FASTEC- FActorizable Sparse Tail Event Curves

Shih-Kang Chao Wolfgang Karl Härdle Ming Yuan

Department of Statistics University of Wisconsin-Madison Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de https://www.stat.wisc.edu

Motivation

- ☑ Many data come as curves or bunch of time series
- Common structure analysis:
 - Spread: between {q(τ), q(1 − τ)} τ-range; Changes of τ-range: expanding, shrinking, shifting, shifting with expanding/shrinking
 - Tail: τ is close to 0 or 1. Tail event curves (TEC)
- ☑ Sparsity: common structure is reduced to a few factors
- □ FASTEC: FActorisable Sparse Tail Event Curve

FASTEC construction

Data: {(X_i, Y_i)}ⁿ_{i=1} in ℝ^{p+m} i.i.d.
 Linear model for τ-quantile curve of Y_j, j = 1,..., m, 0 < τ < 1:

$$q_j(\tau | \boldsymbol{X}_i) = \boldsymbol{X}_i^\top \boldsymbol{\Gamma}_{*j}(\tau), \qquad (1)$$

where coefficients for *j* response: $\Gamma_{*j} \in \mathbb{R}^{p}$ \odot Sparse factorisation: $f_{k}^{\tau}(\mathbf{X}_{i}) = \varphi_{k}^{\top}(\tau)\mathbf{X}_{i}$ factors

$$q_j(\tau | \boldsymbol{X}_i) = \sum_{k=1}^r \psi_{j,k}(\tau) f_k^{\tau}(\boldsymbol{X}_i), \qquad (2)$$

where

$$\Gamma_{*j}(\tau) = \left(\sum_{k=1}^{r} \psi_{j,k}(\tau) \varphi_{k,1}(\tau), ..., \sum_{k=1}^{r} \psi_{j,k}(\tau) \varphi_{k,p}(\tau)\right)$$

FASTEC- FActorizable Sparse Tail Event Curves

FASTEC examples

- CAViaR: Y_{ij} log returns at i day and institution j; X_i : $\bigcup_{j=1}^{m} (|Y_{i-1,j}|, Y_{i-1,j}^-)$ is of p = 2m dimension, j = 1, ..., m, i = 1, ..., n;
- Temperature data: Y_{ij}: temperature at i day and j weather station; X_i = (b₁(t_i), ..., b_p(t_i)), where b₁,...,b_p: B-spline basis, t = i/n, i = 1, ..., n;
- Further application: image analysis, joint analysis of many images and find the common patterns

FASTEC- FActorizable Sparse Tail Event Curves

Temperature Data

Financial Data

Fluid Data

Figure 3: 2D vortex vorticity distribution. Darker color: higher vorticity. Yellow: clockwise; blue: counter-clockwise.

FASTEC- FActorizable Sparse Tail Event Curves -

Spread gestalt

Figure 4: Loadings ($\psi_{j,1}(0.01), \psi_{j,1}(0.99)$) on factors 1 for 230 firms. Close distance indicates similar τ -range pattern. FASTEC- FActorizable Sparse Tail Event Curves

Tail behavior

Figure 5: Loadings ($\psi_{j,1}(0.01), \psi_{j,2}(0.01)$) on factors for 230 firms. Close distance implies similar τ -quantile behavior.

FASTEC- FActorizable Sparse Tail Event Curves

Challenges

 Implementation of FASTEC needs regularized multivariate quantile regression (MQR)

- Estimation
- Proper model tuning
- Non-asymptotic error bounds
- Applications: High-dimensional joint Value-at-Risk analysis, common temperature risk
- Dimension reduction

 $1_{-}9$

Outline

- 1. Motivation
- 2. High-dimensional multivariate quantile regression (MQR)
- 3. Algorithm and convergence analysis (FASTEC)
- 4. Oracle inequalities
- 5. Numerical analysis
- 6. Application 1: Sparse Asymmetric Multivariate Conditional Value-at-Risk (SAMCVaR) Model
- 7. Application 2: Chinese temperature data at year 2008

Implementing FASTEC: MQR formulation

Recall $q_j(\tau | \boldsymbol{X}_i) = \boldsymbol{X}_i^\top \Gamma_{*j}(\tau)$, for $\Gamma = [\Gamma_{*1}, ..., \Gamma_{*m}]$,

$$\begin{split} \rho_{\tau}(u) &= |\mathbf{I}(u \leq 0) - \tau| |u|. \ \mathbf{\Gamma}_{*j}: \ j\text{th column of } \mathbf{\Gamma}. \end{split} \label{eq:shape-p_tilde} \\ \hline (A): \ \text{quantile regression fitting quality. Ferguson (1967),} \\ \text{Koenker and Bassett (1978), Koenker and Portnoy (1990)} \end{split}$$

FASTEC- FActorizable Sparse Tail Event Curves

Recall $q_j(\tau | \boldsymbol{X}_i) = \boldsymbol{X}_i^\top \boldsymbol{\Gamma}_{*j}(\tau)$, for $\boldsymbol{\Gamma} \in \mathbb{R}^{p imes m}$,

$$L(\Gamma) \stackrel{\text{def}}{=} (nm)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau}(Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{*j}) + \lambda \underbrace{\|\Gamma\|_{*}}_{(B)}, \qquad (5)$$

$$\underbrace{\Gamma_{\lambda,\tau} \stackrel{\text{def}}{=} \arg\min_{\Gamma \in \mathbb{R}^{p \times m}} L(\Gamma) \qquad (6)$$

(B): nuclear norm ||Γ||_{*} = Σ_{k=1}^{rank(Γ)} σ_k(Γ) prompts 0 for singular values, rank(Γ)= number of nonzero singular values
 λ = λ_{n,p,m}, x_{,τ} > 0 converges to 0 as n → ∞

FASTEC- FActorizable Sparse Tail Event Curves -

Multivariate regression

- $:= \{ (\boldsymbol{X}_i, \boldsymbol{Y}_i) \}_{i=1}^n \text{ in } \mathbb{R}^{p+m} \text{ i.i.d. } \boldsymbol{Y}_i = \boldsymbol{\Gamma}^\top \boldsymbol{X}_i + \boldsymbol{\varepsilon}_i, \ \mathsf{E}\boldsymbol{\varepsilon}_i = \mathsf{0}. \text{ Factor number} = \operatorname{rank}(\boldsymbol{\Gamma})$
- : Izenman (1975), Reinsel and Velu (1998): Reduced-rank model. $\varepsilon_i \sim N(0, \Sigma_{\varepsilon})$

$$\min_{\substack{\mathbf{S}\in\mathbb{R}^{p\times m}\\ \operatorname{rank}(\mathbf{S})=r<\min\{p,m\}}}\operatorname{tr}\left\{(\mathbf{Y}-\mathbf{XS})\mathbf{\Omega}(\mathbf{Y}-\mathbf{XS})^{\top}\right\}.$$

 $\Omega = \Sigma_arepsilon^{-1}$: efficient estimator; $\Omega = \mathsf{I}_m$: consistent estimator

Multivariate regression

- $$\begin{split} & \underset{\mathbf{S} \in \mathbb{R}^{p \times m}}{\min} \|\mathbf{Y} \mathbf{XS}\|_{\mathrm{F}} + \lambda \operatorname{rank}(\mathbf{S}) \text{ Bunea et al. (2011). } \| \cdot \|_{\mathrm{F}}: \\ & \text{Frobenius norm. Not convex.} \end{split}$$
- $$\begin{split} & \underset{\mathbf{S} \in \mathbb{R}^{p \times m}}{\min} \|\mathbf{Y} \mathbf{XS}\|_{\mathrm{F}} + \lambda \|\mathbf{S}\|_{*}, \|\mathbf{S}\|_{*} \text{ Yuan et al. (2007),} \\ & \text{Negahban and Wainwright (2011). Convex and easy to work} \\ & \text{with non-smooth convex empirical loss} \end{split}$$

Estimating Γ

$$L(\Gamma) = (nm)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau}(Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{*j}) + \lambda \underbrace{\|\Gamma\|_{*}}_{(B)},$$

○ Convex optimization problem
 ○ (A) and (B) are non-smooth

FASTEC- FActorizable Sparse Tail Event Curves -

Estimating Γ

$$L(\Gamma) = (\underline{nm})^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau}(Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{*j}) + \lambda \underbrace{\|\Gamma\|_{*}}_{(B)},$$

- Smoothed fast iterative shrinkage-thresholding algorithm (SFISTA)
 - Smoothing (A) by f_κ(Γ) with Lipschitz gradient, where κ > 0 controls trade-off "smoothness" v.s. "quality of approximation" (▶ Smoothing by Nesterov (2005))

Estimating Γ

$$L(\Gamma) = (\underline{nm})^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau}(Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{*j}) + \lambda \underbrace{\|\Gamma\|_{*}}_{(B)},$$

 Smoothed fast iterative shrinkage-thresholding algorithm (SFISTA)

• Proximity operator of (*B*) has a closed form $S_{\|\cdot\|_{*},\lambda}$

Proximity operator

 Fast iterative shrinkage-thresholding algorithm (FISTA), Beck and Toubelle (2009)

Fast iterative shrinkage-thresholding algorithm (FISTA)

Algorithm and convergence analysis

Theorem (Convergence analysis of SFISTA) Let $\{\Gamma_t\}_{t=0}^{T}$ be the SFISTA sequence, and $\widehat{\Gamma}_{\tau,\lambda}$ minimize (5) for $0 < \tau < 1$ and $\lambda > 0$. Then for any t and $\epsilon > 0$,

$$\left| L(\Gamma_t) - L(\widehat{\Gamma}_{\tau,\lambda}) \right| \leq \underbrace{\frac{\epsilon \{\tau \lor (1-\tau)\}^2}{2}}_{Loss \ from \ smoothing} + \underbrace{\frac{4mn \|\Gamma_0 - \widehat{\Gamma}_{\tau,\lambda}\|_{\mathrm{F}}^2 \|\mathbf{X}\|^2}{(t+1)^2 \epsilon}}_{convergence \ of \ FISTA}.$$
(7)

Requiring $L(\Gamma_t) - L(\widehat{\Gamma}_{ au,\lambda}) \leq \epsilon$ (e.g. $\epsilon = 10^{-6}$) yields

$$t \ge 2 \frac{\sqrt{mn} \|\widehat{\mathbf{\Gamma}}_{\tau,\lambda} - \mathbf{\Gamma}_0\|_{\mathrm{F}} \|\mathbf{X}\|}{\epsilon \left[1 - \frac{\{\tau \lor (1-\tau)\}^2}{2}\right]}.$$
(8)

||X||: spectral norm (largest singular value) of design matrix **X**. **Proof** FASTEC- FActorizable Sparse Tail Event Curves

FASTEC estimation

- □ High-dimensional setting: $p, m \to \infty$ with $n, m = \dim(\mathbf{Y}_i)$; $p = \dim(\mathbf{X}_i)$
- \boxdot Sparsity in factor: $\mathrm{rank}(\Gamma)$ is finite and fixed
- Quality measures:
 - Prediction error: $\|\widehat{\Gamma} \Gamma\|_{L_2(\Pi)}^2 \stackrel{\text{def}}{=} m^{-1} \mathsf{E} \|(\widehat{\Gamma} \Gamma)^\top X\|_2^2$, where Π is the distribution for X
 - ► Frobenius error: $\|\widehat{\Gamma} \Gamma\|_{\mathrm{F}}^2 \stackrel{\mathrm{def}}{=} \mathrm{tr}\{(\widehat{\Gamma} \Gamma)(\widehat{\Gamma} \Gamma)^{\top}\}$
 - Nuclear error: $\|\widehat{\Gamma} \Gamma\|_* = \sum_{k=1}^{\operatorname{rank}(\Gamma)} \sigma_k (\widehat{\Gamma} \Gamma)$

Estimation noise

Tuning parameter λ depends on:

$$\begin{aligned} & \boldsymbol{\mathsf{L}}_{\tau} = \prod(\min) \quad \boldsymbol{\mathsf{X}} \quad \boldsymbol{\mathsf{v}}_{\tau} \\ & (\boldsymbol{\mathsf{W}}_{\tau})_{ij} = \boldsymbol{\mathsf{I}}\{\boldsymbol{Y}_{ij} - \boldsymbol{\mathsf{X}}_{i}^{\top}\boldsymbol{\Gamma}_{*j} \leq 0\} - \tau \sim \textit{Bernoulli}(\tau) \\ & \mathsf{Lemma} \\ & \textit{Under Assumptions 1 and 2,} \end{aligned}$$

$$n^{-1} \| \mathbf{X}^{\top} \mathbf{W}_{\tau} \| \le C^* \sqrt{\sigma_{\max}(\mathbf{\Sigma}_{\mathbf{X}}) \{ \tau \lor (1-\tau) \}} \sqrt{\frac{p+m}{n}}, \qquad (9)$$

with probability greater than $1 - 3e^{-(p+m)\log 8} - \gamma_n$, where Σ_X is the covariance matrix for X_i , $\gamma_n \to 0, C^* = 4\sqrt{2\frac{c_2}{C'}\log 8}$, C' and c_2 are absolute constants.

 $\wedge \quad \stackrel{\text{def}}{=} \parallel (mn)^{-1} \mathbf{Y}^\top \mathbf{M} \parallel$

FASTEC- FActorizable Sparse Tail Event Curves -

Assumption

Nonasymptotic Risk Bounds

Theorem Under regularity conditions and

Assumption

$$\lambda = 2C^* \sqrt{\sigma_{\max}(\boldsymbol{\Sigma}_{\boldsymbol{X}})\{\tau \lor (1-\tau)\}} \sqrt{\frac{p+m}{n}},$$

where C^* and Σ_X are defined in previous page. Then

$$\|\widehat{\boldsymbol{\Gamma}}_{\tau} - \boldsymbol{\Gamma}_{\tau}\|_{L_{2}(\Pi)} \leq \frac{C_{0}}{\underline{f}\sqrt{m}} \sqrt{\frac{\sigma_{\max}(\boldsymbol{\Sigma}_{\boldsymbol{X}})}{\sigma_{\min}(\boldsymbol{\Sigma}_{\boldsymbol{X}})}} \sqrt{\tau \vee (1-\tau)} \sqrt{r} \sqrt{\frac{p+m}{n}}, \quad (10)$$

with probability greater than $1 - \gamma_n - 9(p+m)^{-2} - 3e^{-(p+m)\log 8}$ and p+m > 3, where $C_0 = 16\sqrt{2} \left\{ \left(\sqrt{\frac{2}{C'}} + 4 \right) \sqrt{c_2} \vee 4\sqrt{2\frac{c_2}{C'}\log 8} \right\}$,

FASTEC- FActorizable Sparse Tail Event Curves

Dimensionality:

- When p, m fixed: the estimator converges in rate $n^{-1/2}$
- Oracle property: performance depends on unknown number of parameters r(p + m)
- Conditional densities:
 - $\underline{f} = \inf_{j \leq m} \inf_{\mathbf{x}} f_{Y_{ij}|\mathbf{x}_i}(\mathbf{x}^\top \mathbf{\Gamma}_{*j}|\mathbf{x})$
 - Difficult to estimate at τ close to 0 or 1

Frobenius norm and nuclear norm bounds differ to the prediction error bound by a factor \sqrt{m} and a constant

Tuning

 \boxdot $\Delta_{ au}$ has the same distribution as

$$\Lambda_{\tau} = (nm)^{-1} \| \mathbf{X}^{\top} \widetilde{\mathbf{W}}_{\tau} \|, \qquad (11)$$

where $\widetilde{W}_{ij,\tau} = I(U_{ij} \leq 0) - \tau$, $\{U_{ij}\}$ for i = 1, ..., n and j = 1, ..., m are i.i.d. U(0, 1)

 \boxdot Λ_{τ} is pivotal (independent of unknown $\Gamma)$ conditioning on $\textbf{\textit{X}}$

Tuning

Bound estimation noise with α quantile of Λ, for small 0 < α < 1:

$$\lambda_{\tau} = 2 \cdot \Lambda_{\tau} (1 - \alpha | \mathbf{X}), \tag{12}$$

where $\Lambda_{\tau}(1 - \alpha | \mathbf{X}) \stackrel{\text{def}}{=} (1 - \alpha)$ -quantile of Λ_{τ} conditional on \mathbf{X} is computed via simulation (Λ_{τ} is pivotal)

- \square By symmetry, $\lambda_{ au} = \lambda_{1- au}$
- Pivotal principle: QR-Lasso Belloni and Chernozuhkov (2011) and √Lasso Belloni, Chernozuhkov and Wang (2011)

Simulation: symmetric situation

$$. m = p = 500, n = 500. Iteration=500.$$

∴ **X**_i i.i.d. N(0, Σ) with Σ_{ij} = 0.5^{|i-j|}.

$$oldsymbol{Y}_i = oldsymbol{\Gamma}^ op oldsymbol{X}_i + arepsilon_i, \ arepsilon_i \sim N(0, oldsymbol{\mathsf{I}}_m) \ ext{i.i.d.} \ arepsilon_i \perp oldsymbol{X}$$

- \boxdot **\Gamma** generation: sampling entries from i.i.d. N(0, 1)
 - Model LS (less sparse): The last 375 singular values of Γ are 0, r = rank(Γ) = 125
 - 2. Model MS (moderately sparse): Set the first 10 singular values to 30 and the rest 0, r = 10
 - 3. Model ES (extremely sparse): Set the first singular value to 20 and the rest 0, r = 1

Simulation: asymmetric situation

- \odot Simulate Y_{ij} with asymmetric conditional quantiles
- \square m = p = 500, n = 500. Iteration=500.
- Generating Γ_1 and Γ_2 with $rank(\Gamma_1) = 2$ and $rank(\Gamma_2) = r_2$:
- \odot Model AES (Asymmetric Extremely Sparse): $r_2 = 2$
- \odot Model AMS (Asymmetric Moderately Sparse): $r_2 = 10$

 \blacktriangleright Generating Γ_{1} and Γ_{2}

Simulation: asymmetric situation

 $: \mathbf{X}_i = \Phi(\tilde{\mathbf{X}}_i) \text{ where } \tilde{\mathbf{X}}_i \text{ i.i.d. } N(0, \Sigma) \text{ with } \Sigma_{ij} = 0.5^{|i-j|}. \Phi(\cdot) :$ cdf of N(0, 1)

5-3

□ { U_{ij} } i.i.d. U[0,1], i = 1, ..., n, j = 1, ..., m

 $Y_{ij} = \Phi^{-1}(U_{ij}) X_i^{ op} \{ \Gamma_{1,*j} | (U_{ij} < 0.5) + \Gamma_{2,*j} | (U_{ij} \ge 0.5) \}$

• Quantiles of Y_{ij} given **X**:

$$egin{aligned} q_j(au | oldsymbol{X}) &= \Phi^{-1}(au) oldsymbol{X}_i^ op oldsymbol{\Gamma}_{1,*j}, & au < 0.5; \ q_j(au | oldsymbol{X}) &= \Phi^{-1}(au) oldsymbol{X}_i^ op oldsymbol{\Gamma}_{2,*j}, & au \geq 0.5. \end{aligned}$$

 \Box Given X_i , Y_{ij} independent in j

FASTEC- FActorizable Sparse Tail Event Curves

Numerical Analysis

Figure 6: 500 marginal densities (kernel estimators) of \mathbf{Y}_i . Left figure: AMS shows asymmetry as the right tail corresponds to higher rank Γ_2 ; right: AES shows symmetry as the rank of Γ_1 and Γ_2 are equal.

Performance

- \boxdot Prediction error: $\|\widehat{\Gamma} \Gamma\|^2_{L_2(\Pi)}$
 - 1. V shape: tail quantiles have larger error
 - 2. For more sparse model: larger λ
- Frobenius error and nuclear norm error show similar patterns as prediction error
- ⊡ Estimated number of nonzero singular values

Numerical Analysis

Figure 7: Model LS Prediction Error box plots. Symmetric "V" shape is observed for different choices of λ . Model MS and ES perform similarly. FASTEC- FActorizable Sparse Tail Event Curves

Numerical Analysis

Figure 8: Model AES Prediction Error box plots. Prediction errors present symmetric "V" shape since $\operatorname{rank}(\Gamma_1) = \operatorname{rank}(\Gamma_2)$. FASTEC- FActorizable Sparse Tail Event Curves

Numerical Analysis

Figure 9: Model AMS Prediction Error box plots. For $\tau > 0.5$ the prediction errors are higher as $\operatorname{rank}(\Gamma_1) < \operatorname{rank}(\Gamma_2)$. FASTEC- FActorizable Sparse Tail Event Curves

Figure 10: Model LS Estimated number of nonzero singular values box plot. True number of singular value is 125. The result is the same for other choice of λ with certain threshold.

Figure 11: Model AES Estimated number of nonzero singular values box plot. The true number is 2. The result is the same for other choice of λ with certain threshold.
Numerical Analysis

Figure 12: Model AMS Estimated number of nonzero singular values box plots. The true number is 2 for $\tau < 0.5$ and 10 for $\tau \ge 0.5$. FASTEC- FActorizable Sparse Tail Event Curves

Sparse Asymmetric Multivariate Conditional Value-at-Risk (SAMCVaR)

 $\begin{aligned} & q_{t,j}(\tau | \mathcal{F}_{t-1}) = \boldsymbol{X}_{t-1}^{\top} \boldsymbol{\Gamma}_{*j}, \\ & \boldsymbol{X}_{t-1} = (|Y_{t-1,1}|, ..., |Y_{t-1,m}|, Y_{t-1,1}^{-}, ..., Y_{t-1,m}^{-})^{\top} \in \mathbb{R}^{2m}, \end{aligned}$

where $Y^- = \max\{-Y, 0\}$

- Engle and Manganelli (2004): Conditional Autoregressive Value-at-Risk (CAViaR)
- White et al. (2008): Univariate Multi-Quantile CAViaR (MQ-CAViaR)
- ☑ White et al. (2015) "VAR for VaR": estimate bivariate VAR due to computational burden

Factorization

• Factorisation: $r = \operatorname{rank}(\Gamma)$,

$$q_{t,j}(\tau|\mathcal{F}_{t-1}) = \sum_{k=1}^{r} \psi_{j,k}(\tau) f_k^{\tau}(\boldsymbol{X}_t)$$
(13)

$$f_{k}^{\tau}(\boldsymbol{X}_{t}) = \sum_{l=1}^{m} \varphi_{1,k,l}(\tau) |\boldsymbol{Y}_{t-1,l}| + \sum_{l=1}^{m} \varphi_{2,k,l}(\tau) \boldsymbol{Y}_{t-1,l}^{-}, \quad (14)$$

Flow from component j to f_k^{τ} : $\frac{\partial f_k^{\tau}}{\partial(|Y_j|, Y_j^{-})} = \{\varphi_{|\cdot|,k,j}(\tau), \varphi_{-,k,j}(\tau)\}.$ Sensitivity of j quantile to $f_k(\tau)$: $\frac{\partial q_j(\tau|\mathbf{X})}{\partial f_k^{\tau}} = \psi_{j,k}(\tau).$

FASTEC- FActorizable Sparse Tail Event Curves -

Goals

• Leverage effect: $Y_{t-1,j}^- > 0$ implies the increase in $\sigma_{t,j}$. Black (1976) and Engle and Ng (1993)

▶ Is leverage effect symmetric? i.e., $|\varphi_{-,k,j}(\tau)| = |\varphi_{-,k,j}(1-\tau)|$?

- □ Risk sensitivity analysis with τ -range: plot of $\{\psi_{j,1}(\tau), \psi_{j,1}(1-\tau)\}$
- $\Box \text{ Tail analysis at } \tau: \text{ plot of } \{\psi_{j,1}(\tau), \psi_{j,2}(\tau)\}$

Data

Data period: August 31, 2007 to August 5, 2010. 766 daily closing price for each stock in the sample.

	Banks	Financial Services	Insurances	Total
EU	47	22	27	96
North America	25	17	28	70
Asia	47	14	3	64
Total	119	53	58	<i>m</i> = 230

Table 1: Financial firms summary.

 \therefore p = 2m = 460 (2 transformations of lag return $|Y_{t-1,j}|, Y_{t-1,j}^-|$

- Downloaded from Simone Manganelli's website
- : Using tuning method introduced previously: $\lambda=$ 0.0247 for both $\tau=$ 1% and 99%

Figure 13: Time series plots of log returns Y_{ij} , *i* ranging from Aug. 31, 2007-Aug. 5, 2010. n = 765. j = 1, ..., 230 firm. The lower figure shows the time series of VIX. QFASTECSAMCVaR

Figure 14: Time series of first factors $f_1^{0.01}$, $f_1^{0.99}$ (left) and second factors $f_2^{0.01}$, $f_2^{0.99}$ (right). Large deviation periods of first factors correspond to that of VIX. The magnitude of factor 2 is much smaller than that of factor 1. **Q**FASTECSAMCVaR

SAMCVaR

SAMCVaR

FASTEC: SAMCVaR

Figure 6-7

- ▶ leverage effect: $Y_{t-1,j}^-$ 0 leads to left τ -range expansion
- $|Y_{t-1,j}|$ contributes symmetrically to τ -range
- Figure 6-8 Large loadings $(\psi_{j,1}(0.01), \psi_{j,1}(0.99))$, large τ -range
- ⊡ Figure 6-9: Allied Irish Bank, RBS, Bank of Ireland contribute to the peak of $f_2^{1\%}$ beginning of 2009
- □ Figure 6-10 Southeast direction: serious downward movement

2008 Chinese winter storm

- ☑ January 25-February 6, 2008
- ☑ Loss: 151.65 billion RMB
- Fatalities: 129
- Areas affected: Hubei, Hunan, Zhejiang, Guizhou, Guangdong, Jiangxi, Guangxi, Fujian, Henan, Shandong, Jiangsu, Anhui, Shanghai, Chongqing, Shanxi, Sichuan

Figure 19: Source: Wikipedia. FASTEC- FActorizable Sparse Tail Event Curves

Chinese Temperature Data

☑ Temperature data from m = 159 weather stations in China in year 2008, downloaded from Research Data Center of CRC 649

Chinese Temperature

7-3

with factor 1 of 1% have almost no association with that of 99%. **QFASTECC**hinaTemper2008 FASTEC- FActorizable Sparse Tail Event Curves —

Temperature analysis

- The algorithm classifies the northern and southern temperature patterns
- "L" like shape in Figure 22: stations associated with factor 1 of 1% have almost no association with that of 99%
- Stations in the middle cannot be explained by either northern or southern temperature pattern
- Yuchu: region avg. 4000 meters high above sea level, highland climate with reverse seasonality

Summary and Extensions

- Conditional quantiles are useful for studying tail events and spread of dispersion
- ⊡ Nuclear norm regularized multivariate quantile regression
- ⊡ Algorithm and oracle properties are derived

Further research directions:

- Expectile regression, support vector machine (non-smooth loss)
- ☑ Confidence intervals for singular values
- Nonconvex penalty. e.g. nonconvex adaptive nuclear norm $\|\Gamma\|_* = \sum_{i=1}^{p \wedge m} w_i d_i(\Gamma)$ by Chen, Dong and Chan (2013, Biometrika)

FASTEC- FActorizable Curves

Shih-Kang Chao Wolfgang Karl Härdle Ming Yuan

Department of Statistics University of Wisconsin-Madison Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de https://www.stat.wisc.edu

Check function

Figure 23: Solid line: $\tau = 0.9$. Dashed line: $\tau = 0.5$. Dotted line: square loss u^2 (OLS regression). QLQRcheck

Figure 24: X = 1, m = p = n = 1. Solid line: $\psi_{\tau}(u) = \tau - I(u \le 0)$ with $\tau = 0.5$; Dashed, dotted, dot-dash line: smoothing gradient $[[\kappa^{-1}(Y - X\Gamma)]]_{\tau}$, $\kappa = 0.5, 0.2, 0.05$. Algorithm FASTEC- FActorizable Sparse Tail Event Curves

8-4

Algorithm

Detrending of Chinese temperature data

- Chapter 4 of Ramsay and Silverman (2005): smooth discretized data with smoothing spline
- Estimation of mean function and smoothing are done jointly by minimizing

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \left[Y_{ij} - \hat{\mu}(t_i) \right]^2 + \eta \int [D^2 \hat{\mu}(s)]^2 ds$$
(15)

where $\eta>$ 0 is a smoothing parameter selected by cross-validation and $\hat{\mu}$ is fitted by cubic spline basis

Introduction-temperature data

Application-temperature data

Appendix

$$[[a_{ij}]]_{\tau} = \begin{cases} \tau, & \text{if } a_{ij} \geq \tau; \\ a_{ij}, & \text{if } \tau - 1 < a_{ij} < \tau; \\ \tau - 1, & \text{if } a_{ij} \leq \tau - 1. \end{cases}$$

Theorem

For any $\kappa > 0$, $f_{\kappa}(\Gamma)$ is well-defined, convex and continuously-differentiable function in Γ with the gradient $\nabla f_{\kappa}(\Gamma) = -(mn)^{-1} \mathsf{X}^{\top} \Theta^{*}(\Gamma) \in \mathbb{R}^{p \times m}$, where $\Theta^{*}(\Gamma)$ is the optimal solution to $\max_{\Theta_{ij} \in [\tau-1,\tau]} \{(mn)^{-1} \ell(\Gamma,\Theta) - \frac{\kappa}{2} \|\Theta\|_{\mathrm{F}}^{2} \}$, namely

$$\Theta^*(\Gamma) = [[(\kappa mn)^{-1} (\mathbf{Y} - \mathbf{X}\Gamma)]]_{\tau}.$$
 (16)

Moreover, the gradient $\nabla f_{\kappa}(\Gamma)$ is Lipschitz continuous with the Lipschitz constant $M = (\kappa m^2 n^2)^{-1} ||X||^2$.

Smoothing the loss

Definition (Proximity Operator)

Let $\mathcal{X} = \mathbb{R}^{p \times n}$ with inner product $\langle \mathbf{A}, \mathbf{B} \rangle = tr(\mathbf{A}^{\top}\mathbf{B})$ and $\|\cdot\|$ be the induced norm. $f : \mathcal{X} \to \mathbb{R}$ a lower semicontinuous convex function. The proximity operator of f, $S_f : \mathcal{X} \to \mathcal{X}$:

$$\mathcal{S}_f(\mathbf{Y}) \stackrel{\mathrm{def}}{=} \mathrm{arg} \min_{\mathbf{X} \in \mathcal{X}} \left\{ f(\mathbf{X}) + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|^2
ight\}, orall \mathbf{Y} \in \mathcal{X}.$$

Theorem (Cai et al. (2010)) SVD: $\mathbf{Y} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. The proximity operator $S_{\lambda}(\cdot)$ of $\lambda \|\cdot\|_{*}$ is

$$S_{\lambda}(\mathbf{Y}) \stackrel{\text{def}}{=} \mathbf{U}(\mathbf{D} - \lambda \mathbf{I})_{+} \mathbf{V}^{\top},$$
 (17)

• Estimating Γ

Smoothing the loss

Appendix

Proof.

 $L(\Gamma_t) - L(\widehat{\Gamma}) = L(\Gamma_t) - \widetilde{L}(\Gamma_t) + \widetilde{L}(\Gamma_t) - \widetilde{L}(\widehat{\Gamma}) + L(\widehat{\Gamma}) - \widetilde{L}(\widehat{\Gamma}).$

- 1. $\widetilde{\mathcal{L}}(\Gamma) \leq \mathcal{L}(\Gamma) \leq \widetilde{\mathcal{L}}(\Gamma) + \kappa \max_{\Theta \in [\tau 1, \tau]^{n \times m}} \frac{\|\Theta\|_{\mathrm{F}}^2}{2} \leq \widetilde{\mathcal{L}}(\Gamma) + \kappa \mu(\tau)^2 \frac{nm}{2}$ 2. $\mathsf{BT}(2009): \left| \widetilde{\mathcal{L}}(\Gamma_t) - \widetilde{\mathcal{L}}(\widehat{\Gamma}) \right| \leq \frac{2M \|\Gamma_0 - \widehat{\Gamma}\|_{\mathrm{F}}^2}{(t+1)^2}, \ M = (\kappa m^2 n^2)^{-1} \|\mathbf{X}\|^2$:
 - Lipschitz constant of $\nabla f_{\kappa}(\Gamma)$, $M = (\kappa M, M) = \|\mathbf{X}\|$.

Convergence of SFISTA Proof of oracle property

Nonasymptotic risk bounds

Generalization of support using projections:

• SVD:
$$\mathbf{A} = \sum_{j=1}^{r} \sigma(\mathbf{A}) \mathbf{u}_{j} \mathbf{v}_{j}^{\top}$$
 for matrix \mathbf{A}
• $\mathbf{U}_{r} = [\mathbf{u}_{1}, ..., \mathbf{u}_{r}], \mathbf{V} = [\mathbf{v}_{1}, ..., \mathbf{v}_{r}].$
 $P_{\mathbf{A},1} = \mathbf{U}_{r} \mathbf{U}_{r}^{\top}; P_{\mathbf{A},2} = \mathbf{V}_{r} \mathbf{V}_{r}^{\top}$ are orthogonal projections
• $\mathcal{P}_{\mathbf{A}}(\mathbf{S}) \stackrel{\text{def}}{=} \mathbf{S} - P_{\mathbf{A},1}^{\perp} \mathbf{S} P_{\mathbf{A},2}^{\perp}; \mathcal{P}_{\mathbf{A}}^{\perp}(\mathbf{S}) \stackrel{\text{def}}{=} P_{\mathbf{A},1}^{\perp} \mathbf{S} P_{\mathbf{A},2}^{\perp}$
The cone

$$\mathcal{K}(\Gamma, c_0) \stackrel{\text{def}}{=} \left\{ \mathbf{S} \in \mathbb{R}^{p \times m} : \|\mathcal{P}_{\Gamma}^{\perp}(\mathbf{S})\|_* \le c_0 \|\mathcal{P}_{\Gamma}(\mathbf{S})\|_* \right\}.$$
(18)

The norm: $\|\mathbf{S}\|_{L_2(\Pi)}^2 \stackrel{\text{def}}{=} m^{-1} \mathsf{E}_{\Pi} \|\mathbf{S}^\top \boldsymbol{X}_i\|_2^2$

Nonasymptotic Risk Bounds

Assumption (Sampling setting)

Samples $(\mathbf{X}_1, \mathbf{Y}_1), ..., (\mathbf{X}_n, \mathbf{Y}_n)$ are i.i.d. copies of (\mathbf{X}, \mathbf{Y}) random vectors in \mathbb{R}^{p+m} . $F_{Y_{ij}|\mathbf{X}_i}^{-1}(\tau|\mathbf{x}) = \mathbf{x}^\top \Gamma_{*j}(\tau)$. Conditioning on \mathbf{X}_i , Y_{ij} is independent in j.

Assumption (Covariance matrix condition)

Let the covariance matrix of **X** be $\Sigma_{\mathbf{X}}$, assume that $0 < \sigma_{\min}(\Sigma_{\mathbf{X}}) < \sigma_{\max}(\Sigma_{\mathbf{X}}) < \infty$. Moreover, assume the sample covariance matrix of covariates $\widehat{\Sigma}_{\mathbf{X}} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$ satisfies

$$\mathsf{P}\left[\sigma_{\min}(\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}) \geq c_1 \sigma_{\min}(\boldsymbol{\Sigma}_{\boldsymbol{X}}), \sigma_{\max}(\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}) \leq c_2 \sigma_{\max}(\boldsymbol{\Sigma}_{\boldsymbol{X}})\right] \geq 1 - \gamma_n.$$
(19)

Covariates come from a joint *p*-Gaussian distribution $N(0, \Sigma_X)$: $c_1 = 1/9, c_2 = 9 \text{ and } \gamma_n = 4 \exp(-n/2) \text{ from Wainwright (2009)}$ Nonasymptotic Risk Bounds

Assumption (Conditional density condition) There exist $\underline{f} > 0$ and $\overline{f}' < \infty$ such that $|\frac{\partial}{\partial y_j} f_{Y_{ij}|\mathbf{X}_i}(y_i|\mathbf{x})| \leq \overline{f}'$ and $\inf_{j \leq m} \inf_{\mathbf{X}} f_{Y_{ij}|\mathbf{X}_i}(\mathbf{x}^\top \Gamma_{*j}|\mathbf{x}) \geq \underline{f}$, where $f_{Y_{ij}|\mathbf{X}_i}$ is the conditional density function of Y_{ij} on \mathbf{X}_i .

Assumption (Restricted eigenvalue)

For a given probability distribution Π for \boldsymbol{X} ,

$$\beta_{\Gamma,3} \stackrel{\text{def}}{=} \inf \left\{ \beta > 0 : \beta \| \mathcal{P}_{\Gamma}(\Delta) \|_{\mathrm{F}} \le \| \Delta \|_{L_{2}(\Pi)}, \ \forall \Delta \in \mathcal{K}(\Gamma,3) \right\} > 0.$$
(20)

A rough lower bound: $eta_{\Gamma,3} \geq m^{-1/2} \sqrt{\sigma_{\min}(\Sigma_{m{X}})}$ lacksquare Nonasymptotic Risk Bounds

Assumption (Restricted nonlinearity)

$$\nu \stackrel{\text{def}}{=} \frac{3}{8} \frac{f}{\bar{f}'} \inf_{\substack{\Delta \in \mathcal{K}(\Gamma,3) \\ \Delta \neq 0}} \frac{\|\Delta\|_{L_2(\Pi)}^3}{m^{-1} \sum_{j=1}^m \mathsf{E}[|\mathbf{X}_j^\top \Delta_{*j}|^3]}, \tag{21}$$

$$\nu > \frac{C_{\tau}'}{\underline{f}\sqrt{m}}\sqrt{\frac{\sigma_{\max}(\boldsymbol{\Sigma}_{\boldsymbol{X}})}{\sigma_{\min}(\boldsymbol{\Sigma}_{\boldsymbol{X}})}}\sqrt{\tau \vee (1-\tau)} \left(\sqrt{\frac{\log(p+m)}{n}} + \sqrt{\frac{p+m}{n}}\right)\sqrt{r}.$$
(22)

Section 2.5 of Belloni and Chernozuhkov (2011) calculate ν for various data generating processes \blacktriangleright Nonasymptotic Risk Bounds

Asymmetric situation: Γ generation

- 1. Basis vectors $\{v_1, v_2\}$ and $\{u_1, ..., u_{r_2}\}$ in \mathbb{R}^p . Components in v_j and u_k follow U[0, 1]
- 2. $\Gamma_{1,*j} = a_{1,j}v_1 + a_{2,j}v_2$, $a_{1,j}, a_{2,j} \sim U[0,1]$ i.i.d.; $\Gamma_{2,*j} = b_{1,j}u_1 + \ldots + b_{r_2,j}u_{r_2}$, $b_{1,j},\ldots,b_{r_2,j} \sim U[0,1]$ i.i.d.

Asymmetric Models

References

Beck, A. and Teboulle, M.

A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

SIAM J. Imaging Sciences (2009) Vol. 2, No. 1, 183-202

Belloni, A. and Chernozhukov, V.

 ℓ_1 -penalized quantile regression in high-dimensional sparse models, The Annals of Statistics (2011) Vol. 39, No. 1, 82-130.

Belloni, A., Chernozhukov, V. and Wang, L. Square-root lasso: pivotal recovery of sparse signals via conic programming Biometrika(2011) Vol. 98, No. 4, 791-806.

Black, F.

Studies of stock market volatility changes Proceedings of the American Statistical Association (1976), 177-181

References

References

References

Wainwright, M. J.

Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_1\text{-}constrained$ quadratic programming (Lasso),

IEEE Transactions on Information Theory(2009) 55: 2183-2202.

White, H., Kim, T.-H. and Manganelli, S. Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR Volatility and Time Series Econometrics: A Festschrift in Honor of Robert F. Engle.

White, H., Kim, T.-H. and Manganelli, S.

VAR for VaR: measuring systemic risk using multivariate regression quantiles

MPRA Paper No. 35372

FASTEC- FActorizable Sparse Tail Event Curves -

References

Yuan, M., Ekici, A., Lu, Z. and Monteiro, R.

Dimension reduction and coefficient estimation in multivariate linear regression

J. R. Stat. Soc. Ser. B Stat. Methodol. (2007) Part 3, 329-346.

FASTEC- FActorizable Sparse Tail Event Curves -

