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Motivation 1-1

Market baskets
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Motivation 1-2

Basket correlation
σ2

B =
∑

i

w2
i σ

2
i +

∑

i

∑

j 6=i

wiwjσiσjρij , (1)

where σi standard deviation, wi basket weight of the i-th stock, ρij
correlation between the i-th and the j-th stock, i , j ∈ {1, . . . ,N}.

Replace




1 ρ12 · · · ρ1N
ρ21 1 · · · ρ2N
...

...
. . .

...
ρN1 ρN2 · · · 1


 with




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


,

then

ρ =
σ2

B −
∑

i w
2
i σ

2
i∑

i
∑

j 6=i wiwjσiσj
(2)

is the basket correlation.
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Motivation 1-3

Measure of basket diversification

Empirical evidence (N big) 0 ≤ ρ ≤ 1, Bourgoin (2001). Define:

σ2
B,min =

∑

i

w2
i σ

2
i (3)

σ2
B,max =

∑

i

w2
i σ

2
i +

∑

i

∑

j 6=i

wiwjσiσj (4)

Substituting (3) and (4) to (2) gives ρ a new interpretation:

ρ =
σ2

B − σ2
B,min

σ2
B,max − σ2

B,min
(5)
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Motivation 1-4

Dynamics of DAX diversification

Figure 1: solid lines: σt+0.25 (18) of DAX and some constituents (Adidas,
BMW, Siemens, Daimler, E.ON, Lufthansa) dashed line: ρt+0.25 (2), right
panel: scatter plot σt+0.25 vs ρt+0.25, for t + 0.25 from 20100104 till
20120801, shaded area: Aug 2011 market fall further examples
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Motivation 1-5

Define RC and MFIC

� calculate the realized variance (RV) σ2
t+τ,B of a basket and

σ2
t+τ,i (constituents) via (18)

� obtain the realized correlation (RC) ρt+τ via (2)
� calculate the model free implied variance (MFIV) σ̃2

t,B(τ) of a
basket and σ̃2

t,i (τ) (constituents) via (19)
� obtain the model free implied correlation (MFIC) ρ̃t(τ) via (2)

RV and MFIV

Dynamics of Correlation Risk



Motivation 1-6

Can exposure to RC (MFIC) be profitable?

Compare:

ρ̃t(τ) =
σ̃2

t,B(τ)−
∑

i w
2
i σ̃

2
t,i (τ)

∑
i
∑

j 6=i wiwj σ̃t,i (τ)σ̃t,j(τ)
(6)

ρt+τ =
σ2

t+τ,B −
∑

i w
2
i σ

2
t+τ,i∑

i
∑

j 6=i wiwjσt+τ,iσt+τ,j
(7)

� σ2
t+τ,B − σ̃2

t,B(τ) < 0

� σ̃2
t,i (τ)− σ2

t+τ,i ≈ 0
� expect ρ̃t(τ)− ρt+τ > 0 , how to exploit this knowledge?

evidence from US market (literatire) , evidence from German market (own findings)
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Motivation 1-7

ρ̃t(τ) vs ρt+τ - arbitrage opportunity?

Figure 2: ρt+τ (blue) ρ̃t(τ) (red), right panel: scatter plot ρt+τ vs ρ̃t(τ),
for t + 0.25 from 20100802 till 20120801
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Motivation 1-8

Exposure to ρ̃t(τ)− ρt+τ

Implement dispersion strategy by trading Variance swaps :
� sell: RV of basket (index)
� buy: RVs of basket constituents

With Nvar = 1 payoff at t + τ :

Dt+τ = −
{
σ2

t+τ,B − σ̃2
t,B(τ)

}
+

n∑

i=1

wi
{
σ2

t+τ,i − σ̃2
t,i (τ)

}
= (8)

ρ̃t(τ)
∑

i

∑

j 6=i

wiwj σ̃t,i (τ)σ̃t,j(τ)− ρt+τ
∑

i

∑

j 6=i

wiwjσt+τ,iσt+τ,j ≈∗

∑

i

∑

j 6=i

wiwj σ̃t,i (τ)σ̃t,j(τ) {ρ̃t(τ)− ρt+τ} (9)

* justified by empirical evidence
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Motivation 1-9

Research questions

� ρ̃t(τ)− ρt+τ > 0, does not always hold (Figure 1), so one
needs to hedge the dispersion position (8)

� How to estimate and forecast the RC?
� Can we use these forecast to hedge the dispersion strategy?
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Approximating RC with RC 2-1

Implied volatility (IV)

We model and forecast RC with implied correlation (IC).
IC is a function of implied volatility (IV). Given the theoretical
(model) price of an option V and the price observed on the market
V̆ , IV σ̂ can be found by solving:

V (σ̂)− V̆ = 0.

IV contains incremental information beyond the historical estimate
and outperforms it in forecasting future volatility, Christensen and
Prabhala (1998), Fleming (1998), Blair et al. (2001)
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Approximating RC with RC 2-2

Implied correlation (IC)

Applying (2) to IV of a basket σ̂B(κ, τ) and its N constituents
σ̂i (κ, τ), i ∈ {1, . . . ,N}, we obtain the IC surface (ICS):

ρ̂(κ, τ) =
σ̂2

B(κ, τ)−
∑

i w
2
i σ̂

2
i (κ, τ)∑

i
∑

j 6=i wiwj σ̂i (κ, τ)σ̂j(κ, τ)
, (10)

where κ =
Ki

Sierτ is common moneyness of the options, τ -

common time to maturity, r - the annualized continuously
compounded risk-free interest rate, Ki - exercise price of the i-th
option, Si - current price of the i-th underlying.
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Approximating RC with RC 2-3

S&P100 ICS: 20091210
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Figure 3: ICS implied by prices of S&P100 options traded on the 20091210,
Nadaraya-Watson smoothing of 1-day data
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A Dynamic Factor Model for Implied Correlation 3-1

Dynamic modeling of ICS

� Observe an ICS ρ̂(κt,j , τt,j), t = 1, . . . ,T , j = 1, . . . , Jt (index
of observations at day t)

� Apply Fisher’s Z-transformation to obtain Yt,j
Fisher’s Z-transformation

� Study the dynamics of {(Yt,j ,Xt,j), 1 ≤ t ≤ T , 1 ≤ j ≤ Jt},
where Xt,j = (κt,j , τt,j)
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A Dynamic Factor Model for Implied Correlation 3-2

ICS with DSFM

Approximate E(Yt |Xt) by the sum of L + 1 smooth basis functions

m def
= {m0, . . . ,mL}> (factor loadings) weighted by time dependent

coefficients Zt
def
= (1,Zt,1, . . . ,Zt,L)> (factors):

Yt,j = m0(Xt,j) +
L∑

l=1

Zt,lml (Xt,j) + εt,j , (11)
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A Dynamic Factor Model for Implied Correlation 3-3

2-step DSFM estimation procedure

1. estimate the FPCA covariance function

ψ(u, v) = φ(u, v)− µ(u)µ(v) (12)

and take µ̂ as m̂0 and γ̂l as m̂l , l ∈ {1, . . . , L}, motivated by
Hall et. al (2006).

2. estimate time series of factors Ẑt = (Ẑt1, . . . , ẐtL)> by OLS.
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A Dynamic Factor Model for Implied Correlation 3-4

1st step: estimation of space basis
1. estimate âµ = µ̂(u) = µ̂(v):

T∑

t=1

Jt∑

j=1

{Yt,j − aµ − bµ(u − Xt,j)}2K
(

Xt,j − u
hµ

)

2. estimate âφ = φ̂(u, v):
T∑

t=1

∑

j ,k:1≤j 6=k≤Jt

{Yt,jYt,k−aφ−bφ,1(u−Xt,j)−bφ,2(v−Xt,k)}2

×K
(

Xt,j − u
hφ

)
K
(

Xt,k − v
hφ

)

3. use µ̂(u), µ̂(v) and φ̂(u, v) to compute (12) and take its
eigenfunctions {γ̂j}Lj=1 corresponding to the L largest
eigenvalues
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A Dynamic Factor Model for Implied Correlation 3-5

Mean function with data
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Figure 4: µ̂(u) of the DAX ICS with corresponding data points, esti-
mated from November 2009 until October 2010 with hµ = (hµ,1, hµ,2)> =

(0.12, 0.17)>
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A Dynamic Factor Model for Implied Correlation 3-6

Eigenfunctions of the covariance operator
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Figure 5: Three first eigenfunctions, (γ̂1, γ̂2, γ̂3), of the DAX ICS co-
variance operator ψ̂, estimated from November 2009 until October 2010
with hµ = (hµ,1, hµ,2)> = (0.12, 0.17)> and hφ = (hφ,1, hφ,2)> =

(0.07, 0.085)>

Dynamics of Correlation Risk



A Dynamic Factor Model for Implied Correlation 3-7

2nd step: estimation of factor series

Take m̂ from the 1st step and estimate Ẑt = (1, Ẑt,1, . . . , Ẑt,L)>:

Ẑt = arg min
Zt

T∑

t=1

Jt∑

j=1

{
Yt,j − Z>t m̂(Xt,j)

}2
(13)
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Data Description and Preparation 4-1

IC, MFIC, RC summary statistics

Dispersion strategy from August 2010 to July 2012 on the German
market represented by the DAX basket
� MFIC dataset: from daily variance swaps rates (Bloomberg)

via (6), 20100802 - 20120801 (24 months), 515 trading days
� RC dataset: from daily stock returns (Bloomberg) via (7),

20100802 - 20120801 (24 months), 515 trading days
� IC dataset: from option prices (EUREX) via (10), 20100104 -

20120801 (31 months), 656 trading days, 135 obs./day
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Data Description and Preparation 4-2

IC, MFIC, RC summary statistics

Min. Max. Mean Median Stdd. Skewn. Kurt
IC κ 0.80 1.20 0.98 0.98 0.09 0.06 2.06

τ 0.02 0.96 0.24 0.17 0.19 1.37 4.39
ρ̂t(κ, τ) 0.05 0.99 0.61 0.62 0.15 -0.27 2.61

MFIC ρ̃t(0.25) 0.44 0.97 0.65 0.65 0.08 0.06 0.16
ρ̃t(0.5) 0.49 1.47 0.70 0.69 0.08 1.81 12.13
ρ̃t(1) 0.56 1.08 0.74 0.74 0.09 0.77 0.67

RC ρt+0.25 0.27 0.81 0.55 0.53 0.11 0.24 -0.80
ρt+0.5 0.37 0.73 0.57 0.57 0.10 -0.02 -1.40
ρt+1 0.43 0.65 0.59 0.60 0.05 -1.24 0.98

Table 1: IC from 20100104 to 20120801 (656 trading days, 135 obs./day),
MFIC and RC from 20100802 to 20120801 (515 trading days). The figures
are given after filtering and data preparation.
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Data Description and Preparation 4-3

Market regime correction

� dependence of σB,t+τ and ρt+τ is stronger if the market
volatility is high, empirical evidence

� not observed for σ̂B,t(κ, τ) and ρ̂t(κ, τ), empirical evidence

� based on regression results make a state-dependent correction of
ρ̂t(κ, τ):

I if σ̂B,t(1, τ) > 21 (high volatility regime), then
ρ̂t(κ, τ) = 0.0091σ̂B,t(κ, τ)
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DSFM Estimation Results and Factor Modeling 5-1

DSFM for DAX ICS 2010
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Figure 6: DAX ICS factor loadings m̂0, m̂1, m̂2, m̂3 from Nov. 2009 to Oct.
2010
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DSFM Estimation Results and Factor Modeling 5-2

DSFM for DAX ICS 2010
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Figure 7: DAX ICS factors Ẑt,1, Ẑt,2, Ẑt,3 and their ACFs from Nov. 2009

to Oct. 2010 (Ẑt,0
def
= 1)
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Hedging the basket correlation 6-1

Hedging dispersion strategy with DSFM,
"naïve" hedge

At t + τ −∆t make a ∆t-days ahead DSFM forecast
ρ̂t+τ (1, t + τ) and use it as ρt+τ in (9) to obtain the value of the
hedge (opposite) position to be held until t + τ :

Dh
t+τ =

∑

i

∑

j 6=i

wiwj σ̃t,i (τ)σ̃t,j(τ) {ρ̃t(τ)− ρ̂t+τ (1, t + τ)} , (14)

then the relative hedging error

εht+τ =
Dh

t+τ − Dt+τ

Dt+τ
=

− ρ̂t+τ (1, t + τ)− ρt+τ

ρ̃t(τ)− ρt+τ
, (15)

εht+τ < 0(> 0) means that (14) under-(over-)estimates (8)
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Hedging the basket correlation 6-2

Performance of "naïve" hedge, τ = 0.083

Figure 8: ρ̂t+0.083(1, t + 0.083), ρt+0.083, ρ̃t(0.083) and εht+0.083, daily
moving window estimates for t + τ from 20100104 until 20120801 (660
trading days), DSFM: T = 50, J = 49, hµ = (0.122, 0.128)>, hφ =

(0.153, 0.168, 0.153, 0.168)> by cross-validation
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Hedging the basket correlation 6-3

Performance of "naïve" hedge, τ = 0.25

Figure 9: ρ̂t+0.25(1, t + 0.25), ρt+0.25, ρ̃t(0.25) and εht+0.25, daily moving
window estimates for t + τ from 20100104 until 20120801 (660 trad-
ing days), DSFM: T = 50, J = 49, hµ = (0.122, 0.128)>, hφ =

(0.153, 0.168, 0.153, 0.168)> by cross-validation
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Hedging the basket correlation 6-4

Performance of "naïve" hedge, τ = 0.5

Figure 10: ρ̂t+0.5(1, t + 0.5), ρt+0.5, ρ̃t(0.5) and εht+0.5, daily moving
window estimates for t + τ from 20100104 until 20120801 (660 trad-
ing days), DSFM: T = 50, J = 49, hµ = (0.122, 0.128)>, hφ =

(0.153, 0.168, 0.153, 0.168)> by cross-validation
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Hedging the basket correlation 6-5

Performance of "naïve" hedge, τ = 1

Figure 11: ρ̂t+1(1, t + 1), ρt+1, ρ̃t(1) and εht+1, daily moving window esti-
mates for t + τ from 20100104 until 20120801 (660 trading days), DSFM:
T = 50, J = 49, hµ = (0.122, 0.128)>, hφ = (0.153, 0.168, 0.153, 0.168)>

by cross-validation
Dynamics of Correlation Risk



Hedging the basket correlation 6-6

"Naïve" hedge summary statistics

τ Min. Max. Mean. Median Stdd. Skew. Kurt.

0.083 -108.04 72.30 -1.14 -0.71 8.00 -6.61 100.49
0.25 -255.48 49.53 -1.20 -0.41 11.49 -17.58 372.33
0.5 -216.04 32.78 -0.74 -0.30 9.37 -18.66 425.86
1 -64.84 76.59 -0.01 -0.38 7.47 2.74 46.85

Table 2: Performance of "naïve" hedge, summary statistics for εht+τ from
20100101 until 20120801
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Hedging the basket correlation 6-7

"Advanced" hedge

� predict ρt+τ with DSFM ρ̂t+τ (1, t + τ)

� if ρ̂t+τ (1, t + τ) ≥ ρ̃t(τ) (DSFM predicts loss in dispersion
strategy), take an offsetting (with negative sign) position in
(14)

� if ρ̂t+τ (1, t + τ) < ρ̃t(τ) (DSFM predicts gain in dispersion
strategy), don’t hedge

� payoff of the "advanced" strategy at t + τ

Dadv
t+τ =

{
Dt+τ − Dh

t+τ , if ρ̂t+τ (1, t + τ) ≥ ρ̃t(τ)
Dt+τ , if ρ̂t+τ (1, t + τ) < ρ̃t(τ)

(16)
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Hedging the basket correlation 6-8

"Naïve" hedge, "advanced" hedge, no
hedge τ = 0.083

Figure 12: Payoffs of a 1-month dispersion strategy from 20100104 till
20120801 (660 trading days): Dt+τ (no hedge), Dt+τ − Dh

t+τ ("naïve"
hedge), Dadv

t+τ ("advanced" hedge)
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Hedging the basket correlation 6-9

"Naïve" hedge, "advanced" hedge, no
hedge , τ = 0.25

Figure 13: Payoffs of a 3-month dispersion strategy from 20100104 till
20120801 (660 trading days): Dt+τ (no hedge), Dt+τ − Dh

t+τ ("naïve"
hedge), Dadv

t+τ ("advanced" hedge)
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Hedging the basket correlation 6-10

"Naïve" hedge, "advanced" hedge, no
hedge, τ = 0.5

Figure 14: Payoffs of a 6-month dispersion strategy from 20100104 till
20120801 (660 trading days): Dt+τ (no hedge), Dt+τ − Dh

t+τ ("naïve"
hedge), Dadv

t+τ ("advanced" hedge)
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Hedging the basket correlation 6-11

"Naïve" hedge, "advanced" hedge, no
hedge, τ = 1

Figure 15: Payoffs of a 1-year dispersion strategy from 20100104 till
20120801 (660 trading days): Dt+τ (no hedge), Dt+τ − Dh

t+τ ("naïve"
hedge), Dadv

t+τ ("advanced" hedge)
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Hedging the basket correlation 6-12

Strategy τ Min. Max. Mean. Stdd.

Dt+τ 0.083 -1502.58 1080.23 87.09 356.94
(no hedge) 0.25 -1531.94 1282.31 101.92 440.54

0.5 -1270.90 1301.28 136.91 456.75
1 -872.76 760.92 134.26 299.01

Dt+τ − Dh
t+τ 0.083 -3237.72 617.40 15.35 203.09

("naïve" hedge) 0.25 -1726.53 413.28 35.90 110.14
0.5 -1301.47 344.91 41.13 91.91
1 -914.27 327.03 79.62 93.14

Dadv
t+τ 0.083 -1375.99 1011.38 100.93 256.50

("advanced" hedge) 0.25 -1137.79 1282.31 195.09 248.41
0.5 -760.85 1301.28 231.35 281.66
0.083 -367.89 623.38 123.04 190.80

Table 3: Summary statistics for Dt+τ (no hedge), Dt+τ − Dh
t+τ ("naïve"

hedge), Dadv
t+τ ("advanced" hedge) from 20100101 until 20120801, best

results (highest min, max,mean and smallest stdd.) are marked red
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Appendix 9-1

Fisher’s Z-transformation

Yt,j
def
= T {ρ̂(κt,j , τt,j)}, where T is Fisher’s Z-transformation:

T (u)
def
=

1
2
log

1 + u
1− u

(17)

Härdle and Simar (2012)
Back
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Appendix 9-2

RV and MFIV
� RV is the variance of the asset defined at t + τ over period

from t to t + τ :

σ2
t+τ = τ−1

252(t+τ)∑

i=252t

(
log

Si

Si−1

)2

(18)

� MFIV is the risk-neutral expectation (at t) of the integrated
volatility from t to t + τ , Britten-Jones and Neuberger (2000),

details :

σ̃t
2(τ) =

2
τ
erτ
{∫ St

0

Pt(K , τ)dK
K 2 +

∫ ∞

St

Ct(K , τ)dK
K 2

}
, (19)

where Pt(K , τ) {Ct(K , τ)} put (call) with strike K and
maturity τ traded at t, St price of the asset in t, r risk free
rate, t and τ are given in fractions of a year, Back
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Appendix 9-3

Variance swap

� forward contract opened at t that buys RV defined at t + τ

� at t + τ pays the difference between RV and MFIV (multiplied
by notional Nvar )

{
σ2

t+τ − σ̃2
t (τ)

}
Nvar , (20)

where σ2
t+τ variable leg of the variance swap defined by (18),

σ̃2
t (τ) fixed leg (strike) defined by (19)

Back
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Appendix 9-4

Variance risk premium (VRP)

Literature findings for σ2
t+τ − σ̃2

t (τ) variance risk premium
(VRPt+τ ), Carr and Wu (2009), on US market:
� VRP < 0 for major US stock indexes, from January 1996 until

December 2003, Carr and Wu (2009)
� VRP < 0 for S&P100 and constituents (less pronounced),

from 1991 until 1995, Bakshi, Kapadia and Madan (2003)
� VRP < 0 for S&P100, but VRP = 0 for most constituents,

from January 1996 until December 2003, Driessen and Vilkov
(2009)

Back
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Appendix 9-5

Variance risk premium (VRP)

Empirical findings for σ2
t+τ − σ̃2

t (τ) variance risk premium
(VRPt+τ ), Carr and Wu (2009), on German market:
� the most recent sample: German market August 2010 until

August 2012
� σ2

t+τ − σ̃2
t (τ) < 0 on average for DAX and all constituents

� t-test H0 : VRP = 0 (H1 : VRP < 0) is strongly rejected for
DAX index, but

� for 5 out of 23 stocks we cannot reject the H0 at 5%
significance level

Back

Dynamics of Correlation Risk



Appendix 9-6

DAX constituents VRP

τ = 0.25 τ = 0.5 τ = 1
Allianz SE 0.0563 0.0526 0.0225
E.ON AG 0.2519 0.3176 0.0814
Metro AG 0.2931 0.1884 0.0196
RWE AG 0.6322 0.5655 0.0707
ThyssenKrupp AG 0.1964 0.0700 0.0100

Table 4: The results of t-test for H0 that on average RV = MFIV against
the alternative RV < MFIV of stocks for which the the H0 is not rejected
at 5% significance level. Results are presented for DAX index and 23
selected constituent stocks computed over the time period 20100802 -
20120801 for 3 different maturities/estimation windows: τ = 0.25, 0.5, 1)
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Appendix 9-7

DAX variance risk premium

Figure 16: Left panel: σ̃t,B(0.083) vs σt+0.083,B and VRPt+0.083 at t +

τ from 20090901 till 20120810, right panel (scatter plot): σ̃t,B(0.083)

(vertical axis) vs σt+0.083,B (horizontal axis) Back
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RWE variance risk premium

Figure 17: Left panel: σ̃t,RWE (0.083) vs σt+0.083,RWE and VRPt+0.083

at t + τ from 20090901 till 20120810, right panel (scatter plot):
σ̃t,RWE (0.083) (vertical axis) vs σt+0.083,RWE (horizontal axis) Back
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Switch point selection for correlation
regimes

τ σB,t+τ ρt+τ Slope 1 Slope 2

0.083 20.24 0.5917 0.0361 0.0085
0.25 20.34 0.5728 0.0336 0.0093
0.5 22.42 0.6008 0.0286 0.0094

Average 21.00 0.5884 0.0328 0.0091

Table 5: Segmented linear regression of ρt+τ on σB,t+τ with one break
point, τ = 0083, 0.25, 0.5 for t +τ , from 20100104 till 20120801. We fit a
segmented linear regression with one break point, as described in Muggeo
(2003), Back to regime correction
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DAX σB,t+0.083 vs ρt+0.083

Figure 18: DAX σB,t+0.083 (solid line) vs ρt+0.083 (dashed line), scatter
plot σB,t+0.083 vs ρt+0.083, for t + 0.083 from 20100104 till 20120801,
shaded area: Aug 2011 market fall, back: Introduction Regime correction
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DAX σB,t+0.25 vs ρt+0.25

Figure 19: DAX σB,t+0.25 (solid line) vs ρt+0.25 (dashed line), scatter plot
σB,t+0.25 vs ρt+0.25, for t+0.25 from 20100104 till 20120801, shaded area:
Aug 2011 market fall, back: Introduction Regime correction
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DAX σB,t+0.5 vs ρt+0.5

Figure 20: DAX σB,t+0.5 (solid line) vs ρt+0.5 (dashed line), scatter plot
σB,t+0.5 vs ρt+0.5, for t + 0.5 from 20100104 till 20120801, shaded area:
Aug 2011 market fall, back: Introduction Regime correction
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DAX σ̂t,B(1, 0.083) vs ρ̂t(1, 0.083)

Figure 21: ATM DAX σ̂B,t(1, 0.083) (solid line) vs ρ̂t(1, 0.083) (dashed
line), scatter plot σ̂B,t(1, 0.083) vs ρ̂t(1, 0.083), for t + 0.083 from
20100104 till 20120801, shaded area: Aug 2011 market fall, back:

Introduction Regime correction
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DAX σ̂t,B(1, 0.25) vs ρ̂t(1, 0.25)

Figure 22: ATM DAX σ̂B,t(1, 0.25) (solid line) vs ρ̂t(1, 0.25) (dashed
line), scatter plot σ̂B,t(1, 0.25) vs ρ̂t(1, 0.25), for t + 0.25 from 20100104
till 20120801, shaded area: Aug 2011 market fall, back: Introduction

Regime correction
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DAX σ̂t,B(1, 0.5) vs ρ̂t(1, 0.5)

Figure 23: ATM DAX σ̂B,t(1, 0.5) (solid line) vs ρ̂t(1, 0.5) (dashed
line), scatter plot σ̂B,t(1, 0.5) vs ρ̂t(1, 0.5), for t + 0.5 from 20100104
till 20120801, shaded area: Aug 2011 market fall, back: Introduction

Regime correction
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Log contract

Define

f (St) =
2
T

{
log

S0

St
+

St

S0
− 1
}

(21)

derivatives:

f ′(St) =
2
T

(
1
S0
− 1

St

)
(22)

and

f ′′(St) =
2

TF 2
t

(23)

observe f (S0) = 0 Back
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Itô’s lemma

f (St) = f (S0) +

∫ T

0
f ′(St)dSt +

1
2

∫ T

0
S2

t f ′′(St)σ2
t dt (24)

Substituting (22), (23):

1
T

∫ T

0
σ2

t dt =
2
T

(
log

S0

ST
+

ST

S0
− 1
)
− (25)

− 2
T

∫ T

0

(
1
S0
− 1

St

)
dSt

Back
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Equation (25) gives the value of σ2
R as a sum of:

2
T

∫ T

0

(
1
S0
− 1

St

)
dSt

(continuously rebalanced position in underlying stock) and

f (ST ) =
2
T

(
log

S0

ST
+

ST

S0
− 1
)

(26)

(log contract, static position).
Back
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Carr and Madan (2002) represent any twice differentiable payoff
function f (ST ):

f (ST ) = f (k) + f ′(k)
{

(ST − k)+ − (k − ST )+
}

(27)

+

∫ k

0
f ′′(K )(K − ST )+dK

+

∫ ∞

k
f ′′(K )(ST − K )+dK

where k is an arbitrary number. Back
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Applying (27) to (26) with k = S0 gives

log
(

S0

ST

)
+

ST

S0
− 1 = (28)

=

∫ S0

0
K−2(K − ST )+dK +

∫ ∞

S0
K−2(ST − K )+dK

a portfolio of OTM puts and calls weighted by K−2. Back
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What are the costs of this strategy? The strike K 2
var of a variance

swap is calculated via the risk-neutral expectation:

K 2
var =

2
T

erT
∫ S0

0
K−2P0(K )dK +

2
T

erT
∫ ∞

S0
K−2C0(K )dK (29)

where P0 (C0) - value of a put (call) option at t = 0. Back
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