Principal components in an asymmetric norm

Ngoc Mai Tran
Maria Osipenko
Wolfgang Karl Hardle

Ladislaus von Bortkiewicz

Chair of Statistics

C.A.S.E. Centre for Applied Statistics and
Economics

School of Business and Economics
Humboldt-Universitat zu Berlin
http://lvb.wiwi.hu-berlin.de



http://lvb.wiwi.hu-berlin.de

Motivation 1-1

Tail events, emotions, investments

temperature

W; ”/__,
§ O
-

'If you hold a cat by the tail you learn things you can not learn any
other way." An english proverb.
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Motivation 1-2

Quantiles and Expectiles

[ Quantiles and Expectiles are tail measures.

(] Capture tail behavior of conditional distributions.
(] Applications in

» Finance: VaR and Expected Shortfall
» Weather: Energy, Tourism, Agriculture
>

[J Some applications involve MANY curves.
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Motivation 1-3

Temperature Data

[] Daily average temperatures
(] 29 Provinces, 159 stations in China,
[J from 19510101 to 20121231.
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Motivation 1-4

Model for temperature

(] Temperature T; on day t for city /:
Tit = Xit + Nit
[1 The seasonal effect Aj;:
Air = ajo + aj1t + ajp sin(27t/365) + aj3 cos(27t/365)
(] X follows an AR(p) process:

p
Xie = BijXiej+eir
=1

p
Eir = Xit — E Bij Xit—j
=1
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Motivation 1-5

Risk factors

[ Pricing weather derivatives:
2
gie ~ N(0,07)

[] Change from "light" to "heavy" tails within a typical year

[] Regions with high (low) variability of temperature extremes
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Motivation 1-6

(Functional) Principal Component Analysis
(FPCA)

[] a common tool to capture high dimensional data (curves),
Ramsey & Silverman (2008),

[ dimension reduction for complex data over space and time:
» implied vola, correlation, temperature, rain, snowfall...,

[J interpretability of principal components (PC),

[ identification of similarities /differences via PC scores.
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Motivation 1-7

Funectional PCA

[ Curves discretized on a regular grid of length p are vectors in
RP — usual PCA.

1 A 365

SR

Figure 1: Average temperature curve discretized on a grid
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Motivation

1-8

PCA: best L, approximation by a K-dimensional subspace.
What about 7-quantile or T-expectile approximation?

Applications:

[ Weather derivatives / ”
weather extremes

Load in 100 MW/

[ Extreme events / risk 0
modeling

[J Electricity load o e e
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Motivation 1-9
Quantiles and Expectiles

For X an R-valued rv:
T-quantile: g(7) = F~Y(7) can also be defined as

g-(X) = argmin E[| X — q||%,
geR

T-expectile CEED:

e-(X) = argminE|| X — eHiQ.
eeR

where for a = 1,2
IX[1%0 = x| {7 10y +(1 = 7) 1oy }-

For 7 # 1/2, these norms are asymmetric.
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Motivation 1-10
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Figure 2: Loss functions for 7 = 0.9 ; 7 = 0.5 ; a = 1 (solid); & = 2 (dashed)

» Expected shortfall
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Motivation 1-11

"Principal Components" for expectiles

[J naive approach: (usual PCA on the estimated expectile
curves): loose efficiency

(] Principal components in an asymmetric norm:

PCA + ExpeCt”eS = HPCAH%@
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Outline

Motivation v

Quantiles and Expectiles

Algorithms for "PCA" in an asymmetric norm
Simulation

Chinese Temperature data

Outlook
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Quantiles and Expectiles
Quantiles and Expectiles

For Y an RP-valued rv:
T-quantile:

g-(Y) = argminE[|Y — qll7.1,
geRP

T-expectile

e-(Y) =argminE||Y — e||372.
ecRP

where for a = 1,2

p

Il = D1yl - { T 1yz0p +2 = 7)o | -

j=1
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Quantiles and Expectiles 2-2

Properties

For Y an RP-valued rv holds coordinatewise:
[l e (Y+1t)=e(Y)+tfort € RP.

B se-(Y) for seR,s>0
L er(sY) = { —se1 (YY) for seR,s<0

[J e-(Y) is the T-quantile of the cdf T, where

_ G(y) — xF(y)
TV =2060) —vFo)) + by - S wdr@)) Y
G(y) = /_y udF(u). (2)
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Quantiles and Expectiles 2-3
Asymptotic normality

F — differentiable cdf of a distribution with © = 0 and o2
e:(0,1) - R, 7 — e; — the expectile function;
Fn, en are the empirical versions. Then for any 0 < § < 1,

Vn(en—e) 5 €,

over D([§,1 — §8]), and & is a stochastic process on [§,1 — §] with
normal zero-mean marginals and variance

E{r(Y —e)s + (1= T)(e — Y4}

Ve = T ey + (= DR )P

(3)

for T €[d,1—4].
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PCA in an asymmetric norm 3-1

PCA geometry

[J PCA: minimize error vs. maximize variance

maximize variance
of the projection

minimize error /

Figure 3: Best one dimensional approximation of two-dimensional varlabl
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PCA in an asymmetric norm 3-2

"PCA" as error minimizers

tau > 1/2 ﬁ4> tau=1f?_4> tau < 1/2 ﬁ%

tau:ljz@ tau=1£@ tau < 122 CD

Figure 4: One dimensional approximation of two-dimensional variables in

an asymmetric L; (magenta) and Ly (blue) norm
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PCA in an asymmetric norm 3-3
"PCA" as error minimizers

Find best k-dimensional approximation W}:

Vi = argmin Y —w] v, Y|>?
Y eRAXPrank(Wy)=k+1
BUT e (X +Y) # e-(X) +e-(Y) and W 2 W} _,, thus no basis
for 7.
Solution (via asymmetric weighted least squares: LAWS)
] Top Down (TD): first find W}, then find W1, the best 1-D
subspace contained in W}, and so on.

[] Bottom Up (BUP): first find W}, then find Wy, the best 2-D
subspace which contains W73, and so on.
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PCA in an asymmetric norm 3-4
"PCA" as variance maximizers

maximize variance
of the projection ®

e(0.9)

Figure 5: One dimensional approximation of two-dimensional variables in
an asymmetric norm
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PCA in an asymmetric norm 3-5

"PCA" as variance maximizers

Define the 7-variance for X € R
Var,(X) = E[[X — eT(X)HE,z
The principal expectile component(PEC)

¢r = argmax Var(¢'Yi,i=1,...,n)
PERPGT p=1
n

1
= argmax — Y (¢'Yi—ur)’w,
$eRP,¢To=1 1 7

where i, € R is the 7-expectile of ¢ Y1,...¢" Y, and

e T if 200 Vi > e,
1 .
1—7 otherwise.
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PCA in an asymmetric norm 3-6
PEC is weighted PC!

Given the true weights w; and

Ir={ie{l,....n}:wi=7}ZI; ={ic{l,....,n} :w; = 1-7},
nt =|Zt| and n~ = |Z|, then the T-expectile e, = e,(Y) € RP
> Ty err it (L=7)2 - Vi

mny + (1 —7)n_ ’

@k is the largest eigenvector of C; where

e =

CT:{Z(Yi—eT)(Yi_eT)T}J'_l_T{Z(Yi_eT)(\/i_eT)T}.

n
iert €Ty
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PCA in an asymmetric norm 3-7

Algorithm for computing PEC

Idea: start with randomly generated w; and iterate between the
following two steps.

(] Compute e;, ¢F and p, as above,
[J Update the weights w; via:

_— T i 30 Yidp > g,
/ .
1—7 otherwise.

I

[] stop if there is no change in w;.

» LAWS estimation
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PCA in an asymmetric norm 3-8

Properties of PEC

Random variable Y € RP. Assume the PEC ¢Z(Y') is unique.

[J Invariance under translation: ¢X(Y + ¢) = ¢%(Y) for all
c € RP.

[J Rotational invariance: ¢%(BY) = B¢Z(Y) for all orthogonal
matrix B € RP*P.
If the distribution of Y is elliptical, ¢X(Y') = classical PCA of
Y for any 7 € (0,1).

[ Consistency: ¢%(Y,) — ¢X(Y).
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PCA in an asymmetric norm 3-9

Finite sample analysis

[] TopDown, BottomUp - consistency? @EED
[] Robustness: skewness, fat tails, heteroscedasticity? @EED
[ Relative speed, convergence rate @EED
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Simulation 4-1

Simulation

Yi(tj) = u(t)) + A(t)oai + fa(t)azi + €jj
withi=1,...,n, j=1,...,pand t; equi-spaced in [0,1].

w(t) =1+ t + exp{—(t — 0.6)?/0.05}

fA(t) = V2sin(2rt);  f(t) = V2 cos(2rt)

Qpj ~ N(O,UE),

with setup (1): 02 =36, 02 =9 and (2): 02 = 16, 02 = 9.
Estimate k=2 components in 500 simulation runs.
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Simulation

Scenarios

Errors:
[J g5 ~ N(0,02),
o e ~ N(O, u(t)02),
L) gjj ~ t(5),
[ e ~ U(0,02) + U(0, 02
[ g; ~ logN(0, 02)
with o2 = 0.5 for setup (1) and o2 = 1 for (2).
(] small sample: n=20, p=100
(] medium sample: n=50, p=150
(] large sample: n=100, p=200
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Simulation 4-3

MSE against sample
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Figure 6: average MSE of BUP, TD and PEC by 500 simulations
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Simulation 4-4

MSE against scenarios
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Figure 7: average MSE of BUP, TD and PEC by 500 simulations
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Simulation 4-5

Computational time

sample small medium large

T/sec BUP TD PEC BUP TD PEC BUP TD PEC
0.90 1.24 070 057 291 159 139 7.3 4.02 271
0.95 164 113 055 401 268 157 1053 6.88 3.03
0.98 236 205 056 556 459 156 1462 10.96 3.54

Table 1: Average time in seconds for convergence of the algorithms (un-
converged cases excluded) by 500 simulations
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Simulation 4-6

Convergence rate

sample small medium large

T/rate BUP TD PEC BUP TD PEC BUP TD PEC
0.90 0.02 0.00 0.24 0.01 0.00 023 0.00 0.00 0.20
0.95 0.18 0.03 0.22 0.05 000 026 0.06 0.00 0.21
0.98 043 0.22 0.21 0.23 0.04 0.25 0.17 0.00 0.24

Table 2: Convergence rates (ratio of converged to unconverged cases by
30 iterations) of the algorithms by 500 simulation runs
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Application to Chinese Temperature 5-1

Data

Daily average temperatures in 159 stations in China from 19510101
to 20121231 @D,
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Application to Chinese Temperature 5-2

Chinese temperature data
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Figure 8: Averaged and smoothed temperature residual curves (gray) and the estimated
average expectiles by BUP, TD and PEC for 7=0.05, 0.95
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Application to Chinese Temperature 5-3

TD, BUP PCs, and PEC
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Figure 9: 1st PCs by BUP (green), TD (red) and PEC (blue), 7=0.05, 0.95

» Back to interpretation
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Application to Chinese Temperature 5-4

TD, BUP PCs, and PEC
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Figure 10: 2nd PCs by BUP (green), TD (red) and PEC (blue), 7=0.05, 0.95
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Application to Chinese Temperature 5-5

Comparison

(] Qutputs of BUP, TD, and PEC are similar.
[J] BUP and TD PCs are particulary close to each other.
[l PC() =~ -PC(1 — 7).
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Application to Chinese Temperature 5-6

Interpretation

[ Indicate changes in distribution from lighter to heavier tails
and vice versa.

[J Positive score on PC; — heavier tails in spring and fall, lighter
in winter and summer.

(] Positive score on PCy — heavier tails in Feb., Mar., Apr., Jul.,
Aug., and Sep., and lighter otherwise.

» Figure - PCs
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Application to Chinese Temperature 5-7

PECs for Chinese temperature data
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Application to Chinese Temperature

Normality?

5-8

[J Observe departure of PEC from usual PC — non-normality.

S PEC # PC
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Figure 12: 2nd PEC for 7=0.05 (dashed), 0.95 (solid) and 0.5 .

to classical PC.
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Application to Chinese Temperature 5-9
Jt3{ - Dimension reduction

Expger 0.05 & Expg.gs + 3.3 X PEC1,0.95 + 0.6 X PEC50.05
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Figure 13: Approximation via PEC for the temperature expectile curve of Beijing for
7=0.95
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Application to Chinese Temperature 5-10

Figure 14: Scores on 1st PEC for 7=0.05 (left) and 0.95 (right) classified in four

intervals

» Back to interpretation
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Application to Chinese Temperature 5-11

Figure 15: Scores on 2nd PEC for 7=0.05 (left) and 0.95 (right) classified in four

intervals

» Back to interpretation

Principal components in an asymmetric norm




Outlook 6-1

Outlook

(] Dimension reduction technique for tail index curves.

(] Two ways to define PC for 7-expectiles: minimize error in the
7-norm (BUP and TD), and maximize the 7T-variance.

[J Maximize 7-variance (PEC) is a version of weighted PCA.
[] PEC outperforms BUP and TD in simulations.
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Outlook 6-2

Outlook

] In practice the outputs of BUP, TD, and PEC do not differ
much.
[J Nice to study extremes of multivariate temperature data:

» interpretability
» normality check
» dimension reduction
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Appendix 8-1

Expectile-quantile correspondence

sqs(Y) — [ ydF (y)
E(Y) —2 %) ydF(y) — (1 - 25)gs(Y)

7(s) = 4)

s-quantile corresponds to expectile with transformation 7(s) (Guo
and Hardle, 2011).
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Appendix 8-2

Expectile-quantile correspondence

0.5
!

Figure 16: Quantiles (solid) and expectiles (dashed) of a normal N(0,1)
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8-3

Appendix

Expectile-quantile correspondence

7(s)

s N(0,1) t(5) logN(0,1)
1% 0.12% 0.35% 0.01%
5% 1.21% 2.13% 0.09%

10% 3.31% 5.08% 0.31%
90% 96.41% 95.06% 53.57%
95% 98.65% 97.97% 66.97%
99% 99.81% 99.71% 83.53%

Table 3: s-quantile correspondence to expectile with transformation 7(s)
for different distributions
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Appendix 8-4

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

er =argminE{|7 — Iy (Y — e)2}

E{ — ér I{Y<e }}—eT—E(Y)
Taylor (2008):

T{er —E(Y)}

E(YIY <e) =+ (55 F(e)
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Appendix 8-5

Skorokhod space D(|0, 1])

space of real functions f: [0,1] — R
(also known as "catlag" functions) which

[] are right-continuous

[1 have left limits everywhere

E.g. Cumulative distribution functions are catlag functions
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Appendix 8-6

LAWS estimation
Schnabel and Eilers (2009):

min ZW/ Yyi — ,Ui)2

where

(Y T ifyi>
W’(T)‘{ 1—7 ify <,

;i expected value according to some model.

Iterations:
[] fixed weights, closed form solution of weighted regression
[ recalculate weights

until convergence criterion met.
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Appendix 8-7

LAWS estimation

Example:
Classical linear regression model

Y=Xb+¢
where E(¢|X)=0and p=E(Y |X) = Xp.

—argmln ZW, Vi u,

Then:
= (XTWXx) txwy

with W diagonal matrix of fixed weights w;.

» Back to PEC
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Appendix 8-8
PEC # PCA

Coordinate-wise Ylfj i.i.d. with some distribution of Y

—
s
o
~—~~
~<
N—r

Eifer(Yj)
where Y; are i.i.d. copiesof Y and Y =1 24:1 Yj

PEC=PCA iff YV

It holds for Cauchy or Y % constant
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