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Motivation

Portfolio Management

[ portfolio diversification
(] portfolio construction

[J asset allocation.
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Motivation 1-2

Preliminary Comparison - S&P 500 Stocks

Sample S&P500 Components Cumulative Gain
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Figure 1: 38 random S&P 500 Sample Components’ Cumulative Return:
87% of stocks lost the value of the initial investment (thick red line)
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Motivation 1-3
Preliminary Comparison - Hedge Funds

Sample Eurekahedge Hedge Funds Cumulative Gain
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Figure 2: 38 Eurekahedge Hedge Funds Indices’ Cumulative Return: 0%
of funds lost the value of the initial investment (thick red line)
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Motivation 1-4

How Hedge Funds Can Help?

A hedge fund is an "aggressively managed portfolio of investments
that uses advanced investment strategies such as leveraged, long,
short and derivative positions in both domestic and international
markets with the goal of generating high returns" (Investopedia).

(1 diversification - reduction of the portfolio risk
] construction - a more diverse universe of assets

[] allocation - a higher risk-adjusted return.
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Motivation 1-5
Hedge Funds and Diversification
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Figure 3: S&P 500 (in blue) and Eurekahedge North America Macro Hedge
Fund Index (in red) returns in 31.01.2005-31.12.2012
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Hedge Funds and Diversification

Mean-Variance Optimization

2-1

Markowitz diversification rule:

minimize w'Yw

weRd
subject to w'F = rr,
d
S w1,
i=1
w; >0
where w;, i =1,...,d are weights, ¥ € R9%d is the covariance

matrix for d portfolio asset returns 7j, ry is the "target" return for
the portfolio.

Lasso Quantile Trading Strategy %




Hedge Funds and Diversification 2-2
Diversification Concept

Portfolio diversification is a tool to reduce specific risk and remain
only with market risk. Mean-variance theory implies that

(1 diversification is efficient when portfolio asset returns are
uncorrelated or negatively correlated;

[J increasing diversification increases certainty when returns are
uncorrelated and variances are identical;

[J it is necessary to avoid investing in securities with high
covariances among themselves.
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Hedge Funds and Diversification 2-3
Correlation Examples - Traditional Assets

MSCI Indices US UK SW GER JAP
US (US) 1.00
UK (UK) 0.69 1.00

SW (Switzerland) 0.51 0.58 1.00
GER (Germany)  0.60 0.59 0.50 1.00
JAP (Japan) 047 045 038 024 1.00

Table 1: Correlation statistics for traditional asset class indices; based on
monthly data Jan. 1994 - Aug. 2001; table from Lhabitant (2002, p.158)
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Hedge Funds and Diversification 2-4
Correlation Examples - Traditional Assets
and Hedge Fund Indices

Hedge Funds us UK SW GER  JAP

Conv. arb. 0.10 0.08 0.07 0.10 -0.02
Dedic. sh. bias —0.77 —-0.53 -0.33 —-0.46 —0.48
Fix. inc. arb. 0.10 0.13 0.01 0.08 —0.10
Glob. macro 0.30 0.19 0.10 0.27 -0.11
Man. fut. -0.10 0.02 -0.09 -0.03 0.03

Table 2: Correlation statistics for traditional asset class and hedge funds’
indices; based on monthly data Jan. 1994 - Aug. 2001; table from Lhabi-
tant (2002, p.164)
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Hedge Funds and Asset Allocation 3-1
Asset Allocation and Hedge Funds

Asset allocation: combine several assets optimally to maximize
risk-adjusted performance consistently with the investor’s
preferences.

Hedge funds superior in asset allocation:
(] may in reality be a conservative investment
(1 offer superior risk-adjusted returns
[] better diversification

(] dynamic.
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Hedge Funds and Asset Allocation 3-2
Alternative Allocation Approach

Motivation:

[ hedge funds’ returns often have negative skewness and/or
positive excess kurtosis - mean-variance approach tends to
underestimate portfolio risk

[] financial returns’ covariance structure is often time-changing
Possible remedies:
[ use VaR as the objective optimization function

[] adjust VaR for skewness and kurtosis, e.g, via Cornish-Fisher
(CF) expansion

(] use a multivariate GARCH framework to model
variance-covariance structure
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Hedge Funds and Asset Allocation 3-3
Modelling Variance-Covariance Structure

Problem: model the covariance matrix X; of financial returns r;, as
in rt|ft_1 ~ N(07Zt)

1. Orthogonal GARCH framework: modelling
Zt - BtAtBtT + Qt

2. Dynamic Conditional Correlation (DCC) framework: modelling
Y = DiRe Dy
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Hedge Funds and Asset Allocation 3-4
Cornish-Fisher VaR Optimization
The modified optimization problem becomes

minimize  W(75(w) = w(w) - o,(w)

subject to w'F = rr,
d
Z wi=1 w;>0
i=1

where W is portfolio value, 7p(w) e W, o2(w) v TTw,
Kp(w) Sp(w)?
24 36

where S,(w) and K,(w) are, respectively, portfolio skewness and
kurtosis, z, is standard normal a-quantile
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Hedge Funds and Asset Allocation 3-5
Efficient Frontier

Efficient frontier is a set of optimal portfolios that offers the
highest expected return for a defined level of risk or the lowest risk
for a given level of expected return.

Portfolios that lie below the efficient frontier are sub-optimal: they
do not provide enough return for the level of risk.

Portfolios made solely of stocks are sub-optimal to those which
include hedge funds.
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Hedge Funds and Asset Allocation 3-6
Efficient Frontier Example

Efficient Frontiers Comparison

Expected Return

005 01 015 02 025 03 035 04
Risk (Volatility)

Figure 4: Efficient frontiers built by using all S&P 500 components only
(in blue) and by mixing them with Eurekahedge hedge funds indices (in
red)
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Hedge Funds and Asset Allocation 3-7
Risk-Adjusted Return

Hedge funds offer superior risk-adjusted returns

Kernel Density PDFs of Hedge Fund and S&P Stocks Returns
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Figure 5: Estimated kernel densities for S&P 500 components (in blue)
and for Eurekahedge hedge funds indices (in red) returns
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Portfolio Trading Strategy 4-1

Hedge Funds-Based Tail Events Strategy

How to choose hedge funds which are negatively related to S&P
500 in the lower tail?

12r

101

Hedge With Hedge Funds,
8 Inversely Related to S&P500
Tail Events (Extreme Losses)

Estimated PDF
e

0
-0.25 -02 -015 -0.1 -0.05 0 0.05 0.1 0.15 0.2
S&P Returns

Figure 6: A strategy is needed to estimate negative dependence between
S&P 500 and hedge funds in the lower tail
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Portfolio Trading Strategy 4-2

Hedge Funds-Based Tail Events Strategy

The method of Adaptive Non-Positive Lasso Quantile Regression
(ALQR)

[ deals with the high dimensionality problem (how to choose
from today's over 5,200 hedge funds?)

[] consistently estimates true nonzero coefficients measuring
negative relationship between hedge funds (X, hedge funds’
log-returns) and the benchmark asset (Y, S& P 500
log-returns) in the tails
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Portfolio Trading Strategy 4-3

ALQR Estimator

Given Y =XF+¢ YER" XeR™P, BeRP, e €R"; &1,...,p
i.i.d., independent of {X;;i =1,...,n}, E(g;) = 0;

pr(u) =u{r —Il(u<0)}, 7€(0,1), & are weights, A is
regularization parameter, the ALQR estimator is

A

n
. = i - X.T AT
B, 5 =arg Brgﬁwp;pf(v, Xi B) + Al Bl

such that 5 <0

.5, measures the "strength" of the linear relationship between Y
and {Xj;j=1,...,p} on quantile level
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Portfolio Trading Strategy 4-4

ALQR Monte-Carlo Analysis

[ Ay = 0.254/ |81t log(n V p)(log n)*1/2, &; = 1/]3}"“\ AN;

B}”it are from (3) (for oracle results to hold);

[J linear model (1) with X; ~ N(0,$), n = 50, p = 300,
B =(-5,-5,-5,-5,-5,-50,...,0), g = 6, ¢; ~ N(0, 52);

[ Q;; =057, 0 =0.1,0.5,1 (three levels of noise);

[ for Bt estimator ﬁ & from the model (2) is used, where \is
chosen according to the GACV criterion (Li, Zhu, 2008);

(] number of replications is 100
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Portfolio Trading Strategy 4.5
Accuracy Criteria
1. Standardized Ls-norm

aef |15 = Bll2
vV — ———

De
18112

2. Sign consistency

p
Acc %f > Isign(B;) — sign(5))|

j=1

3. Least angle
def < 3,8 >
18112115112

4. Estimate of g: Est def g
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Portfolio Trading Strategy 4-6
Monte-Carlo Analysis Results
Table 3: Criteria Results under Different Models and Quantiles
Accuracy Crit. oot Noise Levels a:ioQ;antile Indices s
and Model r=01 =05 =09 =01 =05 =09 =01 =05 =09
Dev ALQR 01(023) 003011) 0060.2) 01(019) 00401)  01(02) 017(0.24) 0.05(0.06) 016(0.2)
LQR 0.12(0.23) 0.06(0.13) 0.09(0.2) 0.18(0.19) 0.14(0.13) 0.19(0.2) 0.25(0.21) 0.21(0.13) 0.26(0.21)
A ALQR 044(12) 011(0.53) 032(1.25) 0.3(0.93) 0.06(0.31) 042(1.22) 0.71(172) 0.14(0.49) 05(1.21)
¢ LQR  533(2) 0.95(1.1) 5.66(2.24) 559(1.96) 107(1.39) 551(2.08) 6.15(2.3) 1.11(1.36) 6.06(1.95)
Anete ALQR 0.07(018) 0.01(0.07)  0.05(0.2) 0.05(0.14) 0.01(0.05) 0.06(0.18) 0.1(0.25) 0.01(0.04) 0.0(0.19)
"8'€ LQR  0.11(03) 003(0.14) 0.07(0.25) 0.09(0.19) 0.05(0.15) 0.11(0.22) 0.16(0.3) 0.07(0.11) 0.18(0.36)
e ALQR 581(058) 5.97(0.30) 5.89(042) 58/(042) 5.97(0.22) 5.92(0.37) 5.81(0.61) 6.03(0.33) 5.84(0.58)
s LQR 851(1.60) 6.35(0.72) 8.54(1.72) 8.60(1.63) 6.42(0.84) 8.60(1.91) 8.85(1.68) 6.43(0.74) 8.83(1.52)

Model notation: ALQR - Adaptive Lasso-penalized quantile regression; LQR - simple Lasso-penalized quantile regression

Standard deviations are given in brackets
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Portfolio Trading Strategy 4-7
Data for Analysis

[] the covariate matrix X € R%°*170 data on 96 monthly returns
of 170 Eurekahedge hedge funds indices in the period of
31.01.2005 - 31.12.2012;

[] the response vector Y € R consists of data on 96 monthly
returns of S&P 500 in the period of 31.01.2005 - 31.12.2012;

[ the idea is to hedge the benchmark asset (e.g.,S&P 500) with
a security (e.g., hedge fund) moving in opposite direction at
different quantiles;
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Portfolio Trading Strategy 4-8

Tail Events Trading Strategy

[J moving window, width / = 50
) 712345 = (0.05,0.15,0.25,0.35, 0.50)

[J Fj is the edf of S&P 500 log-returns

0 g, & F,1(7) is the S&P 500 log-returns empirical quantile

function

] 3T;\ are the estimated non-zero ALQR coefficients.
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Portfolio Trading Strategy 4-9

Tail Events Trading Strategy
At each time moment t;t=1/,...,n
1. determine the S& P 500 return r;

2. choose 7j+,j =1,...,5 corresponding to the right-hand side
G-, in one of the conditions which holds simultaneously:
re < ?Jn,t, an,: <rn< aTZ,t’ aTZ,t <r < aT3,t'
e]’r_o,,t <n< aTA,t' e/m,t <n< aTs,t

3. solve the ALQR problem for BA‘rj,t,A,, on the moving window
using the observations X € RE~/H1tXp Yy ¢ R+t pyy
the hedge funds with 3.\, # 0 taken with optimal weights

4. if none of the inequalities from Step 2 holds, invest into the
benchmark asset (S&P 500) at r;.
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Portfolio Trading Strategy 4-10
Tail Events Trading Strategy - Example

1. Suppose t = 58, accumulated wealth Wsg = 1.429,
rsg — —185%

2. It occurs that §o.1558 = —4.18%, §o.25 58 = —1.85% and so
Go.15,58 < 158 < §0.25,58-

3. Solving the ALQR problem using X € R%+58x170,
Y € R%%8 yields 0558 = (—0.77, —1.12, —0.41), which
correspond to three hedge funds, namely, Latin American
Arbitrage, North America Macro, Emerging Markets
CTA/Managed Futures.

4. CF-VaR optimization problem yields w = (0.22,0.16,0.62) as
solution, this portfolio yields a return of 0.62% (Ws9 = 1.438),
while the benchmark asset return has been —1.85%.
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Portfolio Trading Strategy 4-11
Alternative Strategies

1. Strategy 2 - base case S&P 500 "buy-and-hold"

2. Strategy 3 - ALQR-based "naive" diversification (always equal
weights, no optimization)

3. Strategy 4 - based on Orthogonal GARCH model and simple
variance-covariance VaR optimization
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Portfolio Trading Strategy 4-12
Strategies’ Comparison

Comparison of Strategies
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Figure 7: Upper graph: Strategies’ cumulative returns’ comparison: Strat-
egy 1 (in red), Strategy 2 (in blue), Strategy 3 (in green), Strategy 4 (in
magenta); lower graph: cumulative transaction cost for Strategies 1,3,4
(each time 1% of trade value); blue dots denote portfolio rebalancing
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Portfolio Trading Strategy 4-13
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Figure 8: Different —B in application; 7 = 0.05
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Portfolio Trading Strategy 4-14
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Figure 9: Different —B\ in application; 7 = 0.35 -
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Portfolio Trading Strategy
Histograms of g

1=0.05

1=0.15

0
123456780910

1=0.25
20

15

10

0
12345678910

15

10

o N A O ®

0
12345678910

1=035

12345678910

4-15

Figure 10: Frequency of the number of selected variables for 4 different 7

Lasso Quantile Trading Strategy




Portfolio Trading Strategy 4-16
The estimated value of )\
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Figure 11: The estimated A for 4 different 7
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Portfolio Trading Strategy 4-17
The Influential Variables
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Figure 12: The frequency of the hedge funds. Most frequently selected
hedge funds: "Latin American Arbitrage Hedge Fund Index" and "North
America Macro Hedge Fund Index" with frequencies 37 at 7 = 0.05,0.15
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Portfolio Trading Strategy 4-18
Conclusions

[ hedge funds can successfully replace conventional assets in
portfolios;

[] diversification with hedge funds is superior to traditional
financial instruments;

(] portfolio trading strategy using the Adaptive Lasso Quantile
Regression Method performs significantly better than other
strategies.
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Technical Details 5-1
Lasso Shrinkage

Linear model: Y =XB8+¢; Y eR" X e R™P, B RP, ¢ € R";
€1y ..-,Ep i.i.d., independent of {X;;i=1,...,n}, E(g;) =0

The optimization problem for the lasso estimator:
Alasso :
= arg minf
p g minf(5)

subject to  g(8) >0

where
7(8) = 5 (v~ XB) (v~ XB)
8(5) =t~ 18

where t is the size constraint on || 3|1
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Technical Details

Lasso Duality

If (1) is convex programming problem, then the Lagrangian is
L(B,A) = £(B) — Ag(B).

and the primal-dual relationship is

minimize sup L(B,\) > maximize inf L(3, A
imize sup (8,A) = maximize inf L(5, )

primal d:‘ral
Then the dual function L*(\) = igf L(B,N)is
1

* 1, )
) =5y'y =3B X X3 —t

(y—XAﬁA)TXff
18111
with (y — XB)TXB/|1B]1 = A
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Technical Details

Paths of Lasso Coefficients

Coefficients

Coefficient Paths
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Figure 13: Lasso shrinkage of coefficients in the hedge funds dataset ex-

ample (6 covariates were chosen for illustration); each curve represents a
coeffcient as a function of the scaled parameter § = t/||3]|1; the dashed line
represents the model selected by the BIC information criterion (§ = 3.7)
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Technical Details 5-4
Quantile Regression

The loss p-(u) = u{T — I(u < 0)} gives the (conditional) quantiles
-1 def
Fux(m) = a-(x).

ylx
Minimize )
BT = arg BrngP .leT(Yi - XiTﬂ)'
1=
Re-write:

minimize {leg +(Q =71 ¢XB+E-¢C = Y}
(£.0)eR?n

with &, ¢ are vectors of "slack" variables
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Technical Details

5-5

Non-Positive (NP) Lasso-Penalized QR

The lasso-penalized QR problem with an additional non-positivity
constraint takes the following form:

minin;ize
> n+,
(E7C:”75)€R+ P xIRP

subject to

Lasso Quantile Trading Strategy

T+ (1=T)1 ¢+ A7
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Technical Details 5-6
Solution

- , . . _ /
Transform into matrix (/, is n x n identity matrix; Epyxx = < k ))
minimize ¢ x
subjectto Ax=b, Bx <0

where A= (I, —lh Iy X ). b=Y.x=(€ ¢ n 8),

-1 -1, 0 0 0
n 0 —1I, 0 0
(1-7)1,
c= A , B= 0 0 —Enxk Epxk
Oln 0 0 —Lnxk _En><k
n 0 0 0 Envi
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Technical Details 5-7
Solution - Continued

The previous problem may be reformulated as follows:

minimize ¢ 'x
subject to Cx =d,
Xx+s=u, x>0,s>0

and the dual problem is:

maximize d'y —u'w

subject to CTy—w—l—z:c7 z>0,w>0
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Technical Details 5-8
Solution - Continued

The KKT conditions for this linear program are

Cx—d
X+s—u
F(x,y,z,s,w)=¢ C'ly—w+z—c 3 =0,
xoz
sow

with y > 0, z > 0 dual slacks, s > 0 primal slacks, w > 0 dual
variables.

This can be solved by a primal-dual path following algorithm based
on the Newton method
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5-9

Technical Details
Adaptive Lasso Procedure

Lasso can be inconsistent (Zou, 2006) in some scenarios.

Lasso soft-threshold function gives biased results

Threshold Functions

10 T
= Adaptive Lasso
8| Soft-Threshold
6l
al
2 af
3
s
g of
S
H
T 2p
e
6
-8
-10
-10 -5 0 5 10

Coefficient

Figure 14: Threshold functions for simple and adaptive Lasso
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Technical Details 5-10
Adaptive Lasso Procedure

The adaptive Lasso (Zou, 2006) yields a sparser solution and is less

biased.

L - penalty replaced by a re-weighted version; & = 1/|3"t|",
v =1, M is from (1)

The adaptive lasso estimates are given by:

n
Bt =arg min 3 (Y; = X787 + A2 6]l
i=1

init adapt

(BiihImann, van de Geer, 2011): BAJ- = 0, then ﬁj =
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Technical Details 5-11

Simple and Adaptive Lasso Penalized QR

Simple lasso-penalized QR optimization problem is:

A

AT [ T \/I_)<—r
s =g gin 3o V=X + A

Adaptive lasso-penalized QR model uses the re-weighted penalty:
n
Aadapt . T AT
BrSPt = arg Brg;lg,;pf(% X8+ @Bl (4)
=

Adaptive lasso-penalized QR procedure can ensure oracle properties
for the estimator

Lasso Quantile Trading Strategy %




Technical Details 5-12

Algorithm for Adaptive Lasso Penalized QR

The optimization for the adaptive lasso can be re-formulated as a
lasso problem:

[] the covariates are rescaled: X = (Xy o A", ... X, 0 ﬁ'”'t),

[ the lasso problem (3) is solved:

5,5 = arg i ZM X7 8)+ Al

[ the coefficients are re-weighted as 32d2Pt — ﬁ o finit
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Technical Details 5-13
Oracle Properties of an Estimator

An estimator has oracle properties if (Zheng et al., 2013):
[J it selects the correct model with probability converging to 1;

[] the model estimates are consistent with an appropriate
convergence rate (He, Shao, 2000);

[ estimates are asymptotically normal with the same asymptotic
variance as that knowing the true model
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Technical Details 5-14
Oracle Properties for Adaptive Lasso QR

In the linear model, let Y = X3 + ¢ = X151 + X252 + ¢, where
X = (Xl,X2), X! e R4, X2 ¢ Rrx(P—a). ﬁcl; are true nonzero
coefficients, 83, = 0 are noise coefficients; g = ||53]|o;

lim XTX/n =Y, where

n—o0
PRT] 212]
Yy —
[221 22

where Y17 is the g X g covariance matrix knowing the true subset
model Y = X148 +¢;

Ag/y/n— 0 and A/{,/qlog(nV p)} = ¢
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Technical Details 5-15
Oracle Properties for Adaptive Lasso QR

Then under certain regularity conditions the adaptive Ly
QR estimator has the oracle properties (Zheng et al., 2013):

1. Variable selection consistency:

P(8%2=0) > 1 —6exp{_|0g(';\/p)}‘

2. Estimation consistency: |8 — 3| = Op(1/q/n)

. . def
3. Asymptotic normality: ug = a'Y110, Ya € RY, ||af < oo,

_ - 1—
n1/2uq1aT(61 _ By £ N {0’ (f2(,.;))7}

where v* is the Tth quantile and f is the pdf of ¢
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Technical Details 5-16
Selected Hedge Funds’ Strategies

1. Convertible arbitrage funds - attempt to profit from mispricing
of converible securities, and/or expected trends in factors
influencing their prices.

2. Dedicated short bias funds - attempt to capture profits when
the market declines, by holding investments that are overall
biased to the short side.

3. Fixed income arbitrage funds - attempt to profit from observed
relative pricing inefficiencies between related fixed income
securities and/or expected changes in inter-market spreads.
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Technical Details 5-17
Selected Hedge Funds’ Strategies

4. Global macro funds - attempt to profit by making very large
directional bets that reflect their forecasts of market
directions, as influenced by major economic trends and/or
particular events.

5. Managed futures funds - use their own proprietary trading
methods and money management techniques to establish
positions on behalf of their clients on a discretionary basis.
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Technical Details 5-18

The Orthogonal GARCH Model

(1 Y; is a time-dependent matrix of asset returns,
't = B; € RP*P is the matrix of standardized eigenvectors of

%YtT Y; ordered according to decreasing magnitude of
eigenvalues

O Fe= P def Y:[; is the matrix of principal components of Y;

[] retaining only the first kK most important factors f and

introducing noise terms u; gives
yi = j1f1+bj2f2—|—...+bjkfk+u,- or Yt:FtB;r—l-Ut

[J then X, = Var(Y;) = Var(F:B,") + Var(U;) = B AB, + Qq,
where Ay = Var(F;) is a diagonal matrix of principal
component variances at t and B; is assumed to be known at
time t; Q; assumed to be constant and diagonal

Lasso Quantile Trading Strategy /éf




Technical Details 5-19

The DCC Model

re] Fe—1 ~ N(0, D¢ R Dy),
D? = diag(w;) + diag(cy) ® re_1r, ; + diag(3;) © D2 {,
€t = D[lrt,
Q=S0m —A-B)+AGer 16/ 1 +B0O @1,
R = {diag(Q:)} ' Qc{diag(Q:)}
where r; is an d x 1 vector of returns t, D; is an d x d diagonal

matrix of time-varying standard deviations o, i =1,...,d,
modeled by univariate GARCH, &; is an d x 1 vector of

. . def .
standardized returns with ¢;; = r,-ta,-tl, 1 is a vector of ones, A and
B are positive semidefinite coefficient matrices,

S=/T)Sl e
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Regularity Conditions for Adaptive Lasso QR
Al Sampling and smoothness: Vx in the support of X, Vy € R,
Frixs(r1), £ € CK(R), [fyyp ()] < o [fy (vl < 7 2F,
such that fy,-|x,-(XTﬁr|X) >f>0
A2 Restricted identifiability and nonlinearity: let 6 € RP,
T c{0,1,...,p}, d7 such that 7 =¢;if j€ T, o7 =0 if
j€T; T={0,1,....s}, T(6,m) C{0,1,...,p}\T, then
dm >0, ¢ > 0 such that
STE(X;XT)o 3f32  _ E[|XT 4?32
inf ———" >0, —— inf — ,
€A 870|075 m)l gf deAs#0 E[|XT4)3]

def
where A< {5 € RP : [|67¢|l1 < c||67 1, |67<lo < n}
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Technical Details

Regularity Conditions - Continued

A3 Growth rate of covariates:

q*{log(n Vv p)}**"

—-0,n>0

A4 Moments of covariates: Cramér condition
E[|x;|¥] < 0.5C,M*—2k!

for some constants C,, M, Vk>2,j=1,....p

A5 Well-separated regression coefficients: 3by > 0, such that
Vi <q, 1Bj| > bo
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