# **Clustering SFB Abstracts**

Larisa Adamyan Linxi Wang Kirill Efimov Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics International Research Training Group 1792 Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de irtg1792.hu-berlin.de







#### **Topic** extraction

# Find a cluster structure in the abstracts of SFB papers Compare it with *JEL* or *project codes*

| Sonderforschu<br>Collaborative F    | ungsbe<br>Research ( | e <mark>reich 649: Öко</mark> ло<br>Center 649: Есоломіс Ris               | MISCHES RI                                                    | ISIKO      |            | σ                                   | t      | Camula P | A LIN A |
|-------------------------------------|----------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|------------|------------|-------------------------------------|--------|----------|---------|
| About the CRC 64<br>Publications    | Search               | cussion Papers                                                             |                                                               |            | all years  | 0                                   | Search |          |         |
| Awards<br>Events<br>Projects        | Number               | Leave blank to show all discussion papers                                  |                                                               |            |            |                                     |        |          |         |
| Gender equality<br>Guests<br>People | 2016-<br>059         | Dynamic credit default<br>swaps curves in a network<br>topology            | Xiu Xu, Cathy<br>Yi-Hsuan Chen<br>and Wolfgang<br>Karl Härdle | Code<br>B1 | 30.12.2016 | C32,<br>C51,<br>G17                 |        | load     | lets    |
| RDC<br>Quantnet                     | 2016-<br>058         | Multivariate Factorisable<br>Sparse Asymmetric Least<br>Squares Regression | Shih-Kang<br>Chao, Wolfgang<br>K. Härdle and<br>Chen Huang    | B1         | 29.12.2016 | C38,<br>C55,<br>C61,<br>C91,<br>D87 |        | <b>1</b> |         |

Figure 1: Papers on SFB website

# Outline

- 1. Motivation  $\checkmark$
- 2. Data Preparation
- 3. Adaptive Weights Clustering
- 4. True clustering structure
- 5. References

#### Data Extraction

#### ☑ Scrape SFB webpage with discussion papers

#### □ For each paper extract:

- Abstract
- Project code
- JEL Codes

☑ Store all the information in database on HU server

```
Data Preprocessing
```

```
Tokenize
```

- ☑ Transfer all letters to small ones
- ⊡ Remove punctuation, numbers, stopwords, special characters
- Lemmatize/stemming
- ☑ Remove words which occur only once

# Term-Document Matrix (TDM)

- ☑ Rows correspond to the documents
- Columns correspond to the terms
- Each cell represents frequency of a word in a document



Ot

# Term frequency- inverse document frequency (TF-IDF)

- ⊡ A weighting factor
- □ Reflects how important a word is to a document in a collection
- □ *i*-th document is presented as vector  $X_i = \{x_{ij}\}_{j=1}^d$ , where

$$x_{ij} = tf_{ij} \times idf_j, \qquad idf_j = \log \frac{1+n}{1+n_j} + 1.$$

- $tf_{ij}$ : frequency of term *j* in the document *i*
- *idf<sub>j</sub>* : inverse document frequency
- *n* : number of documents
- $n_j$ : number of documents which contain the term j.

#### True clustering structure

What to consider as true clustering structure?

Project codes

- represent project areas
- 5 project area (Individual and contractual answers to risks, Macroeconomic risk, Financial markets, Risk Data Center, Transfer projects)

#### JEL codes

- represent topics
- ► 17 JEL (Mathematical and quantitative methods, International economics, Financial economics, Business administration...)
- paper abstracts can have up to 5 JEL codes

# Comparison

- □ Adaptive Weights Clustering (AWC)
- K-means
  - minimize the objective function over partitions.
  - require to fix the number of clusters
  - produce only spherical clusters
- Cluto
  - > a software package for clustering high dimensional datasets
  - hierarchical clustering
  - require to fix the number of clusters
  - produce high quality clustering solutions in text clustering

#### Normalized Mutual Information NMI

True clustering structure C\* = {C<sub>m</sub>}<sup>M</sup><sub>m=1</sub>
Answer clustering structure C = {C<sub>l</sub>}<sup>L</sup><sub>l=1</sub>

$$NMI(C, C^*) = \frac{\sum_{ml} n_{ml} \log \frac{n_{ml}}{n_m n_l}}{\sqrt{\sum_m n_m \log \frac{n_m}{n} \cdot \sum_l n_l \log \frac{n_l}{n}}}$$

where  $n_{ml} = |C_m^* \cap C_l|$ ,  $n_m = |C_m^*|$ ,  $n_l = |C_l|$ .

Maximize NMI

#### Misweighting Error used in AWC

 $\Box$  True weights  $w_{ij}^*$ 

 $\odot$  Answer weights  $\hat{w}_{ij}$ 

$$e = \frac{\sum_{i \neq j} |\hat{w}_{ij}| \mathbb{1}_{(w_{ij}^*=0)} + \sum_{i \neq j} |1 - \hat{w}_{ij}| \mathbb{1}_{(w_{ij}^*=1)}}{\sum_{i \neq j} \mathbb{1}_{(w_{ij}^*=0)} + \sum_{i \neq j} \mathbb{1}_{(w_{ij}^*=1)}}$$

Rand index:

$$R = 1 - e$$

#### ⊡ Minimize *e*

### Adjusted Rand Index AdR

True clustering structure C\* = {C<sub>m</sub>}<sup>M</sup><sub>m=1</sub>
Answer clustering structure C = {C<sub>l</sub>}<sup>L</sup><sub>l-1</sub>

$$AdR(C, C^*) = \frac{\sum_{ml} \binom{n_{ml}}{2} - \sum_{m} \binom{n_{m}}{2} \sum_{l} \binom{n_{l}}{2} / \binom{n_{l}}{2}}{\frac{1}{2} (\sum_{m} \binom{n_{m}}{2} + \sum_{l} \binom{n_{l}}{2}) - \sum_{m} \binom{n_{m}}{2} \sum_{l} \binom{n_{l}}{2} / \binom{n_{l}}{2}}$$

⊡ Maximize AdR

#### K-means

- ☑ Project codes as true clustering structure
- ⊡ 50 runs for each K
- $\Box$  Try with PCA (number of components = 2, 5, 10)
- Best result without PCA
- $\odot$  Best result when K = 5



#### Cluto



Figure 3: 50 runs for each K. K = 3 best result

σt

AWC



Figure 4: left: plateau heuristics, right: AWC result for  $\lambda = 0.4$ 

σt

#### K-means

- □ JEL codes as true clustering structure
- ⊡ 50 runs for each K
- : Try with PCA (number of components = 2, 5, 10)
- Best result without PCA
- $\odot$  Best result when K = 3



#### Cluto



Figure 5: 50 runs for each K. K = 3 best result

σt

#### AWC

#### ☑ JEL codes as true clustering structure



Figure 6: Plateau heuristics

#### **AWC** Result



Figure 7: Result for  $\lambda = 0.5$  from plateau heuristics

**σ**t

# Cluster 1 found by AWC

⊡ 46% contain G: 'Financial economics'

 $\odot$  81% contain C: 'Mathematical and quantitative methods'

 $\odot$  Contains 86% of pairs {C, G}



Figure 8: size = word frequency, darker color - higher idf

Ot

# Cluster 2 found by AWC

⊡ 77% contain J: 'Labor economics'



Figure 9: size = word frequency, darker color - higher idf

# Cluster 3 found by AWC

⊡ 51% contain *D*: 'Microeconomics'

 $\odot$  54% contain C: 'Mathematical and quantitative methods'



Figure 10: size = word frequency, darker color - higher idf

#### Cluster 4 found by AWC

□ 73% contain E: 'Macroeconomics and monetary economics'



Figure 11: size = word frequency, darker color - higher idf

σt

# Cluster 5 found by AWC

- ⊡ 32% contain *R*: 'Urban, rural, and regional economic'
- $\odot$  24% contain Q: 'natural resource economics'
- $\odot$  40% contain C: 'Mathematical and quantitative methods'



# Cluster 6 found by AWC

⊡ 54% contain *I*: 'Health, education, and welfare'

- 80% contain C: 'Mathematical and quantitative methods'
- ⊡ 50% contain pairs {*I*, *C*}



# Conclusion

- ⊡ The best run of *k*-means among 50 runs for each  $2 \le k \le 30$  provides best AdR = 0.22 when k = 3
- □ CLUTO can provide partitioning with AdR = 0.32 (best result among 50 runs for k=3)
- : The best result of CLUTO for  $k \neq 3$  is AdR = 0.20
- AWC automatically finds meaningful cluster structure with AdR = 0.27

#### References

#### Steinhaus, H.

"Sur la division des corp materiels en parties." Bull. Acad. Polon. Sci 1.804 (1956): 801.

#### 🔋 Strehl, A. and Ghosh, J.

"Cluster ensembles a knowledge reuse framework for combining multiple partitions". Journal of machine learning research, 3, 583-617. (2002)



#### Lawrence, H. and Phipps, A.

"Comparing partitions". Journal of Classification (1985).



#### Karypis, G.

"CLUTO - a clustering toolkit".No. TR-02-017. MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE, (2002).

#### **Clustering SFB Abstracts**

Larisa Adamyan Linxi Wang Kirill Efimov Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics International Research Training Group 1792 Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de irtg1792.hu-berlin.de



