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Motivation

Importance of tail event (curves)

Dynamic Tail Event Curves
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Motivation 1-2

Intra-day trading volume

20080102

1 NASDAQ Market
- CISCO stocks

[ daily 01-12/2008

[] 250 trading days
10:00 - 16:00

(] cumulated 1-min volume
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Motivation 1-3
Intra-day trading volume

Jain and Joh (1988)

[ the day of the week and the hour have effect on trading volume

|~ |

IMo Tu we Th Fr I10n 12n 14h 16h

Darrat et al. (2003) and Spierdijk et al. (2003)

(] lagged values of volatility and trading volume simultaneously

Bialkowski et al. (2008) and Brownlees et al. (2011)
1 dynamic volume approach for VWAP
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Motivation 1-4

VWARP trading strategy

[J Buying/Selling fixed amount of shares at average price
Pj l{p;>vwapy that tracks the VWAP benchmark

J

Zj:l Vi Pj
J
j=1

VWAP =

Vi
with price p; and volume v; of the j-th transaction

(] 50 % of trades are VWAP orders

] Implementation requires model for intraday evolution
of volume
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Motivation 1-5

Intra-day trading volume

ngh frequency data 20080102-20080103

[J Model curves G

(] High dimensions

12
I

(] Focus on dynamics

volume

11
|

[] Comprising tail events .
] Make forecasts S
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Motivation 1-6

Intra-day trading volume

20080102

volume

1000 | 12100 14100 16:00

time
K< al> ][> ][> [t +
Figure: Expectiles for 7 € {0.01,0.02, ,0.1,0.2,0.5,,...}
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Motivation 1-7

Intra-day trading volume

CISCO 2/1/2008

cum. returns
0.02 0.03 0.04
I I I
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Figure: Cumulative returns of VWAP strategy with weights based
on T-expectiles of volume, 7 = 0.05, 0.5, 0.95.
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Motivation 1-8

Temperature data

Are we getting stronger extremes?
Berlin 0.95 expectiles 1948-2013

] Daily average 2
temperature
[J Berlin, 1948 - 2013 2 -
(1 Model residuals % .
[ Usage: Pricing 5w
weather derivatives
~ Apr ul oct Dec

month in year

Figure: 0.95-expectile of Berlin temperature residuals
in 1948-1969 1970-1991 1992-2013 1948-2013
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Motivation 1-9

Hurricane predictions

888 Daily News

Home Animals Ancent Enegy Emionment TmvelCules SpacofTech Waler Weid NewsPhoios News\Vidoo NowsBlogs

Will U.S. Hurricane Forecasting Models Catch Up to Europe’s?
A year after Hurricane Sandy, Europe’s forecasting technology is still tops.

Funding to Allow Better US Hurricane Prediction
Following Sandy

By Vickie Frantz, Acculeather.com Staff Writer
May 31, 2013; 4:36 AM snare | FIEIE 34

Congress approved supplemental funding of
$23.7 million to the National Weather Service
(NWS) for improvements to their forecasting
computers in Reston, Va., and Orlando, Fla.

The funding is provided under the Disaster

Relief Appropriations Act of 2013. Chris

Vaccare Spokesman for the NWS said while

there were already plans to upgrade the

computers, the additional funding will allow > 3

more improvements than were planned. This satellite image of Hurricane Sandy is courtesy
of NOAA/NASA.
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Motivation 1-10

Hurricane predictions

Are we getting stronger extremes?

Strenght of Atlantic huricanes yearly

[ Strength of wind in knots
[] West Atlantic
[] Years 1946 - 2011

[J observe different
trend pattern

wind
10 20 30 40 50 60 70
I

o
1946 1967 1987 2011
Year

Figure: Yearly expectiles for 7 = 0.25, 0.5, 0.75 and trend
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Motivation 1-11

Dynamic demand models

(] Electricity demand w0

> Quarter-hourly z
> Jan.2010 - Dec.2012 ¢

» Amprion company S
in west of Germany 1w
- - 24:00
S e 18:00
[ Water demand e

[ Gas demand
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Motivation

Risk attitude via brain activity
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Motivation

Expected shortfall

[J FTSE 100

[J 01/09/1997 to
02,/05,/2005

[ ES related to expectiles
> Details J
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Motivation 1-14

Objectives & Challenges

High frequency data
Time-varying with intraday pattern
Dependent

Model curves
Focus on dynamics and dependence

Comprising tail events

I3 0 3 3 R O R I R

Make forecasts
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Outline

Motivation v

Quantiles and Expectiles
Modeling Time-varying Curves
Outlook

Empirical Study
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References
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Quantiles and Expectiles 2-1

Quantiles and Expectiles

For r.v. Y obtain 7-quantile
gr = argminE {p- (Y — 0)}
with asymmetric loss function
pr (u) = [ul® [T = lucoy

where oo = 1 for quantiles and o = 2 for expectiles
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Quantiles and Expectiles 2-2

Quantiles and Expectiles

Loss function py(u) = uft = Iu<)

loss function

QO LQRcheck

Figure: Loss function of expectiles*and quantiles
for 7 = 0.5 (dashed) and 7 = 0.9 (solid)
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http://sfb649.wiwi.hu-berlin.de/quantnet/index.php?p=show&id=2307

Quantiles and Expectiles 2-3
Expectile Curves

Y associated with covariates X

Define generalized regression T-expectile
e’ (x) = arg mein E{p- (Y —-0)| X =x}
Use method of penalized splines to estimate vector of coefficients «
n
@ = arg min Z'DT {y,- - aTb(X,-)} + X' Qa
R

with b basis vector (e.g. B-splines)

penalization matrix Q and shrinkage parameter \
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Quantiles and Expectiles 2-4

Estimation of Expectile Curves

Schnabel and Eilers (2009): iterative LAWS algorithm
Schnabel (2011): expectile sheets for joint estimation of curves
20080102
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10:00 12:00 14:00 16:00
time

Figure: CISCO trading volume expectiles (A = 5)
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Modelling Time-varying Curves 3-1
Dynamic tail event curves
Fix 7 :
K
eT(t) =) ouou(t)
k=1

with basis ® = (¢1,...,¢x)" and t=1,..., T.

Variation in time, s=1,...,S5 :

K
eI(t) = > awen(t)
k=1
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Modelling Time-varying Curves 3-2
Independent curves

Guo et al. (2013)

[ es(t) independent realizations of stationary process
[ Following Karhunen-Loéve expansion:

K
es(t) = u(t) + Y askdu(t) = p(t) + af o(t)
k=1

[J Method of penalized splines for mean function and FPC with
empirical loss function

S T
Z ZPT {Yst - sz(t) - aST@q;b(t)} + pen.mtx

s=1t=1
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Modelling Time-varying Curves 3-3
Temporal (weak) dependent curves

Sequence {X,} is m-dependent if for any k the o-algebras 7, =o
(-5 Xk—1, Xk) and f/:rm =0 (Xkyms Xkt mi1,---) are
independent.

Hoérmann and Kokoszka (2010)

Karhunen-Loéve expansion applicable for m-dependent
asymptotic properties of FPC estimates remain the same

most of time series ARE NOT m-dependent

fail if i.i.d. curves are too noisy

fail if curves are sufficiently regular but dependency is too
strong

Ood O

How to model stronger dependency?
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Modelling Time-varying Curves 3-4

Cramér-Karhunen-Loéve representation

Panaretos and Tavakoli (2013)

[] spectral decomposition of stationary functional time series

J K
es(t) =~ Z exp(iw;s) Z ajkdj k(1)
=1 k=1

T =wi < ... <CL)J+1:7T
{¢j,k}k>1 eigenfunctions
{@jk} >, corresponding coefficients
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Modelling Time-varying Curves 3-5

Cramér-Karhunen-Loéve representation

Simplification: Assume ¢; ,(t) = ¢« (t) for each j

Then: } B
es(t) ~ Y exp(iwjs) > ()
j=1 k=1
~ U(s)" Ad(t)
with

U(s) = (exp (iw1s) ..., exp (iwys))

Ak matrix of coefficients

o(t) = (¢1(t),..., ox(t))"
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Modelling Time-varying Curves 3-6
Empirical loss function

Method of penalized splines for ¢x(t) = Z,Lzl Bribi(t)
Then
(D(t) = BKXLb(t)

Minimize loss function

S T
SN o { Ve = U(s)TCB(B) ) + N C g,

s=1t=1
with Cpy = Ak Bk matrix of coefficients
and Group lasso penalization

J
I1Collg, = lleg;llz =
Jj=1 ]

Jj=1

Dynamic Tail Event Curves



Modelling Time-varying Curves

Empirical loss function

s J
ZZpT{ - U TCb(t)}+)\Z||CQj||2

s=1t=1

I(©)
I(C) continuously differentiable

K-K-T conditions for C to be a solution:
~ Co. )
VI(C)QJ + )\m = 0 I'F ng ?é 0

IVI(C)gla <A if Cg=0

If 7 = 0.5, closed form solution available

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-8

Block-Coordinate
Gradient Descent Algorithm (BCGD)

Tseng & Yun (2009)
Solve nonconvex nonsmooth optimization problem

mxin f(x)+ AP(x)

where A > 0
P:R" — ( — 00,00 | block-separable convex function
f smooth on an open subset containing domP

(] combination of quadratic approximation
and coordinate descent algorithm
(] global convergence

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-9

B-C-G-D Algorithm
Stepwise and blockwise minimize

J
S\(CW4d) = /(E(t))+dTV/(E(t))+%dTH(t)d+>\Z 1C8)+d]l2

Jj=1

Notation: rgin $\(CW) + d)
9j
minimization, where d = (dg,, ..., dg,) with dg, =0 for k # j

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-10

B-C-G-D Algorithm

repeat
t=t+1
for j=1to Jdo
if |[VI(CO)g, — KOCP 2 < A then
j J

4 = ¢

gj
else ~
di) = min $,(C(®) + d)
j dg;
end if
end for

until convergence criterion met
update C(t+1) — C(1) _ o(O)4(t) =

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-11

DYTEC Algorithm

Idea:
start with initial weights ws ; (obtained separately for each
s=1,...,5) and iterate between following steps:

[] compute C using BCGD algorithm
[ update weights

Wst =

)

{ T if Yer > U(s)TCh(t),

1—7 otherwise.

[ stop if there is no change in weights ws ;.

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-12

Dynamic functional factor model

[] generalization (capture nonstationarity)
[] Hays et al.(2012) & Kokoszka et al.(2014)

[J extend with the idea of two spaces of basis function

Model K
es(t) = Y Zymi(t) = Z m(t)
k=1

with time-varying factor loadings Z;
and functional factors

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-13

Dynamic functional factor model

Time basis: }
Lok = Z auj(s)
j=1
Zs = AKXJ . U(S)
Space basis:

L
mi(t) =D Bubi(t)
=1

m( t) = BKXLb(t)

Dynamic Tail Event Curves




Modelling Time-varying Curves 3-14

Dynamic functional factor model

es(t) = Z m(t) = U(s)' Cb(t)

with Cpy = ALKBKXL matrix of coefficients,
space basis vector b(t) = {by(t),..., b (t)}"
and time basis vector U(s) = {u1(s),...,us(s)}"

Same loss function:

sz{ e = U(s) T Cb(1) | + Mol

s=1 t=1

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-15

Time basis

[] capture periodic variation

(] capture trend

[J Proposal by Song et al. (2013):

» Legendre polynomial basis
» Fourier series

Dynamic Tail Event Curves



Modelling Time-varying Curves 3-16

Space basis

(] capture daily patterns

[ capture specific structure

[J Proposal by Song et al (2013):

» Data driven

» Based on combination of smoothing techniques and FPCA
(] B-splines

Dynamic Tail Event Curves




Empirical Study 4-1

Empirical Study

20080102

1 NASDAQ Market
- CISCO stocks

[ daily 01-12/2008

[] 250 trading days
10:00 - 16:00

(] cumulated 1-min volume
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Empirical Study 4-2
Trading volume - smoothing

B-splines with knots every 5 minutes (i.e. 76 splines)
Optimal A = 164

9 =
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— j=2
2 —
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o |
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g >
— T T T T T T T T
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lambda 2008-01-23
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Empirical Study
Trading volume - FPCA

Use 14 FPCs to explain 90% of variation
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Empirical Study 4-4

Trading volume - FPCA
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Empirical Study 4-5
Trading volume - FPCA

Fisher's G-test: p-value=0.000

2000 2500
I
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I
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Periodogram
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1 ‘I‘“.l“..l.nL

o 50 100 150 200 250 0.0 0.1 0.2 0.3 0.4 05
day Frequency

? o | R T A R I

Figure: Scores of 1FPC and periodogram
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Outlook 5-1

Outlook

(1 Algorithm - Code in R

[J Simulation and Empirical studies
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Appendix 7-1
Model of Temperature data

Berlin temperature 1945/1978/2013

10 15 20
I | I

5
|

Temperature
0
!
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T T T T T
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Day

Figure: Daily average temperature in Berlin in 1948, 1980, 2013

Dynamic Tail Event Curves

Sy




Appendix 7-2

Model of Temperature data

For days t = 1,...,24090 (i.e. 66 years)

Xe=Te— N
2

Nt =a+ bt + Z {cmcos (még; t) + dp sin (mégg t)}

m=1

L
Xe = Z BiXe—1+ €t
=1

» Back to Motivation - Temperature Data
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Appendix 7-3

Model of Temperature data

Series X_adjust

5=5.617 B = 0.786
b=23%10"" j,=-0.078

& =-415%1072 33 =0.024 & :

&= 71451072 3, — 0015 .

ch = —7.932 fBs = 0.011 O

h=-3100  fg—0.007 L
B7 = 0.001 T . T
Bg = 0.019

» Back to Motivation - Temperature Data
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Appendix 7-4

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

e- = argmin E {I7 = liy<ep I(Y — €)*}

E{ I{Y<e }}_eT—E(Y)
Taylor (2008):

7{e —E(Y)}

E(Y|Y<e7—)— +m

Dynamic Tail Event Curves



Appendix 7-5

B-splines
Knot vector t = (ti,..., tp) as nondecreasing sequence in [0, 1]
Control points Py, ..., Py

Define i-th B-spline basis function N;; of order j as

lLifti<t<tiy

N;o(t) =
o(t) 0 otherwise

t—t tivjs1—t
N0) = 5 Mg (0 ¢ a0
tI+J t tl+_/+1 tiy1

j=1,....,N—-M-1

» Back to Estimation of Expectile Curves
» Back to Space Basis
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Appendix 7-6

Estimation of Quantile Curves
Definition of Penalty matrix

N
Q = arg min Z pr {y,- — aTb(x,-)} + Ao Qo
i=1
where b(x) = (b1,. .., by(x))" is vector of B-spline basis functions

Denote b(x) = (bi(x), ..., bg(x))" the vector of second derivatives

of basis functions
/b )b(x) T dx

» Back to Estimation of Expectile Curves

Dynamic Tail Event Curves
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Appendix

LAWS estimation
Schnabel and Eilers (2009):

min Z wi(T)(vi — i)’

where

() T ity >
W’(T)‘{ 17 ifyi < i,

;i expected value according to some model.

Iterations:
[] fixed weights, closed form solution of weighted regression
[ recalculate weights

until convergence criterion met.

Dynamic Tail Event Curves



Appendix 7-8

LAWS estimation

Example:
Classical linear regression model

Y=Xb+¢
where E(¢|X)=0and p=E(Y |X) = Xp.
n
~ _ )
= arg min wilyi — Wi
B =argmi ; (vi — i)
Then:

B = (XTWX) I xwy
with W diagonal matrix of fixed weights w;.

» Back to Expectile Curves
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Appendix 7-9
Functional principal components

X(t) stochastic process on compound interval T
with mean function p(t) = E{X(t)}
and covariance function K(s, t) = cov(X(s), X(t))

There exist orthogonal sequence of eigenfunctions ¢; and
eigenvalues \; such that K(s,t) =3 _72; Aj;(s);(t)
We can rewrite process as

X(t) = p(t) + Y VAikjoi(t)
=1

where k; = \%AJ I X(t)¢j(s)ds , E(x;) = 0 and E(kjrk) = djk.
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Appendix 7-10

Guo(2013) - Empirical loss function

S*:S-I-Mu—i-/\/l(p

where
D T
5= p (Ydt — b(t)T 0, — b(t)T@q,ad)
d=1t=1

MM:eT/b )" dxt, =6, Q0,

Mo = Z O / B(x)B(x) dx 0,4
k=1

and b(x) vector of second derivatives

» Back to Guo(2013) - Estimation of Quantile Curves
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Appendix 7-11
Cramér-Karhunen-Loéve representation

Conditions (Panaretos and Tavakoli (2013))

X; second order stationary time series in L2([0,1], R)
with zero mean, E || Xo||3 < 0o and autocovariance kernel at lag t :

re(u, v) = E (Xe(u)Xo(v))
u,v €[0,1], t € Z, inducing operator :
Re: L2([0,1],R) — L3([0, 1], R)

Assume:

) 2tez [IRell < o0
i) (u,v) = re(u,v) continuous t € Z, and .7 || 1t]|oc < 00

Dynamic Tail Event Curves



Appendix 7-12

Cramér-Karhunen-Loéve representation

Theorem (Panaretos and Tavakoli (2013))

X; admits representation
™
X¢ :/ exp(iwjt)dZ, a.s.
—Tr

where for fixed w, Z, is random element of L2([0, 1], C)
and process w — Z,, has orthogonal increments.
Integral can be understood as a Riemann-Stieltjes limit in sense
J
ElIX: — Y exp(iw;t)(Zy,, — Zu)3 — 0 as J =0
j=1

Dynamic Tail Event Curves



Appendix 7-13

Cramér-Karhunen-Loéve representation

Remark (Panaretos and Tavakoli (2013))

With spectral density operator F,, = 5= >°, ., exp(—iwt)R;
having eigenfunctions {¢%},~;

C-K-L representation can be interpreted as

xi= [ ew)Y (6542 6

- n=1

» Back to C-K-L representation
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Appendix 7-14

Block-Coordinate
Gradient Descent Algorithm

Tseng & Yun (2009)
min f(x) + AP(x)

Solve 1
min {dTVf(x) + §dTHc/ + AP(x + d)}

(] P is block-separable then H is block-diagonal

[J solve subproblems
(for every j take d = (dg,,...,dg,) with dg, = 0 for k # )

» Back to BCGD algorithm
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Appendix 7-15

Block-Coordinate
Gradient Descent Algorithm

V/(CW)g, — MOCLY )

1 ~
dif) = —— [ VI(CW)g, - A—— -
T ( T IVIC ), — KO

; (1) _ (1)
H(®) has submatrices Hg, = hg/lg; for scalars hg)
o) set by Amijo rule (See Details: Tseng & Yun (2009))

» Back to BCGD algorithm
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Appendix 7-16

Song et. al.(2013) - Time basis

Orthogonal Legendre polynomial basis
to capture the global trend in time

Ul(d) = 1/C1, U2(d) = d/CQ, U3(C/) = (3t2 — 1)/C3, e
with generic constant C; such that 25:1 u,-(d)/C,-2 =1

Fourier series

to capture periodic variations

us = sin(2nd/p)/Cs, us = cos(2nwd/p)/Cs,
ue = sin(2nd/(p/2))/ G, ...

with given period p
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