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Motivation 1-1

Generalized Quantile Regression (GQR)

[J Quantiles and Expectiles are generalized quantiles, Jones
(1994).

[] Capture the tail behaviour of conditional distributions.
[] Applications in finance, weather, demography, - - -

[] Some applications involve MANY GQR curves.
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Data

High dimensional and complex data in space and time
[ Weather: temperature, rainfall, solar activity
[] Electricity: futures and options with different time to maturity

(] Medicine: gene expression data

FDA for GQR




1-3

Figure 1: Weather Stations in China
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Statistical Challenges

(] Traditional: estimate GQR individually
(] Directly: estimate GQR jointly

[ common structure neglected

[] too many parameters, curse of dimensionality
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Motivation 1-5

Functional Data Analysis (FDA)

a tool to capture random curves
consider dependencies between individuals
FPCA a tool to reduce dimensionality

interpretation of factors

0ot

apply “FPCA" and least asymmetric weighted squares (LAWS)
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Figure 2: Estimated 95% expectile curves for the volatility of temperature
of 30 cities in Germany from 1995-2007.
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Motivation 1-8
Weather Derivatives

Temperature indices: Cumulative Averages (CAT) over [11, 72]:

T2
CAT(Tl,Tz)Z/ T.du,

T1

where Ty, = (Tu,max + Tu,min)/2.
A CAT temperature future under the non-arbitrage pricing setting:

T2
FCAT(I’,T]_,TQ) - EQA |:/ Tudu|ft:|

1

T2 T1
= / /\udu + at,Tl,Tgxt + / )\Uauat,Tl,TzeLdu
T t

1

T2
+/ Auoye] A7 exp {A(m — u)} — ] erdu (1)
71
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Generalized Quantile Estimation for Single Distribution 2-1

Quantile and Expectile

Quantile /
F(I):/_ dF(y)=r
I =F~Yr)
Expectile /
oo ly = 11dF(y)
0=y = 1dr) ="
| = Gfl(T)
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Generalized Quantile Estimation for Single Distribution 2-2

Loss Function

Loss function:
L(y,0) =y —0|* (2)

Asymmetric loss function for generalized quantiles:
pr(u) = [Wu < 0) — 7|[ul? 7€(0,1) 3)

with o € {1,2} and u =y — 0.
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Generalized Quantile Estimation for Single Distribution 2-3
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Figure 3: Loss functions for 7 = 0.9 (red); 7 = 0.5 (blue); o = 1 (solid
line); o = 2 (dashed line). » ‘
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Generalized Quantile Estimation for Single Distribution 2-4

Weight

wa(u) = [I(u < 0) — 7|ul*~?) (4)
Minimum contrast approach:
I = argmein E{p-(Y —0)}
= arg mein Ewa(Y —0)Y -6
Generalized quantile regression curve:
b(t) = argmin E{p(Y —0)X =t}
= argmin E{w,(Y —0)|Y — 6’| X = t}
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Generalized Quantile Estimation for Single Distribution 2-5

Estimation Method

[J Kernel Smoothing

» Quantile: Fan et.al (1994)
> Expectile: Zhang (1994)

[] Penalized Spline Smoothing

» Quantile: Koenker et.al (1994)
» Expectile: Schnabel and Eilers (2009)

GQR can be estimated by LAWS.
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Single Curve Estimation

Rewrite as regression pb:
Y =I(t) + et (5)

where F1(7) = 0.

elt

Approximate /(-) by a B-spline basis:
I(t) = b(t) "6, (6)

where b(t) = {b1(t), -+, bg(t)} " is a vector of cubic B-spline
basis and 6, is a vector with dimension g.
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Generalized Quantile Estimation for Single Distribution 2-7

Estimation

Employ a roughness penalty:
T
Z t)" 0,){Y: — b(t)"6,}
+M0, / b(t)b(t)"dt 6,,} (7)

where Y = (Y1, Ya,---, Y7)T, b(t) = 821;(;) and
we = wo{Y: — I(t)} (/(t) known).
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Generalized Quantile Estimation for Single Distribution 2-8
Estimation

The generalized quantile curve:

@L = arg rrgin S5(6,)

w

_ {BTWBH/L(t)L(t)Tdt}1(BTWY)

B = {b(t)}._, is the spline basis matrix with dimension T x g, and
W = diag{w:} defined in (4):

1(t) = b(t)8), (8)
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FDA for Generalized Quantile Regression

Regression Model
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Figure 4:
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Yij = li(ty) +ej

Data design with 7 = 0.95. @ design

3-1

(9)




3-2

FDA for Generalized Quantile Regression

Mixed effect Model

Observe i =1,--- , N individual curves:

h(t) = (t) + vi(t)

[J u(t) common shape
[ vi(t) departure from pu(t).
Approximate via

lj = li(ty) = b(ty) "6, + b(tz) vy

where i=1,--- ,Nand j=1,---,T;.
(] Too many parameters to estimate.

[J Very volatile for sparse data, James et.al (2000).
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FDA for Generalized Quantile Regression 3-3

Reduced Model

K
() = p(t) + > fi(t) i (12)
k=1

[1 K the number of factors and f; k-th factor:
f(t) = {A(t), -, f(t)} T
[ a; = (a1, -+ ,aik)' random scores.

Representation of p and f:

u(t) = b(t)"6,
f(t)" = b(t)"or

where 6, € R9 and Of with dimension g x K. —
FDA for GQR :
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FDA for Generalized Quantile Regression
Reduced Model

Rewrite (12)
/ij = /,'(t,'j) = b(tij)—r@u + b(tij)T@fai (13)
With Li = {li(t1),-- , i(T)} ", Bi={b(t1),--- ,b(T;)}", the
GQR curves:
Li = Bjb, + BiOra (14)
Then the model reads:

Yi=Li+¢e;= B0, + BiOraj +¢; (15)

with Y;is T; x 1 and «; is K x 1.
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FDA for Generalized Quantile Regression 3-5

Constraints

0/or = Ik

/b(t)Tb(t)dt _ 1,

Orthogonality requirements of the factors:

/f (t)Tdt = eT/b t)Tb(t)dt O =

FDA for GQR




FDA for Generalized Quantile Regression 3-6
“Empirical" Loss Function

For expectile regression:

N T;
S=2 > wi{Yy— b(t) 0, — b(t) ©ra;}*  (16)

i=1 j=1

Roughness penalty:

M,

GT/b )b(t)"dt 6,
M, = Ze} / b(£)B(t) T dt Oyr

And wjj = wo (Y} — I;j), where [;; defined in (13).
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FDA for Generalized Quantile Regression

LAWS

S = 5+)‘,U»M,u+)‘fo
N
= > (Yi— Bif — Bi®ra) Wi(Y; — B6),
i=1

+)\M{9T/b t)'dt 6,}

+Af{29fk/b Vb(£)Tdt 05 4}

where 0¢ i is the k-th column in ©f.
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FDA for Generalized Quantile Regression 3-8

Solutions

Minimizing S*:

-1
b, = {ZBTWB + A /b b(tTdt}
i=1
N A~
{Z B Wi(Y; - B,-efa,-)}
i=1
N -1
i=1

N
{ZauBTW(Y B0, B,-Q,-J-)} (18)
i=1
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FDA for Generalized Quantile Regression 3-9

— ~ V1~ ~
aj = {@;B;T VViBief} {@IB,-T Wi(Y: — Bieu)} (19)
Where
Qij = Zéf,k&ik
ki
andi=1,--- ,N,j=1,--- K.

[J initial values [ > Details J
[ updated procedure [ > Details J
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Auxiliary Parameters

[] Number of knots is not crucial, James et.al (2000)
[J Use 5-fold cross validation (CV) to choose the number of
factors and the penalty parameters

N—mx5 T;

1
VK NAD) =5 D DowlYi =l (20)

i=N—(m—1)x5 j=1

where m=1,2,--- ,[N/5] and wj; = w,(Yj — ljj).
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Simulation 4-1

Simulation

Yij = u(t) + f(t)oni + ()2 + € (21)
withi=1,--- /N, j=1,---,T; and t; is equal distanced on [0, 1].

The common shape curve and factor functions:

p(t) = 14 t+ exp{—(t—0.6)%/0.05}
fi(t) = sin(2rt)/V0.5
H(t) = cos(2rt)/v/0.5

where aq; ~ N(O7 36), Qo ~ N(O, 9)
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Simulation 4-2

Scenarios

1 ej ~ N(0,0.5)
1 ej ~ N(O, u(t) x 0.5)
(] €jj ~ t(5)

(] small sample: N=20,T7 = T; = 100

] large sample: N =40, T = T; = 150
Theoretical 7 quantile and expectile for individual i:
lie = p(t) + f(t)aai + h(t)az +&r

where ¢, represents the corresponding theoretical 7-th quantile and
expectile of the distribution of e;;.

FDA for GQR




Simulation

Estimators

[0 The individual curve:

i =
/i,in

[J The mean curve:

Min
FDA for GQR
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K
w4+ Z froik
k=1

Bié\u + Biéf&i

Single curve, see (8)

1 -
= Nzli,in @




Simulation 4-4
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Figure 5: The estimated factors (dashed blue) compared with the true ones
(solid red) for the 95% expectile with the error term normally distributed.
The left part is for N = 20, T = 100. The right one is for N = 40, T =
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Simulation 4-5
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Figure 6: The estimated common shape compared with the true mean for
the 95% expectile with the error term normally distributed. The left part
is for N =20, T = 100. The right one is for N = 40, T = 150.
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Simulation 4-6
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Figure 7: The estimated 95% expectile curves. The thick red line is the
common mean curve with the error term normally distributed. The left
part is for N =20, T = 100. The right one is for N = 40, T = 150.
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Simulation

Individual Mean

Sample Size FDA  Single  FDA  Single
N=20,T =100 0.0469 0.0816 0.0072 0.0093
N =40,T =150 0.0208 0.0709 0.0028 0.0063
N=20,T =100 0.1571 0.2957 0.0272 0.0377
N =40,T7 =150 0.1002 0.2197 0.0118 0.0172
N=20,T =100 0.2859 0.5194 0.0454 0.0556
N=40,T =150 0.1531 0.4087 0.0181 0.0242

4-7

Table 1: The mean squared errors (MSE) of the FDA and the single curve
estimation for expectile curves with error term is normally distributed with
mean 0 and variance 0.5 (Top), with variance pu(t) x 0.5 (Middle) and t(5)

distribution (Bottom).
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Figure 8: 25% (left) and 50% (right) estimated expectile curves of the
temperature variations for 150 weather stations in China in 2010.

FDA for GQR




Application 5-2
©
0
«
(AN LD o
PN
7 Ny \ ! 7 N /‘
V/AXS \ /] 1N A \
ol ¢ <t I N 1 N~
— / | /
/ \ { /
y 3 \ ™ -
~
w | 1= =\ A =
S / N\ N 7N ~=
/ \ ” / \
IR \ 7 N =~ -
— - 7 = Z
o |/ \I Ned ~
S -
o 4
T T T T T T T T
0 100 200 300 0 100 200 300

Figure 9: 75% (left) and 95% (right) estimated expectile curves of the

temperature variations for 150 weather stations in China in 2010.
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Figure 10: The estimated three factors for 25% (left) and 50% (right)
expectile curves of the temperature variation. The black one is the first
eigenfunction, the red one is the second and the green one represents the

third factor. —
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Figure 11: The estimated three factors for 75% (left) and 95% (right)
expectile curves of the temperature variation. The black one is the first
factor f1, the red one is the second f, and the green one represents the

third factor f3. 7
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Figure 12: The estimated first random scores a; for 25%, 50%, 75% and

95% expectile curves of the temperature variation. —
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Figure 13: The estimated second random scores oy for 25%, 50%, 75%

and 95% expectile curves of the temperature variation. —
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Application 5-7

Figure 14: The estimated third random scores a3 for 25%, 50%, 75% and

95% expectile curves of the temperature variation. —
FDA for GQR




Application

Min Max  Median Mean  SD
=025 -68.48 16830 -14.09 0.00 46.27
=05 -12950 19950 -18.02 0.00 52.00
=075 -22.64 61.20 -8.86 0.00 19.94
=095 -60.93 142.60 -12.64 0.00 44.56

FDA for GQR

Table 2: Statistical Summary of a;
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Conclusion 6-1

Conclusion

(] Dimension Reduction technique applied to a nonlinear object.

(] Provides a novel way to estimate several generalized quantile
curves simultaneously.

[] Outperforms the single curve estimation, especially when the
data is very volatile.

[ Pricing weather derivatives more precisely can be possible.
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Appendix 7-1
Volatility of Temperature
> Return J
[1 The temperature T; on day t for city /:
Tie = Xie + Ni
[J The seasonal effect Ag:
Nie = ai + bit + Zc,,,,cos{ ( _ 'm)}
m=1
[J Xt follows an AR(p;) process:
Pi
Xii = Z ,Bini,t—j + €it (23)
j=1

Pi
Eir = Xit_g BiiXie—j
s
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Appendix 7-2

Initial Values

1. Estimate N single curves?,- individually.

2. Linear regression for auoi li = Bib, +¢;
3. Calculate 7,-0 :7,- — B;é\uo, and Fo = (Flo, e ,FNO).
lo=Bili +¢
4. Apply SVD to decompose Tio:
Tio = UDVT = ©gpajo

5. Choose the first K factors from U as é,co, and regress F,-o on éfo to
get Qjo:

Fio = éfo(am S k) € (24)
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Appendix 7-3

Update Procedure

5.

FDA for GQR

Plug éfo and @jg into (18) to update 6,,, and get é\,ul-

. Plugging HA,A and @jp into the second equation of (18) gives

Of. R
Given 6,1 and ©O¢q, estimate q;.
Recalculate the weight matrix:

T if Y >//\;j
1—7 if Y,-J-§7,-j

where 7,-1- is the j-th element in 7, = B,-9A“1 + B;(:)fl&;
Repeat step (1) to (4) until the solutions converge.




Appendix 7-4
Mercer’'s Lemma

The covariance operator K
K(s,t) = Cov{l(s),I(t)}, E{I(t)} = p(t),s,t €T (25)

There exists an orthonormal sequence (7)) and non-increasing and
non-negative sequence (k;),

(KY)(s) = rjibi(s)
K(s,t) = D rji(s)uy(t)
j=1

io:l"ij = /K(t, t)dt < oo (26)
j=1

I
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Appendix 7-5

Karhunen-Loéeve Theorem

Under assumptions of Mercer's lemma

I(t) = p(t) + ) VRi&i(t) (27)

j=1

where & := \/%7 J I(t)Y;(s)ds, and E(&) =0
E(§ék) =6jx  J,kEN

and §; x is the Kronecker delta.
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