Risk profile clustering strategy in portfolio diversification

Cathy Yi-Hsuan Chen Wolfgang Karl Härdle Alla Petukhina

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de

Diversification

It is the part of a wise man to keep himself today for tomorrow, and not venture all his eggs in one basket (Don Quixote, M. Servantes)

OR

Put all your eggs in the one basket and WATCH THAT BASKET (Pudd'nhead Wilson, M. Twain)?

TEDAS with Y = S&P 500

Figure 1. Cumulative portfolio wealth comparison: **TEDAS 1**, **TEDAS 3**, **TEDAS 2**, **RR**, **PESS**, S&P 500 buy & hold; X = hedge funds' indices' returns matrix

Challenges

- Risk-management challenges
 - Asset classes
 - Choice of risk measure
 - Liquidity issue
- Statistical challenges
 - Large assets' universe
 - Assets clustering

Objectives

- Improvement of portfolio diversification
- Risk-profile based consensus-way to detect assets' classes

Outline

- 1. Motivation \checkmark
- 2. Methodology
- 3. Data
- 4. Empirical Results
- 5. Outlook
- 6. Technical details

Methodology

- 1. Construct risk profiles of assets (based on annual data)
 - CAPM **b**
 - Volatility
 - Skewness
 - Kurtosis
 - Value-at-Risk 5%
 - Expected Shortfall 5% Details

Portfolio construction

Methodology

- 2. Cluster the assets (2-15 clusters)
 - Partitioning algorithms
 - k-means Details
 - ► FUZZY C-means
 - C-Medoids
 - Hierarchical algorithms
 - Agglomerative hierarchical clustering
- 3. Choose portfolio constituents from every cluster
 - Maximum Sharpe ratio
 - Random selection

▶ Details

Methodology

- 4. Portfolio allocation
 - 1/n rule
 - Mean-variance portfolios (Markowitz rule)
- 5. Rebalancing of portfolios
 - Every period t based on t -1 clusters-detection and covariance matrix
 - Transaction costs are 1% of portfolio value

North American equity

- Daily data
 - STOXX North America 600 index
 - 435 593 stocks from STOXX North America 600 index as on 20160101
- Span: 19980101 20151231 (18 years)
- Source: Datastream

Risk profile communities: 3 agglomerative hierarchical clusters

Portfolios' performance

Number	k maana	Fuzzy	C modeide	Hierarchical
of clusters	k-means	C-means	C-medolas	clustering
2	3.8488	3.6062	7.0494	4.7722
3	2.1883	0.7723	3.8328	4.8754
5	2.3127	2.1768	3.1574	32.2337
7	3.3336	1.3769	4.5291	11.9582
9	9.7372	2.5469	2.9247	8.6865
11	3.4709	3.1204	2.5753	4.6962
13	2.9199	2.7403	2.4043	4.7678
15	4.2518	3.1997	2.4624	4.8438

Table 1. 1/n portfolios cumulative return

Portfolios' performance

Number	k means	Fuzzy	C modoide	Hierarchical
of clusters	K-means	C-means	C-medolds	clustering
2	1.1485	1.3903	0.9618	1.1857
3	1.5374	1.2923	2.9060	1.5435
5	4.9130	5.5700	1.2583	9.6457
7	17.4741	13.1557	1.7954	34.9652
9	1.7550	3.1684	2.6919	1.4887
11	1.2773	1.5133	1.9223	1.3254
13	2.2544	2.6394	2.9076	4.1655
15	3.4324	5.9887	10.3958	3.2033

Table 2. Markowitz-portfolios cumulative return

Risk profile communities vs size and industry

Risk profile communities vs size and industry

k-means clusters' portfolios

Figure 1. Cumulative portfolio wealth comparison (Distance measure: squared Euclidean): Black - Buy&hold STOXX600 NA(solid), Markowitz (dashed), 1/n (doted)

FUZZY C-means clusters' portfolios

Figure 2. Cumulative portfolio wealth comparison: Black - Buy&hold STOXX600 NA(solid), Markowitz (dashed), 1/n (doted)

C - medoids clusters' portfolios

Figure 3. Cumulative portfolio wealth comparison (Distance measure: squared Euclidean): Black - Buy&hold STOXX600 NA(solid), Markowitz (dashed), 1/n (doted)

Hierarchical clusters' portfolios

Figure 4. Cumulative portfolio wealth comparison (Distance measure: Euclidean, Agglomeration method: weighted): Black - Buy&hold STOXX600 NA(solid), Markowitz (dashed), 1/n (doted)

Best Performing Methods and Distances

Algo	Euclidean	Sq. Euclid.	Cityblock	Minkowski
Single	19.4857	9.9379	30.9323	19.4857
Complete	24.5083	13.6496	10.7680	24.5084
Average	20.9679	36.8007	19.5127	20.9679
Weighted	16.5012	34.9651	17.0920	16.5012
Centroid	27.1234	83.1752	19.7400	27.1234
Median	11.6537	7.7195	29.8658	11.6537
Ward	19.1667	8.3456	17.6150	19.1667

Table 3. Best performing agglomeration Method and Distances (Markowitz portfolios, Maximum Sharpe portfolio selection)

Best Performing Methods and Distances

Algo	Euclidean	Sq. Euclid.	Cityblock	Minkowski
Complete	19.3	11.0	9.8	9.8
Average	16.2	17.8	17.7	17.8
Weighted	16.9	47.6	36.2	49.3
Centroid	16.8	46.7	28.9	188.5
Median	16.3	43.2	28.9	34.8
Ward	7.8	25.8	27.9	55.6

Table 4. Best performing agglomeration Method and Distances (Markowitz portfolios, Random portfolio selection)

Portfolios' portraits

Year	1998	1999	2000	2001	2002	2003
W_1	0.2666	0.1892	0.4598	0	0	0.0028
W_2	0.5252	0.5806	0.2210	0.4901	0.1066	0
W_3	0.2082	0.0022	0	0.0123	0	0.2251
W_4	0	0.2281	0	0.3914	0.0003	0.6186
W_5	0	0	0	0	0.8931	0
W_6	0	0	0.3193	0.1061	0	0.1271
W_7	0	0	0	0	0	0.0264

Table 5. Weights of clusters in Markowitz portfolio (Distance measure: squared Euclidean, agglomeration method: weighted)

Portfolios' portraits

Year	1998	1999	2000	2001	2002	2003
ES_1	-0.0729	-0.0515	-0.0933	-0.1459	-0.1992	-0.0844
ES_2	-0.0335	-0.0792	-0.0918	-0.0674	-0.1441	-0.0698
ES_3	-0.0300	-0.1229	-0.1975	-0.1580	-0.0367	-0.0183
ES_4	-0.0753	-0.0964	-0.1955	-0.0900	-0.0434	-0.0169
ES_5	-0.1079	-0.0659	-0.0697	-0.0525	-0.0478	-0.1101
ES_6	-0.0401	-0.1531	-0.0208	-0.0525	-0.1794	-0.1099
ES ₇	-0.0641	-0.0443	-0.0526	-0.0856	-0.1925	-0.0316

Table 6. Expected shortfalls of stocks-constituents of Markowitz portfolios

k - means clusters' random portfolios

Figure 5. Average cumulative return over 100 randomly selected portfolios: 1/n portfolios (left), Markowitz portfolios (right), Black - STOXX600 NA

FUZZY C - means clusters' random portfolios

Figure 6. Average cumulative return over 100 randomly selected portfolios: 1/n portfolios (left), Markowitz portfolios (right), Black - STOXX600 NA

Hierarchical clusters' random portfolios

Figure 7. Average cumulative return over 100 randomly selected portfolios: 1/n portfolios (left), Markowitz portfolios (right), Black - STOXX600 NA

Validation of partition: Silhouette width

▶ Details

Figure 8. k-means, FUZZY c-means, Hierarchical and C-medoids clusters' portfolios

Validation of partition: Calinski-Harabasz criterion

▶ Details

Figure 9. k-means, FUZZY c-means, Hierarchical and C-medoids clusters' portfolios

Validation of partition: Davies-Bouldin index

▶ Details

Figure 10. k-means, FUZZY c-means, Hierarchical and C-medoids clusters' portfolios

Conclusion

- Improvement of portfolio diversification
 - outperforms benchmarks in out-of-sample framework
- Risk-profile clustering strategy
 - dimension reduction of assets' universe
 - multiple risk measures
 - hierarchical clustering portfolios demonstrate best performance

Outlook

- Other datasets
 - Mutual funds
 - Hedge funds
- Other clustering methods
- Other risk measures

6-1

Value at Risk (VaR)

- Portfolio loss X
 - Given pdf f(x) and cdf F(x)
- Value at Risk

$$VaR_{\alpha} = x_{\alpha} = F^{-1}(\alpha) \tag{1}$$

Expected shortfall

Let L_i , $i \in \{1, ..., t\}$, be a (continuous) series of portfolio losses and q_{θ} the θ -quantile of these losses

$$\mathsf{ES}_t = \mathsf{E}[L_t | L_t > q_\theta] \tag{2}$$

k - means Clustering

- \odot Fix k Clusters a priori
- \odot Assign observations to cluster *j* with mean \overline{x}_j
- Computationally hard/iterative
- Standard Algorithms do not yield unique allocation
- \Box time investment $\mathcal{O}(n^{\rho k+1} \log n)$

k - means Clustering

Minimize the within cluster sum of squares w.r.t. $S = \{S_1, \ldots, S_k\}, \bigcup_{j=1}^k S_j = \{1, 2, \ldots, n\}$:

$$\hat{\mathcal{S}} = \underset{\mathcal{S}}{\operatorname{argmin}} = \sum_{j=1}^{k} \sum_{i \in \mathcal{S}_j} ||x_i - \mu_j||_2^2$$
(3)

The k - means standard algorithm is iterative starting from random partitions/points.

Standard Algorithm

Fix an initial set
$$\{\mu_j^{(t)}\}_{j=1}^k, t = 1$$

Assign: $\hat{j}(i) = \underset{j}{\operatorname{argmin}} ||x_i - \mu_j^{(t)}||^2$
 x_i belongs then to cluster $\hat{j}(i)$ resulting in (new) partition

$$\bigcup_{j=1}^{k} \mathcal{S}_{j}^{(t)} = \{1, \ldots, n\}$$

Update:
$$\mu_j^{(t+1)} = \left(\#\mathcal{S}_j^{(t)}\right)^{-1} \sum_{i \in \mathcal{S}_j^{(t)}} x_i$$

Iterate: assign, update until convergence.

Back to "Methodology"

FUZZY c-means clustering (FCM)

Jim Bezdek 1981

FCM is a clustering method that allows each data point to belong to multiple clusters with varying degrees of membership.

- \odot Randomly initialise the cluster membership values, μ_{ij}
- Calculate the cluster centers

$$c_{j} = \frac{\sum_{i=1}^{D} \mu_{ij}^{m} x_{i}}{\sum_{i=1}^{D} \mu_{ij}^{m}}$$
(4)

FUZZY c-means clustering (FCM)

 \bigcirc Update μ_{ij} according to the following

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{N} \left(\frac{||x_i - c_j||}{||x_i - c_k||}\right)^{\frac{2}{m-1}}}$$
(5)

 \odot Calculate the objective function, J_m

$$J_m = \sum_{i=1}^{D} \sum_{j=1}^{N} \mu_{ij}^m ||x_i - c_j||^2$$
(6)

☑ Iterate: assign, update until convergence.

Hierarchical Algorithms, Agglomerative Techniques

1.Construct the finest partition, i.e. each point is one cluster.

2.Compute the distance matrix \mathcal{D} .

DO

3. Find the two clusters with the closest distance.

4. Unite the two clusters into one cluster.

5.Compute the distance between the new groups and obtain a reduced distance matrix \mathcal{D} .

UNTIL all clusters are agglomerated.

Agglomerative Techniques

After unification of P and Q one obtains the following distance to another group (object) R

 $d(R, P + Q) = \delta_1 d(R, P) + \delta_2 d(R, Q) + \delta_3 d(P, Q) + \delta_4 |d(R, P) - d(R, Q)|$

 δ_i - weighting factors

Denote by $n_P = \sum_{i=1}^n I(x_i \in P)$ number of objects in group **P**

Agglomeration methods

Name	δ_1	δ_2	δ_3	δ4
Single linkage	1/2	1/2	0	-1/2
Complete linkage	1/2	1/2	0	1/2
Average linkage (unweighted)	1/2	1/2	0	0
Average linkage (weighted)	$\frac{n_P}{n_P + n_Q}$	$\frac{n_Q}{n_P + n_Q}$	0	0
Centroid	$\frac{n_P}{n_P + n_O}$	$\frac{n_Q}{n_P + n_Q}$	$-\frac{n_P n_Q}{(n_P+n_Q)^2}$	0
Median	1/2	1/2	-1/4	0
Ward	$\frac{n_R + n_P}{n_R + n_P + n_Q}$	$\frac{n_R + n_Q}{n_R + n_P + n_Q}$	$-\frac{n_R}{n_R+n_P+n_Q}$	0

where $n_P = \sum_{i=1}^{n} \mathbf{I}(x_i \in P)$ denotes the number of objects in group P.

Back to "Methodology"

Distance Measures

Distance	d(x, y)
Euclidean	$\ x - y\ (L_2 - \text{Metric})$
Maximum	$max_i x_i - y_i (L_{\infty} - Metric)$
Manhattan	$\sum_{i} x_i - y_i $ (L ₁ -Metric)
Canberra	$\sum_{i} \frac{ x_i - y_i }{ x_i + y_i }$
Minkowski	$\ x - y\ _p$

Distance Measures

Figure Map of Mannheim around 1800

Source: http://historic-cities.huji.ac.il

Markowitz rule

Log returns $X_t \in \mathbb{R}^p$:

$$\min_{w_t \in \mathbb{R}^p} \quad \sigma_{P,t}^2(w_t) \stackrel{\text{def}}{=} w_t^\top \Sigma_t w_t$$
s.t.
$$\mu_{P,t}(w_t) = r_T, \qquad (7)$$

$$w_t^\top \mathbf{1}_p = \mathbf{1},$$

$$w_{i,t} \ge \mathbf{0}$$

where r_T "target" return, $\Sigma_t \stackrel{\text{def}}{=} E_{t-1}\{(X_t - \mu)(X_t - \mu)^{\top}\}$ Back to "Methodology"

C - medoids

C-medoids clustering is related to the k-means. Both attempt to minimize the distance between points labeled to be in a cluster and a point designated as the center of that cluster. In contrast to the k-means, C-medoids chooses datapoints as centers (medoids) and works with an arbitrary matrix of distances.

Back to "Results"

Silhouette Value

The silhouette value for each point is a measure of how similar that point is to points in its own cluster, when compared to points in other clusters. The silhouette value for the i-th point, S_i , is defined as

$$S_i = (b_i - a_i)/max(a_i, b_i)$$

where a is the average distance from the i-th point to the other points in the same cluster as i b is the minimum average distance from the i-th point to points in a different cluster, minimized over clusters

Back to "Results"

Calinski-Harabasz criterion

The Calinski-Harabasz criterion is sometimes called the variance ratio criterion (VRC). The Calinski-Harabasz index is defined as

$$VRC_k = \frac{SS_B}{SS_W} \cdot \frac{N-k}{k-1}$$

where *SSB* is the overall between-cluster variance, *SSw* is the overall within-cluster variance, *k* is the number of clusters, *N* is the number of observations

Back to "Results"

Davies-Bouldin Criterion

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-cluster distances

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \{D_{i,j}\}$$

where $D_{i, j}$ is the within-to-between cluster distance ratio for the *i*-th and *j*-th clusters.

$$\{D_{i,j}\} = \frac{\bar{d}_i + \bar{d}_j}{d_{i,j}}$$

di/dj are average distance between each point in the *i*-th/*j*-th cluster and centroid of the *i*-th/*j*-th cluster *di,j* is the Euclidean distance between the centroids of the *i*-th and *j*-th clusters.

Back to "Results"