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Motivation 1-1

Currencies - Cigarettes, USD, Cryptos

(1 Anything can be a currency
[J Anyone can offer a currency

Figure 1: Cigarette trading in postwar Figure 2: Friedrich A. Hayek ([2])
Germany ([1])
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Motivation 1-2

Digital Economy

(1 Amazon
(] Paypal
[] Google Wallet

[J Cryptocurrencies o
5 Ripple of ripple
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Motivation 1-3

Cryptocurrencies

[ Decentralized, virtual, low transaction costs

emazonoon @ AP €
OING

TARGET

PayPal \/|rg|nalamr a eb y

[ NYSE, Andreesen Horowitz, DFJ: Coinbase funding (75 M$)
[J Nasdaq: company-wide utilization of blockchain technology
(1 Citigroup: own coin development

[ PBOC: working on digital currency

[ Switzerland Zug: first city accepts Bitcoin payments
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Motivation 1-4

Pokémon Go and Cryptocurrency

(] Each creature could have an asset based crypto-tokens that
could be traded in blockchain.

] Pokémon and BTC: PokéBits e

Source: steemit, Bitcoin.com
Econometric Analysis e
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Motivation
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Motivation 1-6

CRypto IndeX - CRIX

(] high market capitalization
[ covers approximately 30 cryptos

» different liquidity rules @/‘

» model selection criteria Rlx
[ CRIX family

» CRIX crix.hu-berlin.de

» ECRIX (Exact CRIX)
» EFCRIX (Exact Full CRIX)

Reference: Trimborn, S. and Hardle, W. (2016)
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Motivation 1-7

CRypto IndeX - CRIX

B New Visitor M Returning Visitor
(] 290 cryptos

(] Prices, capitalization, volume
[ As of 20160815, overview of CRIX:
hu.berlin/crix

» Users: 1911
» Page views: 3920
» average time: 00:01:17
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Motivation 1-8

Challenge

1. What's the dynamics of CRIX?
2. How stable is the CRIX model over time?

3. Consequence for pricing derivatives.
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Motivation 1-9

The Econometrics of CRIX
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Data

ARIMA Model

Stochastic Volatility Model
Multivariate GARCH Model
Nutshell
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Data 2-1

Three Indices
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Figure 3: The daily value of indices in the CRIX family from 01/08/2014
to 06/04/2016: CRIX, ECRIX and EFCRIX. Q econ_ccgar
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Data 2-2

Data Description
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Figure 4: The log returns of CRIX index from 01/08/2014 to 06/04/2016.

Q econ_crix
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Data 2-3

Distributional Property
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Figure 5: Histogram and QQ plot of CRIX returns from 01/08/2014 to
06/04/2016. Q econ_crix
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ARIMA Model

3-1

First Approach

The ARIMA(p, d, q) with d = 1 is,

Ay; = a1Ayi 1+ alyr 2+ ...+ aplyr p
+ er+ b1+ b2+ ...+ bget—q

or

a(L)Ay; = bre;

(1 Ay; = y; — ye—1, can be replaced by A%y, if necessary.

[] L is the lag operator, g, ~ N(0, 0?)
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ARIMA Model

Box-Jenkins Procedure

1. ldentification of lag orders
2. Parameter estimation

3. Diagnostic checking

Econometric Analysis

3-2
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ARIMA Model

Step 1: Lag Orders

3-3

[ p-value for stationarity tests: ADF test (null hypothesis: unit
root) of 0.01; KPSS test (null hypothesis: stationary) of 0.1.

Sample Autocorrelation
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I I I I I I

Sample Partial Autocorrelation
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Figure 6: The sample ACF and PACF of CRIX returns from 01/08/2014

to 06/04/2016.
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ARIMA Model

Step 1: Lag Orders - ctd

ARIMA model selected  AIC BIC
ARIMA(2,0,0) 2469 2451
ARIMA(2,0,2) 2474 2448
ARIMA(2,0,3) 2473 2442
ARIMA(4,0,2) 2476 -2441
ARIMA(2,1,1) 2459 2441
ARIMA(2,1,3) -2464 -2438

34

Table 1: The ARIMA model selection with AIC and BIC. Qecon_arima
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ARIMA Model 3-5

Step 2: Parameter Estimation

Coefficients  Estimate Standard deviation

intercept ¢ -0.00 0.00
a -0.70 0.11
ap -0.75 0.12
by 0.70 0.14
by 0.64 0.13

Log likelihood — 1243.12

Table 2: Estimation result of ARIMA(2,0,2) model. Q econ_arima
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ARIMA Model

3-6

Step 3: Diagnostic Checking

[J] Diagnostic plot of
ARIMA(2,0,2) model

[ significant p-values of

Ljung-Box test
statistic

(1 model residuals are
independent

6 -2 24

Standardized Residuals

00 04 08

00 04 08

0 100 200 300 400 500 600
Time
ACF of Residuals
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4 6 8 10

Q econ_arima
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ARIMA Model 3-7
ARIMA Model Forecast

(1 With ARIMA(2,0,2) model, we predict CRIX returns for next
30 days.

0.2

0.1

log return
0.0

-0.1
I

6 160 260 360 460 560 660
days
Figure 7: CRIX returns and predicted values. The confidence bands are

red dashed lines. Q econ_arima
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ARIMA Model 3-8

Discussion

[J We build an ARIMA(2,0,2) model for the CRIX return series
to model intertemporal dependence.

[J ACF of model residuals has no significant lags as evidenced in
Step 3: Diagnostic Checking.

(] Further work: Homoskedasticity or Heteroskedasticity.

Econometric Analysis Chix



Stochastic Volatility Model 4-1

Volatility Clustering
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Figure 8: The squared ARIMA(2,0,2) residuals of CRIX returns.
Q econ_vola
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Stochastic Volatility Model 4-2

ARCH Model

[1 ARCH(gq) model,

et = 2ot
Zt ~ N(O, 1)

2 _ 2 2
oy = wtog_ g+ Fapgi,

» ¢c; is the ARIMA model residual
» o2 is the variance of ¢, conditional on the information
available at time t.

Econometric Analysis Chix



Stochastic Volatility Model 4-3

Heteroskedasticity effect

(] Two approaches:

» ARCH LM test (null hypothesis: no ARCH effects) of ¢,
» Ljung-Box test for &2

[] both p—values smaller than 2.2e — 16.
[] Next step: determine lag order g of ARCH model

Econometric Analysis Chrix



Stochastic Volatility Model 4-4

Lag order g

53, - (TR AT
o Ml 4] T ]
2 3 H
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Lag Lag
Figure 9: The ACF and PACF of squared ARIMA(2,0,2) residuals from
01/08/2014 to 06/04/2016. Q econ_vola
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Stochastic Volatility Model

Lag Order g - ctd

Model Log Likelihood AlIC BIC
ARCH(1) 1281.7 -2567.4 -2558.6
ARCH(2) 1283.4 -2560.8 -2547.6
ARCH(3) 1291.6 -2575.2  -2557.5
ARCH(4) 1288.8 2567.5 -2545.4

45

Table 3: The ARCH model selection with AIC and BIC. Q econ_arch
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Stochastic Volatility Model

ARCH Estimation

Coefficients  Estimates Standard Ljung-Box
deviation test statistic
w 0.001 0.000 16.798*
a;  0.195 0.042 4.589*
ap 0.054 0.037 1.469
az 0.238 0.029 8.088*

Table 4: Estimation result of ARIMA(2,0,2)-ARCH(3) model, with signifi-

cant level is 0.1%.

Q econ_arch

Econometric Analysis
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Stochastic Volatility Model 4-7

GARCH Model

[J The standard GARCH(p, g) model is,

gt = ZtO't
Zt ~ N(O,l)

P q
0'? = w-+ Z,@,’U%,,- + Zaja%,j
i=1 j=1
with the condition that
P q
w>0; >0, >0; Zﬁi+zaj< 1
i=1 j=1

(] This ensures that the GARCH model is strictly stationary with
finite variance.

Econometric Analysis Chrix



Stochastic Volatility Model 4-8

Lag Orders p, g

[J Normally up to GARCH(2,2) model is used in practice.
[ In particular, the orders of p = g = 1 is sufficient in most
cases.

GARCH models Log likelihood  AIC BIC

GARCH(1,1) 1305.355  -4.239 -4.210
GARCH(1,2) 1309.363  -4.249 -4.213
GARCH(2,1) 1305.142  -4.235 -4.199
GARCH(2,2) 1309.363  -4.245 -4.202

Table 5: Comparison of GARCH model, orders up to p = g = 2.
Q econ_garch
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Stochastic Volatility Model

GARCH Estimation |

[J GARCH(1,2) model,

Et ZtO't, Zt ~ N(O, 1)
07 = w+prory +argr g + e
Coefficients  Estimates Standard Ljung-Box
deviation test statistic
w 99le—05 4.75e—05 2.08*
o1 1.65e—01 3.72¢e — 02 4 .45%**
B1 8.07e—02 8.24e—02 0.98
B> 6.51le—01 8.20e — 02 7.94%**

Table 6: Estimation result of ARIMA(2,0,2)-GARCH(1,2) model. * repre-
sents significant level of 5% and # * % of 0.1%.

Econometric Analysis
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Stochastic Volatility Model 4-10

GARCH Estimation Il

[J GARCH(1,1) model is sufficient in most cases,
gt = ZtO't, Zt ~ N(O, 1)
02 = wH o2+,

(1 All parameters are significant:

Coefficients  Estimates Standard Ljung-Box
deviation test statistic
w b532e—05 2.25¢—05 2.37*
a; 1.20e—01 2.79e — 02 4.32%**
81 832e—02 3.99e—02  20.85***

Table 7: Estimation result of ARIMA(2,0,2)-GARCH(1,1) model. * repre-
sents significant level of 5% and *  x of 0.1%. Q econ_garch

Econometric Analysis Chix
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Stochastic Volatility Model 4-11
GARCH Estimation Il - ctd

[ With no significant correlations for any lag, GARCH(1,1) is
sufficient enough to explain the heteroskedasticity effect.

g 1 g ol TN i
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Lag Lag
Figure 10: The ACF and PACF of squared ARIMA(2,0,2) residuals from
01/08/2014 to 06/04/2016. Q econ_garch
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Stochastic Volatility Model 4-12

GARCH Model Residual

] Kolmogorov-Smirnov test of ARIMA-GARCH model residuals.

(] The small p-value rejects the null hypothesis that the residuals
are drawn from the normal distribution.

[] Sample data exhibits leptokurtosis.

Model Kolmogorov distance p-value
ARIMA-GARCH 0.50 2.86e — 10

Table 8: Test of model residuals of ARIMA(2,0,2)-GARCH(1,1) process.
Q econ_garch
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Stochastic Volatility Model 4-13

GARCH Model Residual - ctd

gnorm - QQ Plot

Sample Quantiles

Theoretical Quantiles

Figure 11: The QQ plots of model residuals of ARIMA-GARCH process.
Q econ_garch
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Stochastic Volatility Model 4-14

t-GARCH Estimation

[J Impose Z; ~ t(d) to replace the normal assumption of Z;
[J £ controls the height and fat-tail of density function, therefore
different shape of distribution function.

Coefficients Estimates Standard deviation T test

w 8.39e¢ — 05 5.45e — 05 1.54
g 2.82e — 01 1.46e — 01 1.93
051 7.90e — 01 6.12e — 02 12.91%**
19 2.58e + 00 3.62e — 01 7.11%

Table 9: Estimation result of ARIMA(2,0,2)-t-GARCH(1,1) model. . rep-
resents significant level of 10% and x * * of 0.1%. Q econ_tgarch
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Stochastic Volatility Model

4-15

t-GARCH Model Estimation - ctd
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Figure 12: The ACF and PACF plots for model residuals of ARIMA(2,0,2)-

t-GARCH(1,1) process.
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Stochastic Volatility Model 4-16

t-GARCH Model Residual

gstd — QQ Plot

Sample Quantiles
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Figure 13: The QQ plots of model residuals of ARIMA-t-GARCH process.
Q econ_tgarch
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Stochastic Volatility Model 4-17
EGARCH Model

(] The introduced GARCH model successfully solve the problem
of volatility clustering, but cannot capture the leverage effect.
[] The exponential GARCH (EGARCH) model with standard

innovations,
gt = ZtO't
Z: ~ N(0,1)
p q
log(07) = w+ Y Bilog(o? )+ g (Z:))
i=1 j=1

with the condition that
gJ(Zt):aJZt—i_(bj(’Zt—A_E|Zt—J’)7 j:1727"'7q

Econometric Analysis Chix




Stochastic Volatility Model

t-EGARCH Estimation

4-18

[ Fit a EGARCH(1,1) model with student t distributed

innovation term.

[ The estimation results of the ARIMA(2,0,2)-t-EGARCH(1,1)

model is,
Coefficients  Estimates Standard Ljung-Box
deviation test statistic
w 99le—05 4.75¢—05 2.08*
a; 1.65e—01 3.72¢—02  4.45*
51 8.07e—02 824e—-02 0.98
¢1 6.5le—01 8.20e — 02 7.94%

Table 10: Estimation result of ARIMA(2,0,2)-t-EGARCH(1,1) model. =

represents significant level of 5% and * * x of 0.1%.

Econometric Analysis

Q econ_tgarch

Crix


https://github.com/QuantLet/EconCrix/tree/master/econ-tgarch

Stochastic Volatility Model

t-EGARCH Model Residual

Sample Quantiles

std - QQ Plot

Theoretical Quantiles

4-19

Figure 14: The QQ plots of model residuals of ARIMA-t-EGARCH process.
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Stochastic Volatility Model

GARCH Model Selection

GARCH models Log likelihood  AIC BIC
GARCH(1,1) 1305355  -4.239 -4.210
t-GARCH(1,1)  1300.363  -4.249 -4213
t-EGARCH(1,1)  1305.142  -4.235 -4.199

4-20

Table 11: Comparison of the variants of GARCH model. Q econ_tgarch
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Multivariate GARCH Model 5-1

MGARCH Model

[J Consider the error term £ with E(¢¢) = 0, and conditional
covariance matrix Hy is (d x d) positive definite,

1
_ 2
Et = Ht Nt

1
H? can be obtained by Cholesky factorization of H;.
[J n is an iid innovation vector such that,

E(n:) = 0
Var(n:) = E(nrmT):Id

with Z is the identity matrix with order of d.

Econometric Analysis Chrix



Multivariate GARCH Model 5-2

DCC-GARCH Model

(1 Different specification of H; yields various parametric
formulations: VEC, BEKK, CCC, DCC etc.

[J Dynamic Conditional Correlation (DCC) model: conditional
correlation pj; between the i-th and j-th component is the jj-th
element of the matrix P;

Ht = DtPtDt
P = (TG Q) 20(T® Q1)

N

with
Qr=(1—a—b)S+act_16{_1 + bQs 1
» The diagonal matrix D; is the conditional variance matrix.

» S is unconditional matrix of ¢;
Econometric Analysis "
Y @RIX




Multivariate GARCH Model

DCC-GARCH Model Estimation
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5-3

Figure 15: The standard error of DCC-GARCH model, with CRIX(upper),
ECRIX (middle) and EFCRIX(lower).
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Multivariate GARCH Model 5-4

DCC-GARCH Model Estimation - ctd

[ All the estimated parameters are statistically significant except
for the constant terms,

2 _ 2 2
ocrix,e = 0.123e¢gx -1+ 0.8320¢Rx -1
2 _ 2 2
OECRIX,t — 0'1235ECRIX,t71 + 0'8320ECRIX,t71
2 _ 2 2
OEFCRIX,t — 0'1245EFCRIX,t71 + 0'8310EFCRIX,t71

Q; = (1—0.268 — 0.571)S + 0.268;_1¢, ; +0.571Q;
[0 The unconditional covariance matrix S,

0.994 0.994 0.994
0.994 0.994 0.993
0.994 0.993 0.994

S

Econometric Analysis Chrix



Multivariate GARCH Model 5-5

DCC-GARCH Model Estimation - ctd
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Figure 16: The estimated volatility (black) and realized volatility (grey)

using DCC-GARCH model, for example CRIX. Q econ_ccgar
Econometric Analysis Chrix
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Multivariate GARCH Model 5-6

DCC-GARCH Model Estimation - ctd

CRIX v.s. ECRIX
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Figure 17: The dynamic autocorrelation between three CRIX indices: CRIX,

ECRIX and EFCRIX estimated by DCC-GARCH model. Q@ econ_ccgar
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Multivariate GARCH Model

5-7

DCC-GARCH Model Estimation - ctd

ECRIX v.s. EFCRIX
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Figure 18: The dynamic autocorrelation between three CRIX indices: CRIX,
ECRIX and EFCRIX estimated by DCC-GARCH model.

Q econ_ccgar
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Multivariate GARCH Model

DCC-GARCH Model Diagnostics
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Figure 19: The comparison of ACF between premodel squared residuals
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Multivariate GARCH Model 5-9

DCC-GARCH Model Diagnostics - ctd

PACF of Premodel Residuals ~ PACF of DCC Residuals
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Figure 20: The comparison of PACF between premodel squared residuals

End DCC sq arﬁd residuals, for example CRIX. Q econ_ccgar
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Nutshell 6-1

GARCH Option Pricing Model

(] Option pricing models
» Black-Scholes model
» GARCH models: superior in describing asset return dynamics.

[J For instance Heston and Nandi (2000), HN model in brief.

» a closed form expression for European option prices
» GARCH models with Gaussian innovations

Econometric Analysis Chrix



Nutshell 6-2

HN model

[J In the HN model ,the asset return dynamic under the risk
neutral measure Q is,

2
|0g<5t> = r—&—i-atzt

St—l 2

2 2 2
0y = Whnt ﬁhnat_l + O‘hn(thl - ’Yhno'tfl)

r is risk-free interest rate

Z; is a standard Gaussian innovation

Risk neutral GARCH parameter: 61, = {Whn, Bhn, Chns Yhn t
S; is the return to estimate.

vvyvyy

Econometric Analysis Chrix



Nutshell

6-3

HN model - ctd

[] The call option C; at time t, with strike price K and time to
maturity 7 is worth,

12 2(< )

ot [l [TR {0

» TR{} denotes the real part of a complex number
» (@) is the conditional moment generating function at time t

fan(¢) = Eq [exp {#log(S:)} | Fi] = S¢ exp(A¢ + Bio7, )

Econometric Analysis
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Nutshell 6-4

HN model - ctd

[] The coefficients A; and B; are computed backward starting
from the terminal condition A+ = By = 0.

(] The HN model recursive equations are,

1
Ar = A1+ ér+ Bepiwpn — 5 log(1 — 20y, Bey1)
1/2(¢ — yhn)?

t hn hnPt41 1_ 2ahnBt+1

2 2

Econometric Analysis Chrix



Nutshell 6-5

Nutshell

1 ARIMA model is implemented for removing the intertemporal
dependence.

[ Volatility models such as ARCH, GARCH and EGARCH are
applied to eliminate the effect of heteroskedasticity.

[J The t-GARCH(1,1) is introduced to deal with the fat-tail
properties of GARCH residuals.

[] DCC-GARCH(1,1) exhibits time varying covariances between
three CRIX indices.

[] Outlook: GARCH option pricing model, eg. HN GARCH
model.

Econometric Analysis Chrix
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Appendix 8-1

COGARCH Model

[J Irregularly spaced data: continuous-time GARCH model.
[ The GARCH(1,1) model diffusion limit satisfies,

dG; = oedWV
do? = 0(y—o?)+ pordw,?

» G, is the log return r; to estimate.
> {Wt(l)} and {Wt(z)} are two independent Brownian
>0 £>0

motions.
» 0, v and p are parameters.
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