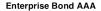
Jointly Modelling and Robust Forecasting High-Dimensional Yield Curves

Wolfgang K. Härdle Chen Huang Linlin Niu

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin Wang Yanan Institute for Studies in Economics Xiamen University http://lvb.wiwi.hu-berlin.de http://irtg1792.hu-berlin.de http://wise.xmu.edu.cn/english

Yield Curves Data



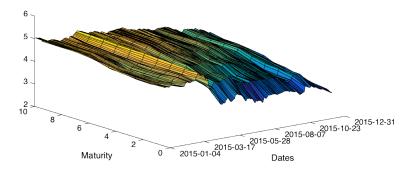


Figure 1: Daily yield curves of Chinese enterprise bond AAA in 2015. High-Dimensional Yield Curves Modelling —

Yield Curves Modelling

■ Based on economic theory

- market equilibrium: Vasicek model; CIR model
- no-arbitrage: derivative pricing under B-S framework
- ▶ affine-class: dynamic in maturities with time series technique

Goodness of fit and forecasting

- dynamic Nelson-Siegel model (Diebold and Li, 2006)
- other generalized N-S models

Dynamic Nelson-Siegel Model

Advantages

- ⊡ excellent fit to the term structure
- □ clear explanation on factors: level, slope and curvature
- estimation simplicity

Limitations

- specification issues
- ⊡ jointly modelling across bond types and credit ratings

Go beyond DNS

- Inigh-dimensional curves across types and ratings
- I flexible representation through high-dimensional B-splines
- ⊡ sparse latent factors
- □ robust estimation via LAD regression
- ☑ risky bonds with low credit ratings

Estimation Issues

- ⊡ estimate a high-dimensional coefficient matrix
- nuclear norm penalty
 - involve a convex optimization
 - lead to a low dimensional factor model
- SVD to identify factors and loadings
- multivariate factorisable quantile/expectile regression (Chao et al. 2015; 2016)

Objectives and Contributions

- jointly modelling and robust forecasting high-dimensional yield curves
- multivariate factorisable median regression (MFMR)
- ⊡ application for Chinese bond market
 - systemic liquidity and dispersion measure among curves
 - term structure and credit risk structure
 - ▶ in- and out-of-sample performance

Outline

- 1. Motivation \checkmark
- 2. Model and Estimation
- 3. Application with Chinese Yield Curve Data
- 4. Concluding Remarks

Model Specification

Y = (Y_{ij}) ∈ ℝ^{n×m}: multivariate curves

 m: the number of curves (across credit ratings and types)
 n: the length of observations (over time)

 {X_i}ⁿ_{i=1} ∈ ℝ^p: B-spline basis functions
 max{p, m} ≪ n while p, m → ∞ is allowed
 refer to Chao et al. (2016) for more assumptions

Model Specification

□ Linear sparse factor structure:

$$Y_{ij} = \sum_{k=1}^{r} \psi_{j,k} f_k(\boldsymbol{X}_i) + u_{ij}, \qquad (1)$$

where $f_k(\mathbf{X}_i)$ is the *k*th factor, *r* is the number of factors, $\psi_{j,k}$ are the factor loadings.

 \Box Factors are constructed by linear combination of **X**_i:

$$f_k(\boldsymbol{X}_i) = \boldsymbol{\varphi}_k^\top \boldsymbol{X}_i \tag{2}$$

High-Dimensional Yield Curves Modelling -

Model Specification

 \odot Substituting (2) into (1):

$$Y_{ij} = \boldsymbol{\gamma}_j^\top \boldsymbol{X}_i + u_{ij}, \qquad (3)$$

where
$$\pmb{\gamma}_j = \left(\sum_{k=1}^r \psi_{j,k} \varphi_{k,1}, \dots, \sum_{k=1}^r \psi_{j,k} \varphi_{k,p}
ight)^ op$$

: To estimate the coefficient matrix Γ , where γ_j is the *j*-th column of Γ

High-Dimensional Yield Curves Modelling -----

Estimation

 \boxdot Robust estimation on Γ via median regression

$$\widehat{\Gamma} = \arg\min_{\Gamma \in \mathbb{R}^{\rho \times m}} \left\{ (mn)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \left| Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{\cdot j} \right| + \lambda \|\Gamma\|_{*} \right\}$$
(4)

- nuclear norm $\|\Gamma\|_* = \sum_{j=1}^{\min(p,m)} \sigma_j(\Gamma)$, given the singular values of Γ : $\sigma_1(\Gamma) \ge \sigma_2(\Gamma) \ge \ldots \ge \sigma_{\min(p,m)}(\Gamma)$,
- # of nonzero singular values of Γ is # of factors: r
- smooth fast iterative shrinkage thresholding algorithm
- \blacktriangleright singular value decomposition on Γ

High-Dimensional Yield Curves Modelling -

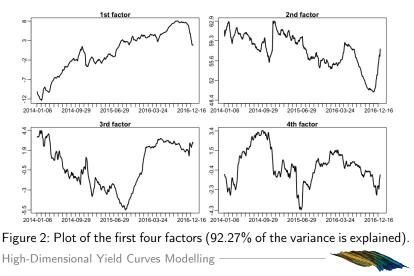
2-4

Data

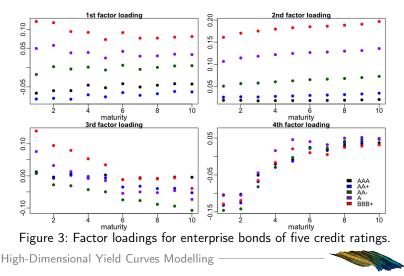
I daily yield spread in Chinese bond market

- ⊡ 180 spread curves
 - ▶ maturities of 1, 2, ..., 10 years
 - enterprise bonds (9 credit ratings), chengtou bonds (5 credit ratings), company bonds (4 credit ratings)
- ☑ 733 observations from 2014.01 to 2016.12
- ⊡ obtained from Wind Datafeed Service (WDS)

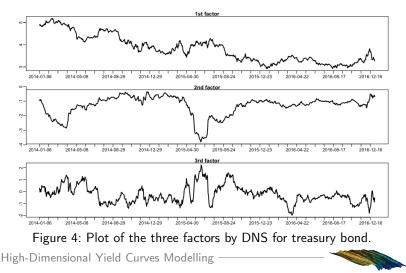
Factor Analysis



Factor Loadings



Three Factors by DNS (Treasury Bond)



Factor Analysis

• Factors interpretation:

- 1st: systemic liquidity or dispersion measure among curves -53.49%
- 2nd: level (credit risk) 18.95%
- ▶ 3rd: slope 14.42%
- 4th: curvature 5.41%

Alternative Approaches

Three factors DNS

$$Y_{i\tau} = f_{1i} + \left\{\frac{1 - \exp(-\lambda\tau)}{\lambda\tau}\right\} f_{2i} + \left\{\frac{1 - \exp(-\lambda\tau)}{\lambda\tau} - \exp(-\lambda\tau)\right\} f_{3i} + u_{i\tau},$$

where τ denotes the maturities (for a particular bond type and credit rating).

PCA

$$Y_{ij} = \sum_{k=1}^{r} \psi_{kj} f_{ki} + u_{ij},$$

where $f_{k.}^{\top} = \mathbf{Y} \gamma_k$, γ_k is the *k*-th eigenvector of Var(\mathbf{Y}). VAR is applied to model the dynamics in factors.

High-Dimensional Yield Curves Modelling

Fitting Performance

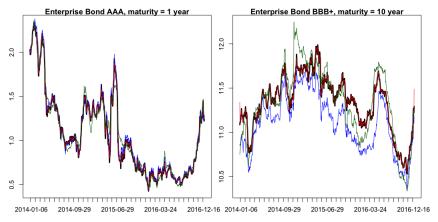


Figure 5: Fitted curves by MFMR, DNS, PCA, with real observations.

High-Dimensional Yield Curves Modelling

Fitting Performance - Whole Sample

		MFMR	DNS	PCA
Enterprise Bonds	AAA	1.92	5.19	6.56
	AA+	2.28	5.96	6.19
	AA-	2.84	7.69	10.53
	A	5.42	9.76	7.31
	BBB+	8.30	11.79	12.12
Chengtou Bonds	AAA	2.12	5.27	6.35
	AA+	2.61	6.00	6.04
	AA	2.96	6.67	6.16
	AA-	3.18	7.04	7.61
Company Bonds	AAA	2.45	5.89	8.33
	AA+	2.96	8.10	10.42
	AA	3.11	7.04	9.64
	AA-	4.14	7.15	9.30
avarage		3.50	7.31	7.95

Table 1: Fitting RMSE with the whole sample under different approaches, averaged over maturities. All numbers are of order 10^{-2} .

High-Dimensional Yield Curves Modelling -

In-Sample Fitting - Rolling Windows

		MFMR	DNS	PCA
Enterprise Bonds	AAA	1.53	4.92	4.95
	AA+	1.91	5.91	5.05
	AA-	2.80	8.01	5.88
	A	5.08	9.71	8.05
	BBB+	7.51	11.77	12.62
Chengtou Bonds	AAA	1.66	5.10	5.10
	AA+	2.08	6.09	5.82
	AA	2.37	6.94	5.19
	AA-	2.68	7.33	5.99
Company Bonds	AAA	1.92	6.10	5.70
	AA+	2.38	8.90	6.34
	AA	2.49	7.58	5.96
	AA-	3.63	6.58	8.57
avarage		3.03	7.40	6.47

Table 2: In-Sample RMSE with rolling windows (fixed width = 300), averaged over maturities. All numbers are of order 10^{-2} .

High-Dimensional Yield Curves Modelling -

Out-of-Sample Forecasting - Rolling Windows

		MFMR	DNS	PCA
Enterprise Bonds	AAA	3.26	5.83	8.07
	AA+	3.33	6.67	8.45
	AA-	3.50	9.15	9.98
	A	3.61	10.59	16.52
	BBB+	3.80	12.99	26.44
Chengtou Bonds	AAA	3.29	6.01	8.75
	AA+	3.42	6.79	10.88
	AA	3.43	7.68	9.42
	AA-	3.49	8.12	10.98
Company Bonds	AAA	3.82	7.09	9.04
	AA+	4.15	9.28	9.95
	AA	4.01	8.58	9.98
	AA-	4.12	8.29	17.85
avarage		3.59	8.30	11.94

Table 3: Out-of-Sample RMSE with rolling windows (fixed width = 300, one step ahead), averaged over maturities. All numbers are of order 10^{-2} . High-Dimensional Yield Curves Modelling

Concluding Remarks

- \boxdot jointly modelling high-dimensional spread curves
- multivariate factorisable regression with high-dimensional functional data
- □ latent risky factors systemic liquidity and dispersion measure
- ☑ robust forecasting outperforms DNS

Jointly Modelling and Robust Forecasting High-Dimensional Yield Curves

Wolfgang K. Härdle Chen Huang Linlin Niu

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin Wang Yanan Institute for Studies in Economics Xiamen University http://lvb.wiwi.hu-berlin.de http://irtg1792.hu-berlin.de http://wise.xmu.edu.cn/english

References

- Chao, S.-K., Härdle, W.K. and Yuan, M. (2015)
 Factorisable Sparse Tail Event Curves
 SFB 649 Discussion Paper 2015-034, 2015
- Chao, S.-K., Härdle, W.K. and Huang, C. (2016)
 Multivariate Factorisable Sparse Asymmetric Least Squares Regression
 SFB 649 Discussion Paper 2016-058, 2016

High-Dimensional Yield Curves Modelling

References

Diebold, F.X. and Li, C. (2006) Forecasting the Term Structure of Government Bond Yields Journal of Econometrics, 130, 337-364

Diebold, F.X. and Rudebusch, G.D. (2013) Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach Princeton University Press

High-Dimensional Yield Curves Modelling

