Forecasting Corporate Distress in the Asian and Pacific Region

R. A. Moro, W. K. Härdle, S. Aliakbari, L. Hoffmann

Motivation

Credit risk modelling in the perspective of statistics:

"... the large majority in statistical profession" are using statistical packages "filled with a lot of crank-it-out procedures and very few up-to-date methods."

Prof. Leo Breiman, one of the inventors of Classification and Regression Trees (CART)

Motivation. Data

- ▷ Mostly only accounting data are used
- Biased data, (self-)selection problem e.g. the companies that submit accounts are those which expect to be rated positively
- Aggregation of incompatible data, e.g. across countries or industries
- Relationship between companies, e.g. companies can belong to the same holding

Modelling results are only as good as the data

Credit Risk Modelling

Credit Risk: Towards a Better Understanding

- 1. Use market data and different types of financial distress. Country-specific and industry-specific modelling
- 2. Selection of a model with "better" statistical properties: Support Vector Machines (SVM)

Definition of Distress

Most common credit events identifying distressed firms:

- ▷ restructuring
- liquidation
- ▷ being sued by creditors
- ▷ failing in coupon and principle payments

Credit event codes 100-120 and 300-333, RMI database

Time to default \leq 2 years (similar results for other horizons)

PD: 2 year cumulative PD

Company Classification Problem

Company Classification Problem

Learning is carried out on the **training set**: $\{(x_i, y_i)\}_{i=1}^n$ with the distribution $P(x_i, y_i)$.

- ▷ $x_i \in \mathbb{X}^d$ is the vector of characteristics describing company *i* e.g. financial ratios;
- ▷ $y_i \in \{1; -1\}$ or $\{1; 0\}$ is the class of the *i*-th company. $y_i = 1$ for distressed, $y_i = -1$ for solvent firms

Objective: find a decision rule $f(x) : \mathbb{X}^d \mapsto \{1; -1\}$ determining the class y of any comany x, s.t. the model can **generalise** well. $\hat{y} = \operatorname{sign}\{f(x)\}$

Support Vector Machine (SVM)

From all **convex** classification models, which provide the **stability of the rating**, SVM has the tightest approximation of the $\{0, 1\}$ misclassification loss:

Outline

- 1. Motivation 🗸
- 2. Predictors of Distress (Asia and Germany)
- 3. Distress Forecasting (Logit and Support Vector Machines)
- 4. Massively parallel computing: FPGAs and GPUs

Data Description

Data provided by the Risk Management Institute of the National University of Singapore (RMI NUS)

12 countries; 1986-2010

311,000 observations; 7,450 cases of distress

S - sales; TA - total assets; NI - net income; OI - operating income; OK - own capital; CL - current liabilities; TD - total debt; STD - short term debt; QA - quick assets; CA - current assets; WC - working capital; INV - inventories; AR - accounts receivable; AP - accounts payable; CS - cost of sales; INT interest payments; D - debt; CASH - cash and equivalents

Data Distribution Across Countries

Country	Distressed firms	Solvent firms
Australia	6 (4.03 %)	143
China	4182 (7.22 %)	53739
Hong Kong	19 (0.34 %)	5505
India	148 (0.51 %)	28775
Indonesia	70 (1.12 %)	6186
Japan	258 (0.36 %)	71380
Malaysia	1100 (3.12 %)	34173
Philippines	267 (4.16 %)	6154
Singapore	77 (1.08 %)	7050
South Korea	232 (0.46 %)	50153
Taiwan	604 (2.47 %)	23809
Thailand	486 (2.77 %)	17028

Summary Statistics (1)

	Dist	tressed	firms	Solvent firms			
Variable	$q_{0.05}$	Med	$q_{0.95}$	$q_{0.05}$	Med	$q_{0.95}$	
			Lever	age			
OK/TA	-1.25	0.34	0.63	0.12	0.53	0.88	
CL/TA	0.18	0.54	2.02	0.08	0.32	0.73	
TD/TA	0.15	0.44	1.06	0.00	0.21	0.60	
	Activity						
TA/S	2.53	9.79	107.11	1.75	4.77	25.78	
INV/S	0.09	0.90	9.48	0.01	0.48	2.54	
AR/S	0.19	1.00	6.54	0.08	0.72	2.18	
AP/CS	0.08	0.65	4.97	0.04	0.42	1.38	

Summary Statistics (2)

	Distressed firms			Solvent firms				
Variable	$q_{0.05}$	Med	$q_{0.95}$	$q_{0.05}$	Med	$q_{0.95}$		
			Liqu	idity				
STD/D	0.17	0.89	1.00	0.08	0.71	1.00		
CASH/TA	0.00	0.05	0.30	0.00	0.08	0.38		
CASH/CL	0.00	0.08	0.71	0.01	0.26	2.63		
QA/CL	0.10	0.64	1.91	0.27	1.09	5.47		
CA/CL	0.15	0.90	2.40	0.44	1.49	6.51		
WC/TA	-1.67	-0.04	0.37	-0.29	0.16	0.58		
CL/TL	0.33	0.88	1.00	0.32	0.79	1.00		
	Size							
log(TA)	4.70	7.31	11.49	4.89	9.16	13.46		
$\log(S)$	1.39	4.70	9.39	2.18	6.93	11.80		

Summary Statistics (3)

	Distressed firms			Solvent firms			
Variable	$q_{0.05}$ Med $q_{0.95}$		$q_{0.95}$	$q_{0.05}$	Med	$q_{0.95}$	
			Profita	ability			
NI/TA	-0.15 0.00 0.03		-0.06	0.01	0.05		
NI/S	-4.18	-0.03	0.26	-0.69	0.03	0.28	
OI/TA	-0.09	0.00	0.03	-0.04	0.01	0.05	
OI/S	-1.81	0.01	0.29	-0.44	0.05	0.29	
EBIT/TA	-0.09	0.00	0.03	-0.04	0.01	0.05	
EBIT/S	-2.12	0.00	0.30	-0.43	0.05	0.29	

Summary Statistics (4)

	Distressed firms			Solvent firms		
Variable	$q_{0.05}$	Med	$q_{0.95}$	$q_{0.05}$	Med	$q_{0.95}$
	Cost Structure					
INT/D	0.01	0.04	3.02	0.00	0.02	0.57
EBIT/INT	-22.50	-0.38	12.90	-28.00	4.18	322.00
	Dynamics					
S_Growth	-78.25	-7.82	117.90	-51.28	5.12	100.80
NI_Growth	-6.71	0.48	19.97	-4.77	0.19	5.31

Comparison of the Predictors of Distress

Comparison between similar financial ratios, RMI and Deutsche Bundesbank (Germany) data

Bundesbank data: 500,000 observations, from them 8,000 instances of default, 1987–2005

Horizon: 3 years cumulative

Nadaraya-Watson estimator with a Gaussian kernel ($\sigma = 0.08$)

Univariate PD. Leverage

Univariate PD. Activity

Univariate PD. Liquidity

Univariate PD. Profitability

Univariate PD. Size

Selection of the Indicators of Distress (1)

Forward variable selection with a bootstrap procedure:

- 1. Select **non-overlapping** subsamples as training and testing sets (500 solvent and 500 distressed companies in each)
- 2. Calibrate the model (Logit or SVM) on the training set and estimate the Accuracy Ratio (AR) on the testing set
- 3. Repeat steps 1 and 2 100 times and estimate the distribution of AR
- 4. Select a model based on the highest median AR: robustness

Selection of the Indicators of Distress (2)

	Logit				SVM $(R = 2.5, C = 1)$			
Step	Var	MAR	p_{max}	p	Var	MAR	p_{max}	p
1	TD/TA	57.5	0	_	TD/TA	57.5	0	_
2	log(S)	69.0	0	0	$\log(S)$	69.7	0	0
3	CL/TA	71.1	0	0	CL/TA	71.7	3	5
4	log(TA)	73.2	_	0	TA/S	73.5	_	3
5	WC/TA	73.3	_	19	RV	73.4	_	75

 $\begin{array}{l} {\sf MAR-median\ accuracy\ ratio}\\ p-{\sf significance\ level\ of\ including\ an\ additional\ variable}\\ p_{max}-{\sf significance\ in\ comparison\ with\ the\ four\ variable\ model} \end{array}$

Comparison of the SVM and Logit

Distribution of the differences of AR between SVM and Logit estimated on 100 bootstrapped subsamples for four variables

Forecasting

- $\triangleright\,$ Calibrate the model (Logit or SVM) on the data from year T
- \triangleright Estimate AR for the data from year T+2

The SVM is always used with a Gaussian kernel and the same complexity parameters (R = 2.5, C = 1). The higher R and the lower C is, the higher is complexity

Forecasting. Pooled Data

Forecasting. China

Graphical Interpretation. Pooled Data

Black points – solvent firms; white point – distressed firms. Isoquants correspond to the average PD=2.01%

Graphical Interpretation. China

Black points – solvent firms; white point – distressed firms. Isoquants correspond to the average PD=6.01%

Hardware Acceleration. Reprogrammable Microchips (FPGA)

FPGA – field-programmable gate array

Conventional Programming:

Does not change the hardware which is universal and unchanged for any programme.

Hardware Programming:

Uses hardware description language (HDL) to design and "burn" a customised microchip.

Reprogrammable Microchips (FPGA)

A processor programmed on an FPGA can be 10–400 times faster than a conventional analogue.

It is possible to programme multiple but simple processors on one FPGA. Then an FPGA can function as a multiprocessor for parallel computations.

Parallel Computing with GPU

GPU – Graphical Processing Unit

- ▷ Massively parallel (Nvidia GeForce-8: 12288 threads)
- ▷ Typical acceleration: 10x-200x
- ▷ Supported by MATLAB
- ▷ Programmable with C (CUDA)

Thank You!

References

- Lacerda, A. I. and R. A. Moro (2008). "Analysis of the Predictors of Default for Portuguese Firms", working paper 22, Banco de Portugal
- Härdle, W. K., R. A. Moro and D. Schäfer (2009). "Estimating Probabilities of Default with Support Vector Machines", submitted
- Moro, R. A., W. K. Härdle, S. Aliakbari and L. Hoffmann (2011). "Forecasting Corporate Distress in the Asian and Pacific Region", Brunel E&F discussion paper

