ′(St)dSt +

1
2

∫ T

0
S2

t f ′′(St)σ
2
t dt (8)

Substituting (6), (7):

1
T

∫ T

0
σ2

t dt =
2
T

(
log

S0

ST
+

ST

S0
− 1
)
− (9)

− 2
T

∫ T

0

(
1
S0
− 1

St

)
dSt
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Replication and hedging 3-9

Equation (9) gives the value of σ2
R as a sum of:

2
T

∫ T

0

(
1
S0
− 1

St

)
dSt

(continuously rebalanced position in underlying stock) and

f (ST ) =
2
T

(
log

S0

ST
+

ST

S0
− 1
)

(10)

(log contract, static position).
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Replication and hedging 3-10

Carr and Madan (2002) represent any twice differentiable payoff
function f (ST ):

f (ST ) = f (k) + f ′(k)
{
(ST − k)+ − (k − ST )

+
}

(11)

+

∫ k

0
f ′′(K )(K − ST )

+dK

+

∫ ∞
k

f ′′(K )(ST − K )+dK

where k is an arbitrary number.
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Replication and hedging 3-11

Applying (11) to (10) with k = S0 gives

log
(

S0

ST

)
+

ST

S0
− 1 = (12)

=

∫ S0

0
K−2(K − ST )

+dK +

∫ ∞
S0

K−2(ST − K )+dK

a portfolio of OTM puts and calls weighted by K−2.
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Replication and hedging 3-12

What are the costs of this strategy? The strike K 2
var of a variance

swap is calculated via the risk-neutral expectation:

K 2
var =

2
T

erT
∫ S0

0
K−2P0(K )dK +

2
T

erT
∫ ∞

S0

K−2C0(K )dK (13)

where P0 (C0) - value of a put (call) option at t = 0.
Problem: vanilla options with a complete strike range (from 0 to
∞) are not traded. How to replicate a fair future realized variance
in reality?
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Replication and hedging 3-13

Discrete approximation

Demeterfi et al. (1998) approximate payoff (10) via piecewise linear
approximation.
Example: put option with strike K0 and 2nd closest strike K1p

w(K0) =
f (K1p)− f (K0)

K0 − K1p
(14)

The second segment - combination of puts with strikes K0 and K1p:

w(K1p) =
f (K2p)− f (K1p)

K1p − K2p
− w(K0) (15)

where w(K ) amount of option with strike K in replicating portfolio
(the slope of a linear segment at point K , figure 7).
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Replication and hedging 3-14

Discrete approximation

Figure 7: Discrete approximation of a log payoff (10)
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Replication and hedging 3-15

Simulated payoff of 3M DAX variance swap
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Figure 8: Strike of 3M variance swap, realized 3M variance, payoff of 3M
variance swap long,price of underlying asset
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Replication and hedging 3-16

3M DAX variance swap payoff statistics

Min. Max. Mean Median Stdd. Skewn. Kurt.
Min. payoff
-0.00376 -0.00051 -0.00145 -0.00138 0.00044 -0.95685 4.33
Max. payoff
0.00016 0.00027 0.00020 0.00020 0.00002 0.65743 3.63
Mean payoff
-0.00018 0.00005 -0.00003 -0.00002 0.00003 -0.52441 3.30
Volatility of payoff
0.00009 0.00044 0.00022 0.00022 0.00005 0.66285 3.37

Table 1: Summary statistics of 3M variance swap payoff simulation, dura-
tion of the strategy - 10 years (2500 days),number of paths - 1000, GBM
with µ = 0.17, σ = 0.18
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3G volatility derivatives 4-1

Generalized variance swaps

Modify the floating leg of a standard variance swap (1) with a
weight process wt to obtain:

σ2
R =

252
T

T∑
t=1

wt

(
log

St

St−1

)2

(16)
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3G volatility derivatives 4-2

Corridor and conditional variance swaps

wt = w(St) = ISt∈C defines a corridor variance swap with corridor
C .

� for C = [A,B] the payoff function is defined by

f (ST ) =
2
T

(
log

S0

ST
+

ST

S0
− 1
)
IST∈[A,B] (17)

where I is the indicator function.
� C = [0,B] gives downward variance swap
� C = [A,∞] gives upward variance swap
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3G volatility derivatives 4-3

Simulated payoff of 3M DAX corridor swap
with time-adjusting corridor
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Figure 9: Strike of 3M corridor swap, realized 3M conditional variance,
payoff of 3M corridor swap long,price of underlying asset
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3G volatility derivatives 4-4

3M DAX corridor swap payoff statistics

Min. Max. Mean Median Stdd. Skewn. Kurt.
Min. payoff
-0.00006 0.00000 -0.00001 -0.00001 0.00001 -1.70441 9.42
Max. payoff
0.00007 0.00021 0.00014 0.00014 0.00002 0.25564 3.17
Mean payoff
0.00001 0.00007 0.00003 0.00002 0.00001 0.75811 3.41
Volatility of payoff
0.00001 0.00004 0.00003 0.00003 0.00001 0.16232 3.02

Table 2: Summary statistics of 3M corridor swap payoff simulation, dura-
tion of the strategy - 10 years (2500 days),number of paths - 1000, GBM
with µ = 0.17, σ = 0.18
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3G volatility derivatives 4-5

Gamma swaps

wt = w(St) = St/S0 defines a price-weighted variance swap or
gamma swap with realised variance paid at expiry:

σgamma =

√√√√252
T

T∑
t=1

St

S0

(
log

St

St−1

)2

· 100 (18)

The payoff function:

f (ST ) =
2
T

(
ST

S0
log

ST

S0
− ST

S0
+ 1
)

(19)
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3G volatility derivatives 4-6

Simulated payoff of 3M DAX gamma swap
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Figure 10: Strike of 3M gamma swap, realized 3M gamma-weighted vari-
ance, payoff of 3M gamma swap long, price of underlying asset
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3G volatility derivatives 4-7

Gamma swap vs variance swap
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Figure 11: Strike of 3M gamma swap, Strike of 3M variance swap, price
of underlying asset
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3G volatility derivatives 4-8

3M DAX gamma swap payoff statistics

Min. Max. Mean Median Stdd. Skewn. Kurt.
Min. payoff
-0.00435 -0.00054 -0.00158 -0.00149 0.00051 -0.99914 4.51
Max. payoff
0.00016 0.00027 0.00020 0.00020 0.00002 0.64185 3.57
Mean payoff
-0.00019 0.00005 -0.00003 -0.00003 0.00003 -0.55715 3.33
Volatility of payoff
0.00009 0.00048 0.00023 0.00022 0.00005 0.72273 3.48

Table 3: Summary statistics of 3M gamma swap payoff simulation, duration
of the strategy - 10 years (2500 days),number of paths - 1000, GBM with
µ = 0.17, σ = 0.18
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Dispersion trading strategy 5-1

Basket volatility

σ2
Basket =

N∑
i=1

w2
i σ

2
i + 2

N∑
i=1

N∑
j=i+1

wiwjσiσjρij

replace


1 ρ12 · · · ρ1N
ρ21 1 · · · ρ2N
...

...
. . .

...
ρN1 ρN2 · · · 1

 with


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

,
then ρ =

σ2
Basket −

∑N
i=1 w2

i σ
2
i

2
∑N

i=1
∑N

j=i+1 wiwjσiσj
is the basket correlation

(’dispersion’).
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Dispersion trading strategy 5-2

Dispersion Strategy

ρ =
σ2

Basket −
∑N

i=1 w2
i σ

2
i

2
∑N

i=1
∑N

j=i+1 wiwjσiσj

� Long: Variance of basket (index)
� Short:Variance of basket constituents
� Long: Dispersion

How to implement?
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Dispersion trading strategy 5-3

Dispersion Strategy

For a basket of i = 1, ...,N stocks payoff of direct dispersion
strategy is sum of:

(σ2
R,i − K 2

var ,i ) · Ni

and of short position in

(K 2
var ,index − σ2

R,index) · Nindex

where

Ni = Nindex · wi

notional amount of the i-th stock.
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Dispersion trading strategy 5-4

Dispersion Strategy

Overall payoff:

Nindex ·

(
n∑

i=1

wiσ
2
R,i − σ2

R,Index

)
− ResidualStrike (20)

ResidualStrike = Nindex ·

(
n∑

i=1

wiK 2
var ,i − K 2

var ,Index

)
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Dispersion trading strategy 5-5

Simulated payoff of 3M DAX dispersion
strategy
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Figure 12: 3M strike dispersion, 3M realized dispersion, 3M direct disper-
sion strategy (dispersion long)
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Dispersion trading strategy 5-6

3M DAX dispersion strategy statistics

Min. Max. Mean Median Stdd. Skewn. Kurt.
Min. payoff
-0.22189 -0.00251 -0.03967 -0.02255 0.04003 -1.58 4.79
Max. payoff
-0.00657 0.06719 0.01258 0.00734 0.01341 1.51 4.41
Mean payoff
-0.04815 0.00262 -0.00805 -0.00294 0.01172 -1.72 4.88
Volatility of payoff
0.00078 0.03959 0.00868 0.00481 0.00837 1.57 4.68

Table 4: Summary statistics of 3M dispersion strategy simulation, duration
of the strategy - 10 years (2500 days),number of paths - 1000
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Dispersion trading strategy 5-7

Conclusions

� Volatility can be traded as an asset
� Future realized volatility can be replicated with option

portfolios
� With linear interpolation replication performs well
� The success of the volatility dispersion strategy lies in

determining:
I Direction of the strategy (GARCH volatility forecasts)
I Constituents for the offsetting variance basket (PCA, DSFM)
I Proper weights of the constituents (vega-flat strategy,

gamma-flat strategy, theta-flat strategy)
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