The Econometrics of CRIX

Shi Chen Wolfgang Karl Härdle Cathy Chen TM Lee Bobby Ong

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Currencies - Cigarettes, USD, Cryptos

Figure 1: Cigarette trading in postwar Germany ([1])

Figure 2: Friedrich A. Hayek ([2])

Digital Economy

- Amazon
- Paypal
- Cryptocurrencies
- Ripple

Cryptocurrencies

Decentralized, virtual, low transaction costs

- NYSE, Andreesen Horowitz, DFJ: Coinbase funding (75 M\$)
- Nasdaq: company-wide utilization of blockchain technology
- PBOC: working on digital currency

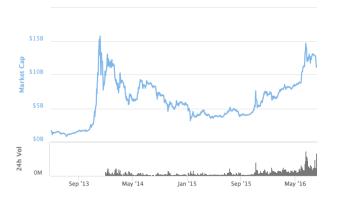
Pokémon Go and Cryptocurrency

- Each creature could have an asset based crypto-tokens that could be traded in blockchain.

Source: steemit, Bitcoin.com

Econometric Analysis

Market Capitalization



${\sf CoinMarketCap}$

Econometric Analysis

CRypto IndeX - CRIX

- high market capitalization
- covers approximately 30 cryptos
 - different liquidity rules
 - model selection criteria
- CRIX family
 - CRIX
 - ▶ ECRIX (Exact CRIX)
 - EFCRIX (Exact Full CRIX)

Reference: Trimborn, S. and Härdle, W. (2016)

crix.hu-berlin.de

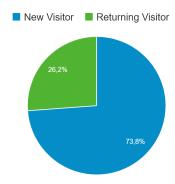
CRypto IndeX - CRIX

- □ Prices, capitalization, volume
- As of 20160815, overview of CRIX: hu.berlin/crix

▶ Users: 1911

▶ Page views: 3920

average time: 00:01:17



Challenge

- 1. What's the dynamics of CRIX?
- 2. How stable is the CRIX model over time?
- 3. Consequence for pricing derivatives.

The Econometrics of CRIX

Outline

- 1. Motivation
- 2. Data
- 3. ARIMA Model
- 4. Stochastic Volatility Model
- 5. Multivariate GARCH Model
- 6. Nutshell

 Data — 2-1

Three Indices

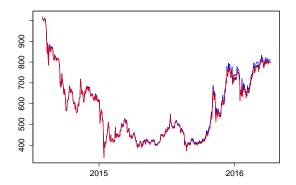


Figure 3: The daily value of indices in the CRIX family from 01/08/2014 to 06/04/2016: CRIX, ECRIX and EFCRIX.

GRIX

Data Description

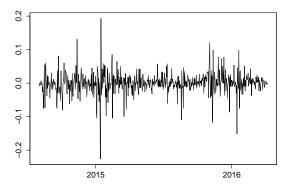


Figure 4: The log returns of CRIX index from 01/08/2014 to 06/04/2016.
Q econ_crix

Econometric Analysis — Critical Control Contro

Data — 2-3

Distributional Property

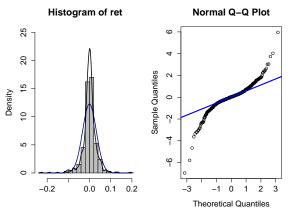


Figure 5: Histogram and QQ plot of CRIX returns from 01/08/2014 to 06/04/2016. Q econ_crix

Econometric Analysis

First Approach

The ARIMA(p, d, q) with d = 1 is,

$$\Delta y_t = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \ldots + a_p \Delta y_{t-p}$$

+ $\varepsilon_t + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + \ldots + b_q \varepsilon_{t-q}$

or

$$a(L)\Delta y_t = b_L \varepsilon_t$$

- ightharpoonup L is the lag operator, $\varepsilon_t \sim N(0, \sigma^2)$

Box-Jenkins Procedure

- 1. Identification of lag orders
- 2. Parameter estimation
- 3. Diagnostic checking

Step 1: Lag Orders

p-value for stationarity tests: ADF test (null hypothesis: unit root) of 0.01; KPSS test (null hypothesis: stationary) of 0.1.

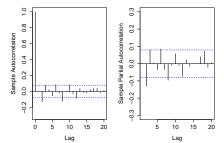


Figure 6: The sample ACF and PACF of CRIX returns from 01/08/2014 to 06/04/2016.

Econometric Analysis

Step 1: Lag Orders - ctd

ARIMA model selected	AIC	BIC
ARIMA(2,0,0)	-2469	-2451
ARIMA(2,0,2)	-2474	-2448
ARIMA(2,0,3)	-2473	-2442
ARIMA(4,0,2)	-2476	-2441
ARIMA(2,1,1)	-2459	-2441
ARIMA(2,1,3)	-2464	-2438

Table 1: The ARIMA model selection with AIC and BIC. Qecon_arima

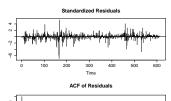
Step 2: Parameter Estimation

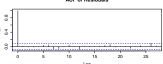
Coefficients	Estimate	Standard deviation
intercept c	-0.00	0.00
a_1	-0.70	0.11
a_2	-0.75	0.12
b_1	0.70	0.14
b_2	0.64	0.13
Log likelihood	1243.12	

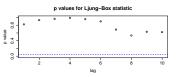
Table 2: Estimation result of ARIMA(2,0,2) model.
☐ econ_arima

Step 3: Diagnostic Checking

- Diagnostic plot of ARIMA(2,0,2) model
- significant p-values of Ljung-Box test statistic
- model residuals are independent







ARIMA Model Forecast

 With ARIMA(2,0,2) model, we predict CRIX returns for next 30 days.

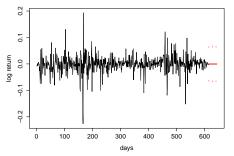


Figure 7: CRIX returns and predicted values. The confidence bands are red dashed lines.

Discussion

- ACF of model residuals has no significant lags as evidenced in Step 3: Diagnostic Checking.

Volatility Clustering

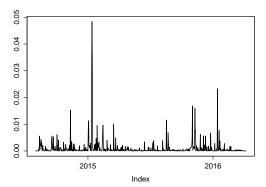


Figure 8: The squared ARIMA(2,0,2) residuals of CRIX returns. Qecon vola

Econometric Analysis

ARCH Model

 \square ARCH(q) model,

$$\varepsilon_t = Z_t \sigma_t
Z_t \sim N(0,1)
\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_p \varepsilon_{t-p}^2$$

- \triangleright ε_t is the ARIMA model residual
- σ_t^2 is the variance of ε_t conditional on the information available at time t.

Heteroskedasticity effect

- - ▶ ARCH LM test (null hypothesis: no ARCH effects) of ε_t
 - Ljung-Box test for ε_t^2
- □ both p-values smaller than 2.2e 16.
- \square Next step: determine lag order q of ARCH model

Lag order q

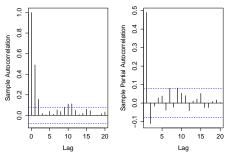


Figure 9: The ACF and PACF of squared ARIMA(2,0,2) residuals from 01/08/2014 to 06/04/2016.

Lag Order q - ctd

Model	Log Likelihood	AIC	BIC
ARCH(1)	1281.7	-2567.4	-2558.6
ARCH(2)	1283.4	-2560.8	-2547.6
ARCH(3)	1291.6	-2575.2	-2557.5
ARCH(4)	1288.8	-2567.5	-2545.4

Table 3: The ARCH model selection with AIC and BIC.
Qecon_arch

ARCH Estimation

Coefficients	Estimates	Standard	Ljung-Box
		deviation	test statistic
ω	0.001	0.000	16.798*
α_1	0.195	0.042	4.589*
α_2	0.054	0.037	1.469
	0.238	0.029	8.088*

Table 4: Estimation result of ARIMA(2,0,2)-ARCH(3) model, with significant level is 0.1%.

GARCH Model

 \Box The standard GARCH(p, q) model is,

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$Z_{t} \sim N(0,1)$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{p} \beta_{i}\sigma_{t-i}^{2} + \sum_{j=1}^{q} \alpha_{j}\varepsilon_{t-j}^{2}$$

with the condition that

$$\omega > 0;$$
 $\alpha_i \ge 0, \beta_i \ge 0;$ $\sum_{i=1}^p \beta_i + \sum_{j=1}^q \alpha_j < 1$

Lag Orders p, q

GARCH models	Log likelihood	AIC	BIC
GARCH(1,1)	1305.355	-4.239	-4.210
GARCH(1,2)	1309.363	-4.249	-4.213
GARCH(2,1)	1305.142	-4.235	-4.199
GARCH(2,2)	1309.363	-4.245	-4.202

Table 5: Comparison of GARCH model, orders up to p = q = 2.

 \mathbf{Q} econ_garch

GARCH Estimation I

GARCH(1,2) model,

$$\varepsilon_t = Z_t \sigma_t, \quad Z_t \sim N(0,1)$$

$$\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2$$

Coefficients	Estimates	Standard	Ljung-Box
		deviation	test statistic
ω	9.91e - 05	4.75 <i>e</i> — 05	2.08*
α_1	1.65e - 01	3.72e - 02	4.45***
eta_{1}	8.07e - 02	8.24e - 02	0.98
β_2	6.51e - 01	8.20 <i>e</i> - 02	7.94***

Table 6: Estimation result of ARIMA(2,0,2)-GARCH(1,2) model. * represents significant level of 5% and * * * of 0.1%.

GARCH Estimation II

$$\varepsilon_t = Z_t \sigma_t, \quad Z_t \sim N(0,1)$$

$$\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \varepsilon_{t-1}^2$$

Coefficients	Estimates	Standard	Ljung-Box
		deviation	test statistic
ω	5.32 <i>e</i> – 05	2.25 <i>e</i> – 05	2.37*
α_1	1.20e - 01	2.79e - 02	4.32***
$_{-}$	8.32e - 02	3.99e - 02	20.85***

Table 7: Estimation result of ARIMA(2,0,2)-GARCH(1,1) model. * represents significant level of 5% and * * * of 0.1%.

GARCH Estimation II - ctd

 \odot With no significant correlations for any lag, GARCH(1,1) is sufficient enough to explain the heteroskedasticity effect.

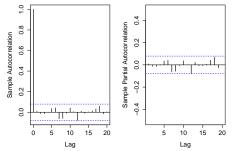


Figure 10: The ACF and PACF of squared ARIMA(2,0,2) residuals from 01/08/2014 to 06/04/2016.

Econometric Analysis

GARCH Model Residual

- The small p-value rejects the null hypothesis that the residuals are drawn from the normal distribution.
- Sample data exhibits leptokurtosis.

Model	Kolmogorov distance	<i>p</i> -value
ARIMA-GARCH	0.50	2.86 <i>e</i> – 10

Table 8: Test of model residuals of ARIMA(2,0,2)-GARCH(1,1) process.

Q econ_garch

GARCH Model Residual - ctd

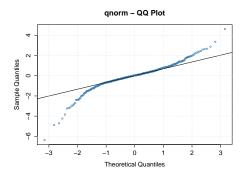


Figure 11: The QQ plots of model residuals of ARIMA-GARCH process.

Q econ garch

t-GARCH Estimation

Coefficients	Estimates	Standard deviation	T test
ω	8.39 <i>e</i> — 05	5.45 <i>e</i> — 05	1.54
α_1	2.82e - 01	1.46e - 01	1.93 [•]
eta_{1}	7.90e - 01	6.12e - 02	12.91***
ξ	2.58e + 00	3.62e - 01	7.11***

Table 9: Estimation result of ARIMA(2,0,2)-t-GARCH(1,1) model. • represents significant level of 10% and *** of 0.1%.

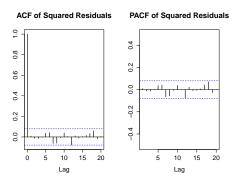


Figure 12: The ACF and PACF plots for model residuals of ARIMA(2,0,2)-t-GARCH(1,1) process. \bigcirc econ_tgarch

t-GARCH Model Residual

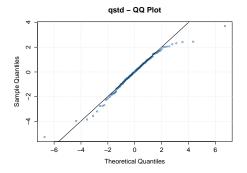


Figure 13: The QQ plots of model residuals of ARIMA-*t*-GARCH process. Q econ tgarch

EGARCH Model

- The introduced GARCH model successfully solve the problem of volatility clustering, but cannot capture the leverage effect.
- The exponential GARCH (EGARCH) model with standard innovations,

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$Z_{t} \sim N(0,1)$$

$$\log(\sigma_{t}^{2}) = \omega + \sum_{i=1}^{p} \beta_{i} \log(\sigma_{t-i}^{2}) + \sum_{j=1}^{q} g_{j}(Z_{t-j})$$

with the condition that

$$g_{j}(Z_{t}) = \alpha_{j}Z_{t} + \phi_{j}(|Z_{t-j}| - \mathsf{E}|Z_{t-j}|), \quad j = 1, 2, \dots, q$$

t-EGARCH Estimation

- \Box Fit a EGARCH(1,1) model with student t distributed innovation term.
- ☐ The estimation results of the ARIMA(2,0,2)-t-EGARCH(1,1) model is,

Coefficients	Estimates	Standard	Ljung-Box
		deviation	test statistic
ω	9.91e - 05	4.75 <i>e</i> – 05	2.08*
α_1	1.65e - 01	3.72e - 02	4.45*
β_1	8.07e - 02	8.24e - 02	0.98
ϕ_1	6.51 <i>e</i> - 01	8.20 <i>e</i> - 02	7.94*

Table 10: Estimation result of ARIMA(2,0,2)-t-EGARCH(1,1) model. * represents significant level of 5% and * * * of 0.1%.

t-EGARCH Model Residual

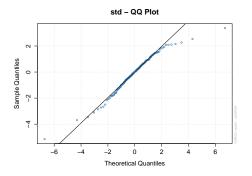


Figure 14: The QQ plots of model residuals of ARIMA-*t*-EGARCH process. Q econ tgarch

GARCH Model Selection

GARCH models	Log likelihood	AIC	BIC
GARCH(1,1)	1305.355	-4.239	-4.210
t-GARCH(1,1)	1309.363	-4.249	-4.213
t-EGARCH(1,1)	1305.142	-4.235	-4.199

Table 11: Comparison of the variants of GARCH model.
☐ econ_tgarch

MGARCH Model

○ Consider the error term ε_t with $\mathsf{E}(\varepsilon_t) = 0$, and conditional covariance matrix H_t is $(d \times d)$ positive definite,

$$\varepsilon_t = H_t^{\frac{1}{2}} \eta_t$$

 $H_t^{\frac{1}{2}}$ can be obtained by Cholesky factorization of H_t .

$$\mathsf{E}(\eta_t) = 0$$
 $\mathsf{Var}(\eta_t) = \mathsf{E}(\eta_t \eta_t^\top) = \mathcal{I}_d$

with \mathcal{I}_d is the identity matrix with order of d.

DCC-GARCH Model

- Different specification of H_t yields various parametric formulations: VEC, BEKK, CCC, DCC etc.
- ☑ Dynamic Conditional Correlation (DCC) model: conditional correlation ρ_{ij} between the *i*-th and *j*-th component is the *ij*-th element of the matrix P_t

$$H_t = D_t P_t D_t$$

$$P_t = (\mathcal{I} \odot \mathcal{Q}_t)^{-\frac{1}{2}} \mathcal{Q}_t (\mathcal{I} \odot \mathcal{Q}_t)^{-\frac{1}{2}}$$

with

$$Q_t = (1 - a - b)S + a\varepsilon_{t-1}\varepsilon_{t-1}^{\top} + bQ_{t-1}$$

- ▶ The diagonal matrix D_t is the conditional variance matrix.
- \triangleright S is unconditional matrix of ε_t

DCC-GARCH Model Estimation

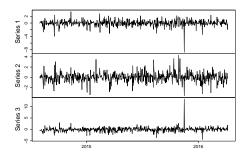


Figure 15: The standard error of DCC-GARCH model, with CRIX(upper), ECRIX (middle) and EFCRIX(lower).

 ○ All the estimated parameters are statistically significant except for the constant terms,

$$\begin{array}{rcl} \sigma_{CRIX,t}^2 & = & 0.123\varepsilon_{CRIX,t-1}^2 + 0.832\sigma_{CRIX,t-1}^2 \\ \sigma_{ECRIX,t}^2 & = & 0.123\varepsilon_{ECRIX,t-1}^2 + 0.832\sigma_{ECRIX,t-1}^2 \\ \sigma_{EFCRIX,t}^2 & = & 0.124\varepsilon_{EFCRIX,t-1}^2 + 0.831\sigma_{EFCRIX,t-1}^2 \end{array}$$

$$Q_t = (1 - 0.268 - 0.571)S + 0.268\varepsilon_{t-1}\varepsilon_{t-1}^{\top} + 0.571Q_{t-1}$$

 \Box The unconditional covariance matrix S,

$$S = \left(\begin{array}{ccc} 0.994 & 0.994 & 0.994 \\ 0.994 & 0.994 & 0.993 \\ 0.994 & 0.993 & 0.994 \end{array}\right)$$

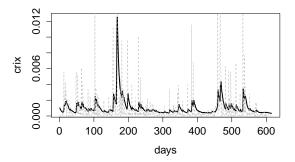


Figure 16: The estimated volatility (black) and realized volatility (grey) using DCC-GARCH model, for example CRIX. Q econ_ccgar Econometric Analysis

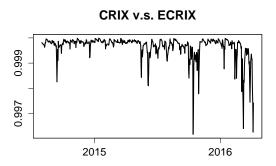


Figure 17: The dynamic autocorrelation between three CRIX indices: CRIX, ECRIX and EFCRIX estimated by DCC-GARCH model.

© econ_ccgar Econometric Analysis

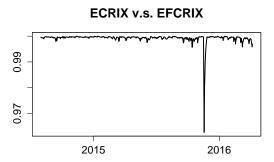


Figure 18: The dynamic autocorrelation between three CRIX indices: CRIX, ECRIX and EFCRIX estimated by DCC-GARCH model.

© econ_ccgar Econometric Analysis

DCC-GARCH Model Diagnostics

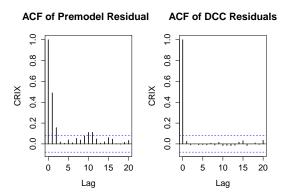


Figure 19: The comparison of ACF between premodel squared residuals and DCC squared residuals, for example CRIX.

DCC-GARCH Model Diagnostics - ctd

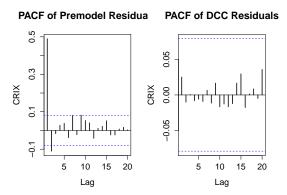


Figure 20: The comparison of PACF between premodel squared residuals and DCC squared residuals, for example CRIX. Q econ_ccgar Econometric Analysis

Nutshell — 6-1

GARCH Option Pricing Model

- Option pricing models
 - Black-Scholes model
 - ► GARCH models: superior in describing asset return dynamics.
- - a closed form expression for European option prices
 - GARCH models with Gaussian innovations

HN model

 $\hfill \Box$ In the HN model ,the asset return dynamic under the risk neutral measure $\hfill \mathbb{Q}$ is,

$$\log\left(\frac{S_t}{S_{t-1}}\right) = r - \frac{\sigma_t^2}{2} + \sigma_t Z_t$$

$$\sigma_t^2 = \omega_{hn} + \beta_{hn} \sigma_{t-1}^2 + \alpha_{hn} (Z_{t-1} - \gamma_{hn} \sigma_{t-1})^2$$

- r is risk-free interest rate
- \triangleright Z_t is a standard Gaussian innovation
- ▶ Risk neutral GARCH parameter: $\theta_{hn} = \{\omega_{hn}, \beta_{hn}, \alpha_{hn}, \gamma_{hn}\}$
- \triangleright S_t is the return to estimate.

HN model - ctd

$$C_{t} = \exp(-r\tau)f_{hn}(1)\left[\frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \mathcal{R}\left\{\frac{K^{-i\phi}f_{hn}(i\phi + 1)}{i\phi f_{hn}(1)}\right\} d\phi\right]$$
$$- \exp(-r\tau)K\left[\frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \mathcal{R}\left\{\frac{K^{-i\phi}f_{hn}(i\phi)}{i\phi}\right\} d\phi\right]$$

- \triangleright $\mathcal{R}\{\}$ denotes the real part of a complex number
- $f_{hn}(\phi)$ is the conditional moment generating function at time t

$$f_{hn}(\phi) = \mathsf{E}_{\mathbb{Q}}\left[\exp\left\{\phi\log(S_t)\right\} \mid \mathcal{F}_t\right] = S_t^{\phi}\exp(A_t + B_t\sigma_{t+1}^2)$$

HN model - ctd

- ☐ The coefficients A_t and B_t are computed backward starting from the terminal condition $A_T = B_T = 0$.

$$A_{t} = A_{t+1} + \phi r + B_{t+1}\omega_{hn} - \frac{1}{2}\log(1 - 2\alpha_{hn}B_{t+1})$$

$$B_{t} = \phi\left(\gamma_{hn} - \frac{1}{2}\right) - \frac{\gamma_{hn}^{2}}{2} + \beta_{hn}B_{t+1} + \frac{1/2(\phi - \gamma_{hn})^{2}}{1 - 2\alpha_{hn}B_{t+1}}$$

Nutshell 6-5

Nutshell

- ARIMA model is implemented for removing the intertemporal dependence.
- Volatility models such as ARCH, GARCH and EGARCH are applied to eliminate the effect of heteroskedasticity.
- DCC-GARCH(1,1) exhibits time varying covariances between three CRIX indices.
- Outlook: GARCH option pricing model, eg. HN GARCH model.

The Econometrics of CRIX

Shi Chen Wolfgang Karl Härdle Cathy Chen TM Lee Bobby Ong

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

References — 7-1

References

- Cigarette trading in postwar Germany, Bundesarchiv, Bild 183-R79014 / CC-BY-SA.
- The original uploader was DickClarkMises English Wikipedia / CC BY-SA 3.0.
- Franke, J., Härdle, W. K. and Hafner, C. M. Statistics of Financial Markets: an Introduction. 4th ed., Springer Verlag, Berlin Heidelberg, 2015.
- Barone-Adesi, G., Engle, R. F. and Mancini., L. A GARCH option pricing model with filtered historical simulation

Review of Financial Studies 21.3 (2008): 1223-1258.

References - 7-2

References

Namilton, J. D.

Time series analysis.

Princeton university press Princeton, 1994.

Lütkepohl, H.

New introduction to multiple time series analysis Springer Science & Business Media, 2005.

Rachev, S. T., Mittnik, S., Fabozzi, F. J., Focardi, S. M., and JaÂsić, T.

Financial econometrics: from basics to advanced modeling techniques

John Wiley & Sons, volume 150, 2007.

Appendix — 8-1

COGARCH Model

- Irregularly spaced data: continuous-time GARCH model.
- \Box The GARCH(1,1) model diffusion limit satisfies,

$$dG_t = \sigma_t dW_t^{(1)}$$

$$d\sigma_t^2 = \theta(\gamma - \sigma_t^2) + \rho \sigma_t^2 dW_t^{(2)}$$

- ▶ G_t is the log return r_t to estimate.
- $\left\{ W_t^{(1)} \right\}_{t \geq 0} \text{ and } \left\{ W_t^{(2)} \right\}_{t \geq 0} \text{ are two independent Brownian motions.}$
- \blacktriangleright θ , γ and ρ are parameters.

