Distillation of News Flow into Analysis of Stock Reactions

Junni Zhang Cathy Chen Wolfgang Karl Härdle Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

News moves Markets...

Distillation of News Flow into Analysis of Stock Reactions -----

1 - 1

... but there is a lot of News

Sentiment Projection

Figure 2: Example of Text Numerisization

Many texts are numerisized via lexical projection
 Goal: Accurate values for positive and negative sentiment

Sentiment Lexica

- Opinion Lexicon (BL) Hu and Liu (2004)
- Financial Sentiment Dictionary (LM) Loughran and McDonald (2011)
- Multi-Perspective Question Answering Subjectivity Lexicon (MPQA) Wilson et al. (2005)

Research Questions

- How well does numerisized sentiment explain stock reaction indicators?
- Does the lexicon matter?

Research Questions ctd

Are there differences regarding

- 1. stock reaction indicators: volatility, trading volume, returns?
- 2. degree of asymmetric response (leverage effect)?
- 3. high and low attention companies?
- 4. specific sectors?

Outline

- 1. Motivation \checkmark
- 2. Data Gathering & Processing
- 3. Sentiment Projection
- 4. Panel Regression
- 5. Simulation
- 6. Conclusion

How to gather sentiment variables?

Figure 3: Flowchart of Data Gathering Process Distillation of News Flow into Analysis of Stock Reactions —

NASDAQ Articles

- Web scraper for gathering text data
- Terms of Service permit web scraping
- 🖸 116,691 articles in total
- 43,459 articles about 100 selected S&P 500 stocks in 9 major GICS sectors GICS distribution
- ⊡ Time frame: October 2009 October 2014

Sentiment Variables

I_{i,t} - article indicator (for stock i on day t)
 Pos_{i,t} - average proportion of positive words
 Neg_{i,t} - average proportion of negative words

Comparison of Lexical Projections

- Average sentiment values are smaller for LM than for BL and MPQA
- Polarity: relative dominance between positive and negative sentiment

Variable	Polarity
$Pos_{i,t}$ (BL)	88.04%
$Neg_{i,t}$ (BL)	10.51%
$Pos_{i,t}$ (LM)	55.70%
$Neg_{i,t}$ (LM)	40.17%
$Pos_{i,t}$ (MPQA)	96.26%
$Neg_{i,t}$ (MPQA)	2.87%

Correlation - Positive sentiment

Figure 4: Monthly correlation between positive sentiment: BL and LM, BL and MPQA, LM and MPQA

Distillation of News Flow into Analysis of Stock Reactions -

Correlation - Negative sentiment

Figure 5: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA

Distillation of News Flow into Analysis of Stock Reactions

Comparison of Lexical Projections ctd

- BL and MPQA relatively similar
- □ *LM* only contains finance specific words
- □ BL and MPQA also contain more general words (e.g. "cancer")
- ⊡ Combination of projections might improve results
 - PCA on sentiment scores
 - ▶ Use first principal component of Pos_{i,t} and Neg_{i,t}

How good are the Projections?

- Random selection of 100 articles, manual labeling and comparison with lexical projections
- BL and MPQA underestimate negative sentiment but good in detection of positive sentiment
- LM accurately estimates negative sentiment, underestimates positive sentiment

Classification Evaluation Table

Stock Reaction Indicators

Range-based measure of volatility by Garman and Klass (1980)

$$\sigma_{i,t} = 0.511(u-d)^2 - 0.019 \{c(u+d) - 2ud\} - 0.838c^2 \quad (1)$$

with $u = \log(P_{i,t}^H) - \log(P_{i,t}^L), \quad d = \log(P_{i,t}^L) - \log(P_{i,t}^O),$
 $c = \log(P_{i,t}^C) - \log(P_{i,t}^O)$

for company *i* on day *t* with $P_{i,t}^H$, $P_{i,t}^L$, $P_{i,t}^O$, $P_{i,t}^C$ as highest, lowest, opening and closing stock prices, respectively.

Detrended log trading volume Girard and Biswas (2007)

$$V_{i,t} = V_{i,t}^* - (\alpha + \beta_1 t + \beta_2 t^2)$$
(2)

with raw log trading volume $V_{i,t}^*$ and detrended log trading volume $V_{i,t}$

Returns

$$R_{i,t} = \log(P_{i,t}^{C}) - \log(P_{i,t-1}^{C})$$
(3)

Panel Regression

$$\sigma_{i,t+1} = \alpha_i + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(4)

$$V_{i,t+1} = \alpha_i + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
 (5)

$$R_{i,t+1} = \alpha_i + \beta_1 I_{i,t} + \beta_2 Pos_{i,t} + \beta_3 Neg_{i,t} + \beta_4^\top X_{i,t} + \gamma_i + \varepsilon_{i,t}$$
(6)

for stock i on day t where (4) to (6) are separately estimated.

 $X_{i,t}$ - control variables, γ_i - company specific fixed effect

Control Variables

- ☑ VIX_t CBOE VIX
- \boxdot $\sigma_{i,t}$ Range-based volatility
- V_{i,t} Detrended trading volume
- 🖸 R_{i,t} Return

Entire Panel Regression Results

variable	BL	LM	MPQA	PCA					
		Panel A: Futu	re Volatility $\sigma_{i,t+1}$	l					
$I_{i,t}$	-0.000	-0.000	-0.000	-0.000					
Posi,t	-0.002	-0.001	-0.001	-0.001					
Neg _{i,t}	0.005*	0.006**	0.004	0.004**					
	Panel B:	Panel B: Future Detrended Log Trading Volume $V_{i,t+1}$							
$I_{i,t}$	0.047***	0.032***	0.050***	0.049***					
Pos _{i,t}	-0.671^{***}	-0.233	-0.618^{***}	-0.470***					
Neg _{i,t}	0.888***	0.768***	0.907***	0.589***					
		Panel C: Future Returns $R_{i,t+1}$							
$I_{i,t}$	-0.001^{**}	-0.000	-0.000	-0.001^{**}					
Posi,t	0.021***	0.016***	0.016**	0.015^{***}					
Negi,t	-0.000	-0.006	-0.006	-0.003					
Negi,t Negi,t Negi,t Negi,t Negi,t Negi,t	0.005* Panel B: 0.047*** -0.671*** 0.888*** -0.001** 0.021*** -0.000	0.006** Future Detrende 0.032*** -0.233 0.768*** Panel C: Futu -0.000 0.016*** -0.006	$\begin{array}{c} 0.004\\ \hline 0.050^{***}\\ -0.618^{***}\\ 0.907^{***}\\ \hline \text{Ire Returns } R_{i,t+1}\\ -0.000\\ 0.016^{**}\\ -0.006\\ \hline \end{array}$	$\begin{array}{c} 0.004^{**}\\ 0.004^{**}\\ 0.004^{***}\\ -0.470^{***}\\ 0.589^{***}\\ -0.001^{**}\\ 0.015^{***}\\ -0.003 \end{array}$					

**** p value < 0.01, ** 0.05 < p value \leq 0.01, * 0.1 < p value \leq 0.05

Does Attention matter?

- ☑ Number of days with articles differs between firms
- Stocks prices of high attention firms might incorporate news faster

attention ratio
$$\stackrel{def}{=} N_i / T$$
 (7)

with N_i as number of days with at least one article for company i and T as total number of trading days

Grouping

Use attention ratio quartiles to group firms:

Low	attention ratio $< Q1$
Median	$Q1 \leq attention$ ratio $< Q2$
High	$Q2 \leq attention$ ratio $< Q3$
Extremely High	$Q3 \leq attention$ ratio

with Q1, Q2, Q3 as first, second and third quartile

Attention Analysis Regression Results

	B	L	L	V	MPQA				
Attention	Low	Extr. High	Low	Extr. High	Low	Extr. High			
		Panel A: Future Volatility $\sigma_{i,t}$.							
$I_{i,t}$	0.000	0.000	0.000	-0.000	0.000	0.000			
Pos _{i,t}	-0.000	-0.001	-0.002	-0.002	-0.001	-0.001			
Negi,t	0.001	0.005***	0.001	0.007***	0.001	0.004**			
	Pa	nel B: Future	Detrended	Log Trading	Volume V _{i,t}	+1			
l _{i,t}	0.072***	0.033***	0.048***	0.025**	0.067***	0.049***			
Pos _{i,t}	-1.185***	-0.242	-1.077*	0.327	-0.815**	-0.623*			
Negi,t	0.328	0.764**	0.200	0.709**	-0.900	0.936**			
		Panel C: Future Returns R _{i.t+1}							
$I_{i,t}$	-0.000	-0.000	-0.000	-0.001	0.000	0.000			
Pos _{i,t}	0.010	0.014	0.030	0.030	0.010	-0.007			
Negi,t	0.020	0.005	0.009	-0.025*	-0.011	0.007			

*** p value < 0.01, ** 0.05 < p value \leq 0.01, * 0.1 < p value \leq 0.05

Attention Analysis Regression Results ctd

 \boxdot Similar results for median and high attention groups regarding $\sigma_{i,t+1}$ and $V_{i,t+1}$

 \odot Differences for $R_{i,t+1}$:

	B	L	L	М	MPQA		
Attention	Median	edian High		High	Median	High	
		Pa	nel C: Futu	e Returns <i>R_{i,t+1}</i>			
$I_{i,t}$	-0.001	-0.000	0.000	0.000	0.001*	-0.000	
Pos _{i,t}	0.025	0.025*	0.032	0.034	0.039**	0.026**	
Negi,t	0.008	-0.031*	-0.037	-0.050***	0.002	-0.042**	

*** p value < 0.01, ** 0.05 < p value \leq 0.01, * 0.1 < p value \leq 0.05

Sector Analysis

- ☑ Compare financials sector with health care sector
- Attention ratio is high for financials sector (0.413) and low for health care sector (0.287)
- BL, MPQA: no leverage effect of negative news for health care sector
- □ LM: very effective in financials sector not so much in health care sector

Simulation Setup

- Evaluate the asymmetric reaction of volatility to sentiment
 I_{i,t} ~ B(1, p_i)
- $\ \ \, \boxdot \ \, \textit{Neg}_{i,t} \sim \textit{U}(0,\textit{m}_{\textit{Neg},i}), \ \textit{m}_{\textit{Neg},i} = \max(\textit{Neg}_i)$
- Cholesky decomposition to account for correlation of Pos_{i,t} and Neg_{i,t}

Simulation Setup ctd

Simulation Setup ctd

$$\begin{array}{ll} & \blacksquare & R_{i,t} - R_{f,t} = \beta_i (R_{M,t} - R_{f,t}) \\ & \blacktriangleright & \texttt{CAPM by Sharpe (1964) and Lintner (1965)} \\ & \circlearrowright & \texttt{Systematic risk } \beta_i \\ & \blacksquare & \texttt{Dist} \downarrow \texttt{f} \\ \end{array}$$

• Risk-free rate
$$R_{f,t} = 1\%$$
 p.a.

Simulation

Entire Panel Results

Figure 6: Volatility Simulation for Entire Panel: Mean curve, 95% Uniform Confidence Bands

Distillation of News Flow into Analysis of Stock Reactions

5-4

Entire Panel Results ctd

 LM and MPQA: Curve for Neg_{i,t} significantly differs from curve for Pos_{i,t}

- Range LM: 0.042 0.094
- Range MPQA: 0.051 0.091

Not the case for BL

Low Attention Results

Figure 7: Volatility Simulation for Low Attention Group: Mean curve, 95% Uniform Confidence Bands

Distillation of News Flow into Analysis of Stock Reactions

Low Attention Results ctd

Curves for Neg_{i,t} do not significantly differ from curves for Pos_{i,t}

Extremely High Attention Results

Figure 8: Volatility Simulation for Extremely High Attention Group: Mean curve, 95% Uniform Confidence Bands
Distillation of News Flow into Analysis of Stock Reactions

Extremely High Attention Results ctd

- BL and LM: Curve for Neg_{i,t} significantly differs from curve for Pos_{i,t}
- Not the case for MPQA

Are the Bands to narrow?

- Confidence bands are based on asymptotic properties of normal distribution
- Alternative: Bootstrap confidence bands for M-Smoother by Härdle (2015) Algorithm

Figure 9: Volatility Simulation for Extremely High Attention Group: Mean curve, 95% Uniform Bootstrap Confidence Bands
Distillation of News Flow into Analysis of Stock Reactions

Conclusion

- Sentiment measures: incremental information for future stock reactions
- □ Asymmetric impact of positive and negative sentiment
- Degree of incremental information and asymmetry is sector and attention specific
- ☑ Choice of lexicon matters

Distillation of News Flow into Analysis of Stock Reactions

Junni Zhang Cathy Chen Wolfgang Karl Härdle Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Distribution over GICS sectors

GICS Sector	No. Stocks
Consumer Discretionary	21
Consumer Staples	9
Energy	6
Financials	12
Health Care	15
Industrials	10
Information Technology	21
Materials	4
Telecommunication Services	2

Comparison of Lexical Projections

Variable	$\widehat{\mu}$	$\widehat{\sigma}$	Max	Q1	Q2	Q3	Polarity
$Pos_{i,t}$ (BL)	0.033	0.012	0.134	0.025	0.032	0.040	88.04%
$Neg_{i,t}$ (BL)	0.015	0.010	0.091	0.008	0.014	0.020	10.51%
$Pos_{i,t}$ (LM)	0.014	0.007	0.074	0.009	0.013	0.018	55.70%
$Neg_{i,t}$ (LM)	0.012	0.009	0.085	0.006	0.011	0.016	40.17%
<i>Pos_{i,t}</i> (MPQA)	0.038	0.012	0.134	0.031	0.038	0.045	96.26%
<i>Neg</i> _{i,t} (MPQA)	0.013	800.0	0.133	0.007	0.012	0.017	2.87%

Sample mean, sample standard deviation, maximum value, 1st, 2nd and 3rd quartiles, and polarity as relative dominance between positive and negative sentiment.

Distillation of News Flow into Analysis of Stock Reactions -

Back

Classification Evaluation

Manua	E	BL Labe			M Lab	e	MF	QA La	abel	
Labe	Pos	Neg	Neu	Pos	Neg	Neu	Pos	Neg	Neu	Total
Pos	56	4	1	41	12	8	61	0	0	61
Neg	9	2	1	0	9	3	9	2	1	12
Neu	22	5	0	10	15	2	26	0	1	27
Tota	87	11	2	51	36	13	96	2	2	100

Algorithm: Bootstrap Confidence Bands I

1) Compute $\hat{m}_h(x)$ by using the curve estimator proposed by Nadaraya(1964) and Watson(1964):

$$\hat{m}_{h}(x) = \frac{\sum_{i=1}^{n} K_{h}(x - X_{i}) Y_{i}}{\sum_{i=1}^{n} K_{h}(x - X_{i})}$$

where $K_h(u) = \varphi(u/h)/h$ denotes the Gaussian Kernel and set $\hat{\varepsilon}_i \stackrel{def}{=} Y_i - \hat{m}_h(X_i)$. To ensure robustness against outliers, this estimator is adjusted as proposed in Brillinger (1977).

Algorithm: Bootstrap Confidence Bands II

- 2) Compute the estimated conditional distribution function $\hat{F}_{(\varepsilon|X)}(\cdot)$ with Gaussian kernel.
- 3) Construct j = 1, ..., J samples by generating the random variables $\varepsilon_i^* \sim \hat{F}_{(\varepsilon|X=X_i)}$ with i = 1, ..., n for each sample. Compute

$$Y_i^* = \hat{m}_g(X_i) + \varepsilon_i^*$$

with g chosen such that $\hat{m}_g(X_i)$ is slightly oversmoothed.

Algorithm: Bootstrap Confidence Bands III

4) For each bootstrap sample $\{X_i, Y_i^*\}_{i=1}^n$, compute $\hat{m}_{h,g}^*(\cdot)$ and the random variable

$$d_j \stackrel{\text{def}}{=} \sup_{x \in B} [|\hat{m}_{h,g}^*(x) - \hat{m}_g(x)| \sqrt{\hat{f}_X(x)} \hat{f}_{(\varepsilon|X)}(x) \} / \sqrt{\widehat{\mathsf{E}}_{\varepsilon|X} \{\psi^2(\varepsilon)\}}],$$
$$i = 1, \dots, J$$

for a finite number of points in the compact set *B*. Both $\hat{f}_{(\varepsilon|X)}(x)$ and $\widehat{E}_{\varepsilon|X}\{\psi^2(\varepsilon)\}$ are computed using the estimated residuals $\hat{\varepsilon}_i$. $\psi(\cdot)$ denotes the ψ -function by Huber(2011) with $\psi(u) = \max\{-c, \min(u, c)\}$ for c > 0.

Algorithm: Bootstrap Confidence Bands IV

- 5) Calculate the $1-\alpha$ quantile d^*_{α} of d_1,\ldots,d_J .
- 6) Construct the bootstrap uniform band centered around $\hat{m}_h(x)$

$$\hat{m}_h(x) \pm [\sqrt{\hat{f}_X(x)}\hat{f}_{(\varepsilon|X)}(x)]/\sqrt{\widehat{\mathsf{E}}_{\varepsilon|X}\{\psi^2(\varepsilon)\}}]^{-1}d_{\alpha}^*.$$

Back

For Further Reading

Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl The Not So Short Introduction to LATEX2e available on www.ctan.org, 2008

Scott Pakin

The Comprehensive Large Vertex Symbol List available on www.ctan.org, 2008

For Further Reading

Mark Trettin and Jürgen Fenn An essential guide to \u00e9TEX2e usage available on www.ctan.org, 2007

Wikipedia Wiki Books LaTeX-Wörterbuch: InDeX available on www.wikipedia.de

🕽 Till Tantau

User Guide to the Beamer Class, Version 3.07 available on www.sourceforge.net, 2007

