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Motivation

Many High-dim Regression Equations

[] Predictive graphical model or causal inference

[] Dimension reduction and effective prediction with LASSO
[J Joint penalty level over equations

[] Temporal and cross sectional dependence (time and space)

[J Individual and simultaneous inference on the coefficients
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Motivation 1-2

TENET
Tail-Event-driven NETwork Risk: Hardle et al. (2016)
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Figure 1: Financial risk network dynamics.

High-Dim Sparse Regression @



Motivation 1-3

Financial Risk Meter (FRM)

[] Averaged penalty levels in dynamic network analysis
(] Systemic risk level in the financial market over time
[J Simultaneous inference between sectors

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 2: FRM over time frm.wiwi.hu-berlin.de
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Motivation

LOB Network

Time-varying Limit Order Book Networks: Hardle et al. (2018)

22,06.2016

24062016

Figure 3: Plots of LOB networks from 22.06.2016-24.06.2016
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Motivation

Many High-dim Regression Equations

§/j7t:)<j—7:.,8})+€j7t, E€j7t)<j7t:0, _j:].,...,J7 t:].,

allowing for temporal and spatial dependency.

Example 1: Inference in high-dim system
_ 0 T 30 _
Yie = Xk tBj + X_k,tﬁj(_k) +¢ejt, EgieXe =0,

T 0
Xt = X 10k +Vikt, EvieXogr =0,

with the orthogonal moment conditions E¢; ;v = 0.
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Motivation 1-6

Many High-dim Regression Equations
Example 2: Large VAR
P
Yt - Z q)(/) Yt—/ + Et.
I=1

Example 3: Simultaneous equations systems
\/jvt = ijvt(;_? + Xt—l—/y_]o + 8j7t7
with the reduced form given by

Yt = Xjﬁj? + Ve, EvjeXe=0.
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Motivation 1-7

Many High-dim Regression Equations

Practical Examples: 1. Identification tests for large SVAR:
AYt == BYt_l + €4, Yt = DYt_l -+ Ut

External instruments are required for the identification of A (Stock
and Watson, 2012):

E(ejezie) # O,
E(ejrezje) = 0, forj #j.
Run LASSO of
Zj0 = U] 0 + €,
Vj ¢ are obtained from a large VAR reduced form regression.
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Motivation 1-8

Many High-dim Regression Equations

Practical Examples: 2. Cross-sectional Asset Pricing:

K

Yie=Bjo+ Y BuXikt + &t
k=1

Y;t is the excess returns for asset j, Xj. . are the factor returns and
one is interested in testing: Ho: Bjo =0,V =1,...,J.
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Motivation 1-9

Many High-dim Regression Equations

Practical Examples: 3. Network formation and spillover effects:
Yie = BiDje + D wiDie 7 Xje + e,
i#j

Y;t is the log output for firm j, D; . is the capital stock, Xj ¢
includes other covariates (log labor, log capital etc.). One is
interested in testing the spillover parameters w;;, Manresa (2013).
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Motivation 1-10

Effective Prediction with Sparsity

[ Exact sparsity (ES) assumption
|5JQ|0 =s;<s=o(n), j=1,...J
(] LASSO-penalized estimator of ﬂJQ
n \ K

- 1 .
Bi=arg min => (Y;.—X"B)’+5 > Bi[ Wik, Kj=dim(Xj,) <K,
pER'S M "=

where ) is the joint penalty, W, 's are the penalty loadings.
(] Prediction norm

18; - B;

def | 1 u T/5 2 1
o ES LB -]

t=1
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Motivation 1-11

Fundamental Results

(] Oracle error bounds of #;-penalized estimator: Bickel et al.
(2009), Belloni and Chernozhukov (2013)
[] Ideal penalty level - max of sum of high-dim random vectors
» Gaussian approximation and (block) multiplier bootstrap
» Chernozhukov et al. (2013), Zhang and Wu (2017)
[ Uniformly valid inference on target coefficients:

» Post-selection inference (IV or double selection): Belloni et al.
(2014, 2015)

» De-sparsified (de-biased) LASSO: Zhang and Zhang (2014),
Van de Geer et al. (2014)
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Motivation 1-12

Contributions

[ A very general time dependence measure (Wu, 2005)

[] Aggregation of the effects over equations

[ Easily implemented algo for effective estimation and inference
[ Simultaneous confidence region for joint test

[J Application: textual sentiment spillover effects
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Estimation and Theoretical Results 2-1

"Ideal" Choice of )\

[] Suppose we observe ¢ = Y — X; tﬁo,

ik def Zgj thk ts Jk - \/Var(s )
A(1—a) ¥ (1 - a) — quantile of 2cf _max \Sjk/\lljk\

where ¢ > 1,eg. c=11, aa=0.1.

[] Theoretically, characterize the rate of A\°(1 — «) by the tail
probability of Sj

(] Empirically, use Gaussian approx. or multiplier block bootstrap
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Estimation and Theoretical Results 2-2

Error Bounds for the Prediction Norm

Theorem 1
Suppose the uniform RE condition holds with probability
1 —o(1), then with ES:

]BJ *Bﬂj,pr < CA\O(1 - a)\f mkax\lljk, forallj=1,...,J, (1)

with probability 1 — a — o(1), where C depends on the [RE]
coefficients
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Estimation and Theoretical Results 2-3

Nagaev Type of Inequality

Theorem 2
Under @Z5) and @IZED, we have

K

X .€j.||d

P (2cv/nmax|Sj/Wi| > r) <Gnr Z'kwq“q
k=1 Jjk

—Cyr? ij
xp (5 ),
nl| Xk, 113

J
+CQZ

j=1

J
>
j=1
K
D e
k=1 25
(2)

where for ¢ > 1/2 — 1/q (weak dependence case), w, = 1; for
¢ < 1/2—1/q (strong dependence case), w, = n9/2~1-549,
Ci1, Gy, G5 are constants depending q and <.
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Estimation and Theoretical Results 2-4

Oracle Inequalities under \°(1 — «)

Corollary 3
Under @ZED and @EZED, given

A(1-0) 5 max (1K, 27 (108K )} 2V X, e (0K f)1/7).

~

additionally suppose holds with probability 1 — o(1), then with ES:
By~ e 5 CVamax W max {1025 2 0B(KS )21
j
5 s oK)
with probability 1 — a — o(1). x, <y, means there exists constant

C > 0 such that x,/y, < C.
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Estimation and Theoretical Results 2-5

Empirical Choices of \

[] Gaussian Approximation:
Q(1 — a) © 2cy/nd1{1 — a/(2JK)}
[ Multiplier Bootstrap: A(1 — «) selected by an algorithm

[] Dependency over time: groups the data into blocks and
resample the blocks
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Estimation and Theoretical Results 2-6

Gaussian Approximation
The Kolmogorov distance between two rv X and Y-

p(X,Y) = sup | P(|X]oo < 1) = P(|Y]oo < r)|.
reR

Thegrem 4 e N

Let X = vec{(Xjkeej,e)jk}, S = vec{ (S )} = n M2 0, X,

and define the aggregated over j and k, under
and , we have

p(D7IS,D'Z) -0,  asn— oo, (3)

where Z ~ N(0, Y 5), and X5 is the JK x JK long run

variance-covariance matrix of/:\,’vt, D is a diagonal matrix with the
square root of the diagonal elements of ¥ 3.
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Estimation and Theoretical Results 2-7

Gaussian Approximation

Corollary 5
Under the conditions of Theorem 4:

sup | P{max2c\f\5jk/ ik < Q1 —a)}—(1—a) =0, (4)

ae(0,1)

for sufficiently large n.
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Estimation and Theoretical Results 2-8

Algorithm for Multiplier Bootstrap

(1 1. LASSO for each equation

n

1
/Bj = arg mm 7Z(Y, )<Tt/8 J Z |ﬂjk|w_/k7
BER'S M
with \j = 2¢'v/n®~1(1 — o/ /(2K])), o/ =0.1, ¢ = 0.5,
Vo = \/Var(Xj €j,+), and &; ; are some preliminary estimates
of the errors.

[) 2. Keep &jr = Yjr — XJTtEJ and update W with & ;.
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Estimation and Theoretical Results 2-9

Algorithm for Multiplier Bootstrap

[ 3. Divide {¢;+} into I, blocks, each contains b, = n/I,
observations. A(1 — «) def QCﬁqu]_a), c>1, a=0.1, where

qgf]_a) is the (1 — «) quantile of max; x |Zj[,§]/\|fjk|, and
. 1 In ibp
Boiye oo e
=1 I=(i—1)by+1

where e; are drawn from i.i.d. N(0,1).
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Estimation and Theoretical Results 2-10

Multiplier Bootstrap for b)

Theorem 6 (Validity of Multiplier Bootstrap)
Under @D, @IZED, and assume ®pq . < 0o with g > 4,
b, = O(n") for some 0 < n < 1, let ZIE] o vec{(Zj[f])jk}, and

\Tl déf VeC{(ij)jk}, then

50 & sup |P(1218)) o < X, e) — P(|Z]ae < 1) — 0, as n — o0,
reR

sup | P(IS/ Vo < i) ) — (1— )] =0, as n — c.
ae(0,
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Estimation and Theoretical Results 2-11

Single Coefficient Estimation Procedure

[] Step 1[:]LASSO for Yj ¢ = X, t/B_jk + X J( ot 510(4() + &t
At
keep 3" y)
[] Step 2: LASSO for Xjy : = XJLk)’th(.J(fk) + V¢, keep the
residuals Vjx ¢ = Xji,r — Xj—(r,k)’ﬁj(—k)
[] Step 3: LAD regression of Y, — XJ.I_k)’tB\J[sz) on Xt using

N , o] ~
Vik,t as IV, finally achieve ﬁjk and 7
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Estimation and Theoretical Results 2-12
Uniform Bahadur Representation

Let Y (Zj ¢, Biks Jk) denote the score, where Z; ; = (Y., X;,) ",

hfk()<j(—k),t) ( /BJ k) V(= k)) ’ for (jv k) €G.
Theorem 7 o
Under let wie = B[ 200 Yi(Zies B )Y,

def
¢Jk i 866 E{wjk(zj,t757 ik }‘IB ﬂo we have

-1 A. o -1/2
(Jnll)aéG |\/EUJ'/< (/Bjk _/k n ZCJk t| =0 gn ) asn— oo

with probability 1 — o(1), where afk def d)J._kzwjk,

def _ def
Gt 5 g 0 (Zies B W), &0 % {log (e GI)YY2.
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Estimation and Theoretical Results 2-13

ClI for Individual Inference

() Ho: 8% =0
(1 CI by asymptotic normality:

B — Gjen1/2071(1 = a/2), B + Gun 120711 — /2)]
(1 Multiplier block bootstrap:

. 321_ go
v 1 ~h _  ib V(B —By)
> Th= 5 21 € 2o (i—1)byt Gts i = —gjk

~2 - o * * i
> [ﬁ[ I Gun Y2401 a2y J[k] 020G )] Famayz) s
the (1 —a/2) quantile of [T
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Estimation and Theoretical Results 2-14

Confidence Region (CR) for Simult.
Inference

[ Ho: B) =0,%(j,k) € G
] Define g (1 — «/2) as the (1 — «/2) quantile of
max(; kec | Til

[J Simultaneous confidence region: {3 € RI¢! : max(j k)ec Tjk <

q5(1 —a/2) and min(; yee Tik = —q5(1 — a/2)}
[J For each component (j, k) € G: C~Ij*k(a) =
B — Gin2q5(1 — a/2). B +Gun2q5(1 — a/2)
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Estimation and Theoretical Results 2-15

Consistency of the Bootstrapped CR

Corollary 8
Under @EZFTD, we have

sup | P(8% € Cly(a), Y(j, k) € G) — (1 —a)| = o(1), as n — oo,
ae(0,1)

with probability 1 — o(1).
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Simulation Study 3-1

Predictive Performance

DGP 1:

Yie=XL80 +cje, t=1....nj=1,...J

0 Xj.e € RK = N(0, ), with Sy, 4, = pll—kel, p= 0.5,
e KN, 1)

[ divide {1,..., K} evenly into blocks with fixed block size 5,
J(-)k =10 if k and j belong to one block and 0 otherwise

[J n =100, take 500 bootstrap replications
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Simulation Study 3-2

Predictive Performance

J=K=50 J=K=100 J=K =150
Prediction norm

Mean 0.89 0.84 0.79

Median 0.91 0.87 0.84
Euclidian norm

Mean 0.90 0.85 0.79

Median 0.89 0.85 0.81

Table 1: Prediction norm and Euclidean norm ratios (overall X relative to
single \;'s, mean or median over equations). Results are averaged over
100 repeats of simulations.
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Simulation Study 3-3

Predictive Performance

DGP 2:

Yt:q)Othl‘i’fh YteRK t:]-v"'vn‘/

[1 ®° has a block diagonal structure where the blocks are 5 x 5
matrices with all entries in each block equal ¢

H e "N(O, 1)

[J n = 100, take 500 bootstrap replications
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Simulation Study

Predictive Performance

¢ = 0.05 ¢ =0.15
Prediction norm
b — 4 Mean 0.88 0.85 0.76 1.05 1.04 1.02
n Median 0.97 0.96  0.95 1.05 1.04  1.02
b, = 10 Mean 0.89 084 075 1.08 1.06 1.04
Median  0.97 0.96 0.95 1.07 1.05  1.04
b — 20 Mean 0.89 0.85 0.75 1.10 1.06 1.05
n Median  0.97 0.96 0.95 1.09 1.06 1.05
b — 25 Mean 0.89 0.85 0.74 1.10 1.07 1.04
n Median  0.97 097 0.95 1.09 1.06 1.04
Euclidean norm
b — 4 Mean 0.84 079 057 0.99 0.96 0.94
n Median 1 1 1 1.00 1 1
b, = 10 Mean 0.84 079 056 0.98 0.95 0.92
Median 1 1 1 1.00 1 1
b, = 20 Mean 0.85 080 057 0.96 0.94 092
Median 1 1 1 1.00 1 1
b — 25 Mean 0.85 0.80 0.53 0.96 0.94 0.92
n Median 1 1 1 1.00 1 1

3.4

Table 2: Prediction norm and Euclidean norm ratios (overall A relative to

single A;'s, mean or median over equations).
High-Dim Sparse Regression
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Simulation Study 3-5

Inference Performance

Yj,t = ij,ta?+xg—ﬂjo+€j,tv dj7t - X:’YJQ—i_\/j,tv t= 1a ceey Ny J: 17 s

] aJQ:aO forj=1,...,J

[J X; € RK follow VAR(1) with normal errors, ¢; ; follow AR(1),
ii.d.

vi+ ~ N(0,1), n= 100
[ Block diagonal structure in {B } and {'ij}

» divide {1,..., K} evenly into blocks with fixed block size 5
> if k and j belong to one block

0 = 0.5/(k — | ] x5),0% = 0.25(k — | £] x 5)
High-Dim Sparse Regression @




Simulation Study

Power Curve
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Figure 4: Average rejection rate of Hé : aj-) = 0 over j for individ. test and

Hig

Ho :af = --- = aY = 0 for simult. test (nominal level = 0.05).
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Empirical Analysis: Textual Sentiment Spillover Effects 4-1

Data Source

Textual sentiment effect on financial variables
Financial news articles on NASDAQ community platform

Unsupervised learning approach to extract sentiment variable

OO on

Sentiment words lists - BL option lexicon and LM financial
sentiment dictionary

B

Bullishness indicator based on the average proportion of
positive/negative words (Zhang et al. 2016)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-2

Data Source

[] 63 S&P 500 constituents stocks from 9 GICS sectors
[] Response: stock returns and volatilities

[1 Controls: S&P 500 index returns and CBOE VIX index
[ Daily data from January 2, 2015 to December 31, 2015

[ Spillover effects over individual stocks and sectors

High-Dim Sparse Regression @



Empirical Analysis: Textual Sentiment Spillover Effects 4-3

Model Setting

T T
fie = G+ By Bj+ 20 vj + rje-10) + €je,
or
2 T T 2
logoj, =¢j+ By B+ 2z v+ |Og0'j7t_1(5j + €j s

where the sentiment variables and control variables are included in
Bt = (Bl,t7 ey B_jyt)—l— and Zt.
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Empirical Analysis: Textual Sentiment Spillover Effects 4-4

Model Setting - ctd

[ Bullishness for stock j on day t with the related article /:

{1 +m1 -7 I(Posi s > Negi )}
{1 +m=13"" I(Posj+ > Negj¢)}

Bj: =

Pos; ¢, Neg; + are the average proportion of positive/negative
words based on the lexicon
(] Response variables

ri.e = log(Pf,) — log(P),
0%, =0.511(uj+ — d; 1) — 0.019{r; +(uj+ + d; ;) — zujﬂtdj?t} —0.383r7,,
e = = log(Pf%) — log(Py%), d;,c = log(P},;) — log(P%), with P\, P,

P “+» and P, are the h|ghest lowest, openlng and cIosmg prlces
Garman and Kilass (1980)

High-Dim Sparse Regression @




Empirical Analysis: Textual Sentiment Spillover Effects 4-5

Graphical network - Individual Inference

return-BL 02/01/15-29/12/15

ST FTA2S
w,rnmwy, —
WM%M)».’&%!@E
PA e

=z

Figure 5. Graphical network among individual stocks (return - BL)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-6

Graphical network - Individual Inference

volatility-LM 02/01/15-29/12/15

SN0 DA\
N
N AN
X > ‘.7"\
25

7

Figure 6: Graphical network among individual stocks (volatility - LM)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-7

Graphical network - Individual Inference

Example: dependency between two stocks '
[J textual sentiment effect on stock volatility Hék Bk =0
[ directional edge from "BBY" (Best Buy) to "LEN" (Lennar)
[ self effect of "BBY"

(x
BBY)

Y\
(LEN)

Figure 7: Dependency between BBY and LEN (volatility - LM)
High-Dim Sparse Regression @




Empirical Analysis: Textual Sentiment Spillover Effects 4-8

Graphical network - Simultaneous Inference

[ Joint sentiment effect from sector S; on returns of sector S,
[] Simult. inference on Hp : By =0, Vj € 51, k€ S,
[ Conclusions:

» denser spillover effects among individ. stocks when the
outcome is volatility

> sector connections (return): industrials—consumer
discretionary, health care—utilities

> sector connections (volatility): utilities—IT,
financials—consumer staples
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Appendix 5-1

Single Equation LASSO Performance

Theorem 1 of Belloni and Chernozhukov (2013)

Suppose the RE condition holds, under the exact sparsity N
assumption and given the event \; > 2cﬁ12nkaé<K|%k/ij|, then 3;

from single equation LASSO satisfy:

NG
J\/7 max "Ujk- (6)

Bi— B, < (1L+1
1By = Bilier = (L4 /C)n/‘ij(f) 1<k<K

High-Dim Sparse Regression @



Appendix 5-2
Measure of Dependence [by Wu (2005)]

[A1] Assume Xkt = gjk(. .-, &e—1, &), where & are i.i.d. random
elements (innovations or shocks) across t and gjc(-) are measurable
functions (filters).

[] Replace & by an i.i.d. copy of &, and
)<j>z7t:g‘-jk(...,€a<7...7§t)

. def %
[J Functional dependence measure 0 ke = [[Xjk,t — Xi ¢llq.

q > 1, which measures the dependency of £ on Xj ¢;

def . .
Amgjk = 2 tem0aqjkt Which measures the cumulative

effect of £ on X t>m
[] Dependence adjusted norm of X ;:
||Xjk,~ q,s — squZO(m + l)gAquJ,k' ¢>0

High-Dim Sparse Regression @




Appendix 5.3

Measure of Dependency

Example: AR(1) process

o0
Xt = OéXt_l + ft = Za€§t767 ‘CM‘ < 1.
(=0

[ bq,e = [I1XF = Xellg = o€ — @*&ollq = |a|*[1€5 — &ollq.
o0 (o9}
Am7q = t=m 5(],1.' = Hég - §0Hq Zt:m ‘a‘t X |a‘m

O IXlge = supmso(m+ 1) Apm g < 00

High-Dim Sparse Regression @



Appendix 5-4

Restricted Eigenvalue (RE) Condition

[A2] (RE uniformly) Given ¢ > 1, for n € RK,

S
kj(c) def min \/_Jlmpr

e l<elnT; |.n#0 In7;

>0,

. . def
holds uniformly over j =1,...,J, where T; = {k: J(‘)k # 0} and

Sj:|7j,'|:(’)(n),777'jk:’l7kifk6 T',777'jk:0ifk¢ T,

High-Dim Sparse Regression @



Appendix

Moment Conditions

[A3] .+ and Xjy + have finite moments up to the g—th order.

High-Dim Sparse Regression
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Appendix
Aggregation over High Dimensions

For single equation j, let
[ @) gc = 2maxy || Xk, ||q<||517 llq.¢
H T 2||€J, S Xk, 1)
[ ©jige = g A {QH|XJ,~|00”q,c||EJ,~||q,<(|0g KJ)3/2}: where
11X, locllq.c = ;l;%(m + 1) 3 11X = Xelosllg

Over all equations, let A; «f vec{(Xjk,t)jx }
[ @qc = max; k 2|| Xk, [l g.cll€j, q.
5 T = 205 i I3/ 4 1 X, 1522/
[ Bgc = Tge Ml X ]sollgs s, Nl g, (log KJ)3/2}, where
[1X ] llqe = ;l;%(m + 1) 3 11X — X oo llq

High-Dim Sparse Regression
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Appendix 5-7
More Assumptions

[A4] i)(weak dependency case) Given Oz, < 0o with ¢ > 2 and
¢ >1/2—1/q, then Oy n*/971/2{log(KJn)}3/?> — 0 and
L1 max( Wl, Wz) = O(l) min(Nl, Nz);

ii) (strong dependency case) given 0 < ¢ < 1/2—1/q, then
O2q.c{log(KJ)}*/? = o(n°) and

L1 max(Wl, W2, W3) = O(l) min(Nz, N3);

where Ly = [®4 Dgo{log(KJ)}?]V/5,

Wy = (980 + 4 o) {log(KJn)}, W; = 02 {log(KJn)}*,
Wi = [~ {log(Kn) |3/, |1/ 1/2=5-1/4),

Ny = {n/ log(KJ)}9/20], ., N» = n{log(KJ)} 2,2,

N3 = [n"/?{log(KJ)}/2@5 JV/(1/272).

High-Dim Sparse Regression m



Appendix 5.8

Orthogonality Property

Use vjk ; as an instrument in the following moment equation for the
target coefficient 55

E(ej,evike) = EI{Yj.e = Xk, e85 — Xi{_sy. e85 Hikt] = 0,
which has the orthogonality property

0
— E(ej = 0.
a/BJ(,k) (glatv.lkyt) 0

5](—k):Bj(—k)
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Appendix 5-9
Conditions for Theorem 7

[J The dependence adjusted sub-Gaussian norm |[vjk..[, , =
SUPg>2 G2 30220 || E(vjk, e Fo) — E(vik,el F-1)llq < oo,

] Properties of v: the map
(B, h) = E{Yix(Zj ¢, B, h)| Xj(—k),t } is twice continuously
differentiable, and for every ¥ € {3, h1,..., hm},
Elsupses, 109 E{5(Z:e. 3. 1) Xy} [2] < Gi; moreover,
there exist constants Ly, Ly, > 1, v > 0 and a cube
7_7k()<j(—k),t) = X:\nﬂzlﬁk,m()g(—k),t) in RM with center
h?k()g(_k)’t) such that for every ¥,¢' € {5, h1,..., hm},
SUP(8,h)eByx Ty (X xy.e) 10900 EXjk(Ze, B, W) Xj—h) e} <
L1, and for every 3, 8" € Bj, h, h" € Ti(Xj(—),¢),
E{vix(Zj0: B, h) = Yin(Zje, B 1) Y2 X)) <
Lon(B— B + |h — HE).
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Appendix 5-10

Conditions for Theorem 7

[J ldentifiability:
2| E[vix{Zj,e, By 3 (Xj(—k),e) ]| = 16(8 — B)| A 1 holds for
all RS Bjky and ‘¢jk‘ > C1.

[] Dimension growth rates: there exist sequences of constants
ond 0,0, ] 0 such that
pr*(Lanslog an)!/? + n1/2r(slog an)? = o(g; ) and
n~1/2(slogan)t/? + n~'r(slog an)? = O(p,), where r. = n'/4
for ¢ >1/2—1/qand r. = n'/?= for ¢ < 1/2 — 1/q,
a, & max(JK, n, e).

[] The conditional density of Y} given X; is bounded and
continuously differentiable.
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Appendix 5-11

Conditions for Theorem 7

] Propertles of the nuisance functlon with probability
1 —o0(1), hjx € Hjk, where Hj = ><m 1 Hjk,m with each Hj m
being the cIass of functlons of the form
hikm(Xi(—k),6) = Xi( . ikme 10ikmllo < s, hitm € Titem
and E[{hjkym(xj(fk),t) he m(Xi(—0.0)}°] < Gis(log an)/n.
[J The true parameter 3% satisfies
Elvid{Z¢, Bk, jk( k),t.)}] = 0. Let Bjx be a fixed and
closed interval and BJk be a possibly stochastic interval such
that with probability 1 — o(1),
[ﬂjpk + nil/2 |Og2 a,,] C Bjk C Bjk-
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