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Motivation 1-1

Dynamics of High Dimensional Objects

(] Non-stationarity
[] Spatial structure
(] Many variables
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Motivation 1-2

Dynamics of High Dimensional Objects

[] Meteorology
» Temperature and Climate Change

(] Medicine

» Risk Perception
(] Finance

» Implied Volatility Surface
Limit Order Book
Collateralized Debt Obligation
CO, Emission Allowance
Empirical Pricing Kernel

Electricity Forward Prices
Yield Curve
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Motivation 1-3

Temperature and Climate Change
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Figure 1: Daily temperature observations averaged over stations (J = 159)
in China 19570101 - 20091231; source: China Meteorological Administra-
tion
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Motivation 1-4

Temperature and Climate Change
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Figure 2: Moving average temperatures (730 days), linear trend (significant
estimates at 1% level)
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Motivation
Temperature and Climate Change

(] Weather Derivatives

Econometrics Fin. Mathematics
T: CAR(3)
{ {
Xe=Te =N FCAT(t,n,rz)
d
Xt+3 = aTXt + otEt MPR
1

2= XN(0,1)

[] Detecting complex trends, evaluating "non priced”

places
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Motivation 1-6

Risk Perception

[J functional Magnetic Resonance Imaging

[J Measuring Blood Oxygenation Level Dependent (BOLD) effect
every 2-3 sec
High-dimensional, high frequency & large data set
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Motivation 1-7

Risk Perception
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Figure 3: Example of a fMRI image at fixed time point, 12 horizontal slices
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Motivation 1-8

Risk Perception

(] Which part is activated during risk related decisions ?
[ Can statistical analysis help to detect this area?

[] Response curve (to stimuli)? classify “risky people™?
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Motivation 1-9

Implied Volatility Surface

5025

implied volatity

Figure 4: Left panel: observations on 20040701; right panel: observations
on 20040819. Bottom solid lines indicate the observed maturities, which

move towards the expiry@ IVS
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Motivation 1-10

Limit Order Book
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Figure 5: Bid and ask curves constructed from the order book of National

Australian Bank stock prices on 20020801. @ LOB
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Motivation 1-11

Collateralized Debt Obligation
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Figure 6: Compound correlations on 20070321 w.r.t. time to maturity (in
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Motivation 1-12

CO, Emission Allowance
20101115
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Figure 7: Term structure for CO, emission allowance's spot and futures
orices (EUR/t), trading on 20101115 in the EEX market. ©] €02

[1 CO2 density 1.799 kg/m3 at 25 C°
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Motivation

Empirical Pricing Kernel
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Figure 8: Estimated PK across moneyness x and maturity 7 at t =

20010710. €| EPK
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Motivation

Electricity Forward Prices
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Figure 9: Term structure of the electricity prices (NOK/MWh) from the

Nord Pool on 20041230. ©l EFp
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Motivation 1-15

Yield Curve

20090204

Maturity

Figure 10: Yield curves of European Zone, United Kingdom, Sweden,

Switzerland and Denmark on 20090204 @ YC
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Motivation 1-16

3D Challenge

Dimensionality

Dependency

Divergency
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Overview

Motivation v/
Introduction
Estimation

Some theoretical insight

o s wnh =

Applications
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Introduction 2-1

Notation

(X110, Y1) (X, Y1) oo (X, Yo, r) o oo (KXo 70 Yor 7)),
t—1 =T

where:

Xjc €RY, Y €R

T - the number of observed time periods (days)
Ji - the number of the observations in (day) t
E(Y:|Xe) = Fe(Xe).

What is F;(X;)? How does it move?
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Introduction 2-2

Basic Idea

[] Use a “time & space” dynamic approach

[-] Separate time dynamics from space functions
[J Low dim time series dynamics

[ High dim (time invariant) space functions

[ # of factors A~ J, fitting

How to penalise non interesting frequency loadings?
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Introduction 2-3

Dynamic Semiparametric Factor Model

E(Y:|Xe) = Z ZO t, m(Xz) = Z(;l,—tm(Xt) = Z(;l,—tAw(X)

Zi = (Zot1,---,Zor1) " low dim (stationary) time series
m(-) tuple of functions (mg, my,...,my)"

P(x) = (Y1, ...,9k) " (x) vector of known basis functions
A: L x K coefficient matrix
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Introduction 2.4

Dynamic Semiparametric Factor Model

L R K
Ve Z Z )V Z aPk(Xej) + €1
1=1 r=1 k=1
Y, = U T A, +e, Y UT BTV, +c,
——
z" m
Ul = (ui(t),- .., ur(t)), u(t) time basis

Wy = (P1(Xe), -+, ¥k (Xe)) T, ¥r(x) space basis
B*T R x K matrix, ||B]21 = 25:1 \/Zle 32 (group Lasso)
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Introduction 2-5

Generalized DSFM

Y, = (Zi,+ U NAV, + €, = U/ TAV, + (Z) AV, + ¢})

COUTAV, e, with E(ZoXe) = 0.

[J Stochastic evolution in time
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Introduction

3D Challenge

[J How to fit GDSFM?
[J What risk is involved?
[J How to select the basis?

Dynamic Semiparametric Factor Models
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Dimensionality
Dependency

Divergency




Estimation 3-1

GDSFM Estimation

1. Find the trend based on Y," = U/TAV, + ¢,

2. Based on \A/tT def YtT — U:B\Ut, A and W, obtain 20#
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Estimation 3-2

Time Basis

[J Global trend: 1, t, (3t> —1)/2,... Legendre Polynomial
[ Seasonality: sin{nt/(p27)}, cos{nt/(p27)} Fourier Series
Period p = 11.8 (fMRI), 365, 3650 (weather)
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Estimation 3-3

Space Basis

[) B-splines {4y},

[J Eigenfunctions of Cov operator

Y = S to Zumi(Xy) + e = Me(Xyj) + 4

[J Functional Principal Component Analysis

Dynamic Semiparametric Factor Models




Estimation 3-4

Space Basis

Covariance operator
C (u,v) = Cov{M(u), M(v)}
Observe that C is a kernel:

Mercer's Theorem

C(u,v) =221 Oxtuc(u)k(v)

{0k, } Eigenvalues, -functions
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Estimation 3-5

Space Basis

Karhunen - Loéve expansion

M(u) = mo(u) + ) axthu(u)
k=1

o = / {(M —mo) e} (v)dv

k-th PC scores, uncorrelated
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Estimation 3-6

Space Basis

C(u,v)="ao(u,v) —a(u)a(v)

T J: 2
mmZZ{Yg—a—Zb XUV} Kp(u — Xyj)
=1 =1
T Jt t 2
manZZ{Ytjyﬂ_aO_Zb — Xijv) sz(v th,,}
b t=1 j=1 i=1

XKh(U — th)Kh(V — th)
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Estimation 3-7

Estimation Procedure

0 Space basis W; via FPCA
1 Time basis U; selection via group Lasso; 3 (R x K)

~

.
min(TJ) ™y (YtT . UtTﬂT\IJt> (YI - UI@th)T
' t=1

+2A[|B]l2,1

2 Split B into T, A

T: first “L” eigenvectors of BRT, A=T'j
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Estimation 3-8

Tuning parameter \

[ Take 100 equally spaced \ € [0, max, || >, V¢ YeUs || /VK]
[] Evaluate C,(\) where

YT_ T U 2
Cp(>\) — Et H t N;jt 6 t H o JT+2df
g
s _ el Y - UlB sV P
JT — df
Al
df = 1{|| ﬂ, |I> 0} + (K-1)
Z Z | BoLs H

[J Choose the minimal C,())
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Estimation

Sparsity of j3*

(] Measured by s
[J Low s implies high sparsity

[ k(s) - decreasing function of s

Dynamic Semiparametric Factor Models
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Some theoretical insight 4-1
Risk Bound (Gaussian)

Assume e~ N(0, 02) and )\N(JT)fi with probability at least
1 — R™9 with ¢ = min(Alog R, v/T), for all 3:

;
U)W (B =B I” < 6402s(1 + Alog R/V/T)/(r2J),

t=1

T2 B-p 21 < 3205\/1 + Alog R/VT /(k*V)),

M(B) < 649255/ K>

] Dependence on R is negligible for large T
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Some theoretical insight 4-2

Risk Bound (Non-Gaussian)

1

e~(0,0?) and A~(JT)2 with probability at least
1— (2elog R — €)C/(log R)*, for all B:

.
IS W (B-8)U; | < 16025(log R) 0 /(52))
t=1

T2 B = 87 |l < 1605/ (log R)*0/(+*/J)

M(B) < 649255/ K>

[] Dependence on R surfaces
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Some theoretical insight 4-3

Risk Bound (Dependent)

Under technical assumptions and A~ T—2 with probability at least
p(1 — R~%), for ¥ 3
T

~ 2
UV I < 16 <C’+ SR e ) o/

t=1
- ry ¥ , X*(T b?
T2 3= |, <16 (c 4 (loéR))lZ”) 5/
M(B) < 64¢2,,.5/ K>

(] Dependence level *, bound *
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Some theoretical insight

Zo+ not get affected

. . 1
Under technical assumptions and A~T "2

1 ST A *
T Z HZ(LA—Z(LA

1<t<T

for :6’\ "close enough” to (8

(1 Approximation Y, bound

2
= Op(p” + 0%).

Dynamic Semiparametric Factor Models
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Some theoretical insight 4-5

Covariance Equivalence

Under technical assumptions and A~ T_%, forh>0

MIin[7,T—h]

- 5 (5 5 \' T
7! Z 2ot (ZO,t+h - Zo,r) —Zot (Zo.t+n — Zot) =Op
t=max[1,-h+1]

min[7,T—h]
-1
T Z ZyZ,), ih — ZntZp e FOP
t=max[1,-h+1]
where:
B o (Z;r:l ZO,f?O,t)_l 22-:1 ZO,fZOT,t: 2ot def BTZo t,
Zye E(TEL, 20,620.) 220, Zoe E(TEL, 20,620) 220,
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Applications 5-1

Temperature and Climate Change

Weather stations and China Climate Types
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Applications 5-2

Temperature and Climate Change
(] Space basis via FPCA

x 10*

2 1
15
0.98
1
0.96
0.5
0 0.94 : : ‘
1 2 3 4 5 1 2 3 4 5

Figure 11: Distribution of the eigenvalues (left) and explained variance by

the first K basis (right)
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Applications

Temperature and Climate Change

[ Initial time basis (53 - 3 + 20 = 179)

5-3

Factors Factors
Trend 1 Large sin{27t/(365 - 10)}
(Year by Year) t Period  cos{27t/(365 -10)}
32 -1 sin{47t/(365 - 10)}
Seasonal sin{27t/365} cos{4rt/(365-10)}
Effect cos{2nt/365} sin{67t/(365 - 10)}
cos{207t/365} cos{207t /(365 - 10)}
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Applications 5-4

Time Basis Coefficients

[] Long term: linear, quadratic trend - warming effect
[ Yearly variation (p = 365): earth rotation
[] 10-year variation (p = 3650): solar activity

0.1

0.05

ob—1 i i i i
1960 1970 1980 1990 2000 2010

Estimated coefficients of the 1st factor [,; w.r.t. the yearly
polynomial time basis (constant, linear, quadratic)
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Applications 5-5

Estimated Stochastic Process ?07,_;1

1 1 1 1 1
1960 1970 1980 1990 2000 2010
Year

Figure 12: Estimated stochastic process 20’1—71
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Applications

Modeling of Z,

2ot = RZo,t—1 + €0,+ with random vector ¢o ; and estimated
coefficient matrix:

1.0003  0.0132 -—0.0002 —-0.3422  0.0786
0.0082  1.0111  0.1426  0.2673 —0.0288
0.0019 0.0282 0.8362 0.1471  0.1688
—0.0014 —0.0290 —-0.1195 0.7185 —0.0648
—0.0017 —-0.0002 —-0.1155 —-0.0708  0.8151
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Applications

Risk Perception

Perceived
Risk

HHH

or

Subjective
" Expected

Return
8.93%

H+HH

o

Decision /
[a] \

2.5 sec
= 20 sec

Returns Pause

Decision
Dynamic Semiparametric Factor Models
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Applications 5-8

Risk Perception

[] 3D fMRI images data

» Panel GDSFM Y/ ;1 <i </

L
Y= (og + U THm(Xey) +ej, 1<j<d, 1<t<T,
=1

with fixed effect O‘L/ and

/ L
Z (Z ai,/m/(Xt,j)IXt,j) =0

i=1 \/=1
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Applications 5-9

Risk Perception

1 Average YtiJ over | and estimate factor loadings m;

2 Given my, for i, estimate Zt",.

L
Yl = Ul Timi(Xe)) +€f
1=1

Dynamic Semiparametric Factor Models b



Applications 5-10

Estimated factor loading /m; with L = 5.
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Applications 5-11

Estimated factor loading /My with L = 5.
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Applications 5-12

Estimated factor loading i3 with L = 5.
(VMPFC = Ventromedial prefrontal cortex)
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Applications 5-13

Motor region for the right hand

Estimated factor loading /ma with L = 5.
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5-14

Applications

Parietal cortex

Estimated factor loading s with L = 5.
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Applications 5-15

Response to Stimuli

Response curves (to stimuli) UtTf’2 for probands i =9 & i =19
with periodic cubicdpolynomial as time basis P
€
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Applications 5-16

SVM Analysis (Risk)

[] Different subjects’ response curves have different shapes
(] SVM based on the B

MEAN Estimated
Strongly 0.85 0.14
Data  \veakly 0.50 0.40

Table 1: Classification rates of the SVM method.

The rates hold over a wide range of parameters
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Applications 5-17

SVM Classification

Scores
0.5
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Applications 5-18

Yield Curve Modelling

[ Yield Curve - Y;; € R!3
(] 4 countries; AU, EU, JP and US, 20001013-20101013

(] Explanatory variables

» Time to maturity - X! € R
» Real GDP changes - X2 € R
De-trended using Hodrick-Prescott (HP) filter
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Applications 5-19

Explained Variance

0.98

0.96

0.94

[N
N
w
IN
4

Figure 13: Explained variance for the first 5 factors for AU, EU, JP and
us
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Applications 5-20

Estimated First Factor, m;

AU EU

-0.05

4
0
AGDP Maturity AGDP Maturity

Figure 14: Estimated first factor
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Applications 5-21

Estimated First Factor, m;

AGDP e Maturity AGDP T Maturity

Figure 15: Estimated first factor
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5-22

Applications

Estimated Factor Loadings, Z,

5
0
-5
L L L L L L L L
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year
EU

Il Il Il Il Il Il Il Il Il
2002 2003 2004 2005 2006 2007 2008 2009 2010

2001
Year

Figure 16: Estimated factor loadings: 21:. Zt and Zt

Dynamic Semiparametric Factor Models

o



Applications

Estimated Factor Loadings, Z,

5

| Il Il Il L L L L L L
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year

15

-15

L L L L L L L L L
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year

Figure 17: Estimated factor loadings: Zt, Zt and 23t
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Conclusion 6-1

Dynamic Semiparametric Factor Model

[] Two-step estimation

(] Low dimensional representation Dimensionality v

(1 Applications

» Neurobiology
» Meteorology
» Finance

Dependencyv’

Divergencyv
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Appendix 7-1

Technical assumptions

Al Normalization of U; & WV;: \IltlII;r/J = Ig, ZtT:1 UtTUt/R =1
A2 The number of nonzero 3)s: M(8*) <s
A3 @max is the maximum eigenvalue of Z;l UtUtT

A4 The error terms e1,...,e71 are i.i.d. Gaussian with mean 0
and variance 02/,

A5 The error terms €1, ...,e7 are independent with mean 0 and
finite variance E(Efj) <o?
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Appendix 7-2

Assumption

There exists a positive number k = k(s) such that

-
min {—Zt Ve AU R| < s, A€ ]RKXR\{O},
V1| Az |

| Are 21<3 1| Br o } > .

[ Restriction on the eigenvalues of U; as a function of sparsity s

[ Low sparsity, s big, x small
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Appendix

Assumption
The matrices V; and U; are such that

T J
(JT)~ lzz<max|zwtijtr> < C,

t=1 j=1

for a constant C > Q.
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Appendix

7-4

Measure of Dependence, Jason (2004)

Given a set 7 and random variables V;, t € T, we say:

B

L
L

A subset T’ of T is independent if the corresponding random variables
{Vi}te are independent.

A family {7;}; of subsets of 7 is a cover of T if ; 7; =T.

A family {(7;, w;)}; of pairs (7}, w;), where 7; C T and w; € [0,1] is a
fractional cover of T if Zj wily; > 17, ie. Zj:teTj wj > 1 for each
teT.

A (fractional) cover is proper if each set 7j in it is independent.

X(T) is the size of the smallest proper cover of T, i.e. the smallest m
such that 7 is the union of m independent subsets.

X*(T) is the minimum of > w; over all proper fractional covers

{(T5, wy)}i-

X*(T): measure of dependence; X*(7) =1 (independent).
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Appendix

Assumption
With a high probability p, V;, U; and ¢, are such that

K J
J_lzzwtkjftjUtr)2 < b2

k=1 j=1
C/

T K 12
{Zl Zzwtkﬁtjutr } < JT

k=1 j=1

forV r and some constants by, C' >0,t=1,...,T.
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Appendix

7-6

Technical assumptions

B1
B2

B3

B4

Xi1,.. s XT 4, €115+ --,€7 .40 and Zo 1, ..., Zo, T are independent.

Xed,...,Xey are identically distributed, support [0,1] and a density f;
that is bounded from below and above on [0,1]¢, uniformly over
t=1,...,T.
We assume that Ea’td- =0for1<t<T,1<j<J, andfor ¢c >0 small
enough sup;<,<71<j<y Eexp{c(et;)’} < oo.
The vector of functions m = (my,...,m.)" can be approximated by W,
i.e.

Sk X sup inf |Im(x) — AV(x)| = 0

xe[0,1]d AEREXK

as K — oo. We denote A that fulfills sup, ;14 [Im(x) — AV (x)|| < 20k
by A*.
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Appendix 7-7

B5 There exist constants 0 < C. < Cy < oo such that all eigenvalues of the
matrix T~2 ST Zo.Z,', lie in the interval [Cp, Cy] with probability
tending to one.

B6 The minimization (1) runs over all values 3 with

Zo AV <M
up 1 (126, AVG)] < Mr

where the constant Mt fulfils maxice<t || Zo¢|| < M1 /Crm (with
probability tending to one) for a constant C,, such that
SUP¢[o,1)d [m(x)[| < Cen.

B7 It holds that p* = (K + T)M% log(JTM7)/(JT) — 0. The dimension L

is fixed.
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Appendix 7-8

Technical assumptions

Cl Zy is a strictly stationary sequence with E(Zp ;) = 0,
E(||Zo,¢]|7) < oo for some v > 2. It is strongly mixing with
> a(i)072/7 < 0o, The matrix E Zg ¢ Zy, has full rank.
The process Zgy; is independent of Xi1,...,X71y,€%1,...,€7,.

C2 It holds that
[log(KT)2{(KMt/J)}/? + T1/2/\/I‘}J—2 | K321
FKABJBT O} L TV + 65 ) = o(p? + 0R)
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