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Motivation 1-1

Interest Rate

[ Essential for pricing derivatives and hedging corresponding risk.
] A signal of macroeconomic activity.
[J Influenced by macroeconomic variables.

(] Follow unstable dynamic process.
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Motivation 1-2
Classical One-factor Short Rate Models

Vasicek Model

dr(t) = a{b— r(t)}dt + cdW;
CIR Model

dr(t) = a{b— r(t)}dt + o+/r(t)dW;

] ry Z 0
[J Mean reversion
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Figure 1: Moving window estimator 3 with window sizes 250, 500 and 750
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Figure 2: Moving window estimator b with window sizes 250, 500 and 750
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Figure 3: Moving window estimator & with window sizes 250, 500 and 750
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Motivation 1-6

Extended Short Rate Models

Three strands of extended interest rate models:

(] Jump-Diffusion Models
[] Regime-Switching Models
[J Time-varying Coefficients Models.
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Motivation 1-7

Outline
1. Motivation Vv
2. Local Adaptive Approach for CIR model
3. Simulations
4. Empirical Study
5. Conclusion
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Adaptive Interest Rate

Model

The time-varying CIR model with 8; = (a;, b, 0¢) " :

dr(t) = ar{be — r(t)}dt + o/ r(t)dWs

Discretization:

rt’.+1 — rj_-l. = at{bt — rti}At+ O't\/rt’.Zi

{Z:} ~ N(0, At)
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Adaptive Interest Rate 2-2

Local Parametric Approach (LPA)

Given time point t, go back and split time series into K intervals,
lo Ch C---Clk, with Ik:[t—mk—f—l,t].
[J Accept the smallest interval y without change point (i.e.
homogeneous interval).

[ Sequentially check the historical intervals to search a change
point.

[] Two methods of LPA: Local model selection(LMS) and Local
change point (LPC).
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Adaptive Interest Rate 2-3

Algorithm of LPC

Goal: Find an unknown change point 7 in the interval /.

1. Determine 6 = 9~0-
2. Increase interval to /i, k > 1. Get GN/k.

3. Compare test statistics with critical value. If test statistic is
accepted go to step 4, otherwise go to step 5.

4. Let b = 0~,k, and set k = k + 1, repeat step 2.

5. Detect the change point 7 in Iy, I} = lx_1 without change
point.

Adaptive Interest Rate




Adaptive Interest Rate 2-4

Why we use LPA?

[ Find the longest stable interval for each t.
(1 Allow for structural breaks and jumps in parameter values.

(] Distinguish blooming and declining regimes.
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Adaptive Interest Rate 2-5

Test Statistic

Test statistics Ty, ,, -

Theonr = Ly(0)) + Lyc(05c) — Ly, (B,) (3)
where J = [T+ 1,¢t], and JC = [t — myy1,7], and 7 € Jx = [\ k1.
Consider the supremum of the test statistics over interval Ji:

Tk = suprey, Tip oy r (4)
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Adaptive Interest Rate

Test Algorithm

J¢ J
T 1 T-m z T-m,

] ]

N ' J
hd Y Y

Jia \ J la /

~
N— I %

—

Ik+1

Figure 4: Construction of the Test Statistics in the Local Change Point
Test
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Adaptive Interest Rate 2-7

[] The criteria for testing homogeneous intervals:
Tk <3, for k<k (5)

and Tk+1 > dfa1
[J I is the longest time homogeneous interval for time point t,
El é\t - 5’/}
[J 34 is the critical value, obtained by Monte-Carlo simulations.
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Adaptive Interest Rate 2-8

Risk Bound

Parametric risk bound 2R,(6g) , given the true value 6y, for any

interval /. , }
Eeo |le (9/1(’ HO)V < iRr(eo) (6)

where _
Ly (0,,00) = L1, (01,) — L1 (6o) is the likelihood ratio between the
two parameters.
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Adaptive Interest Rate 2-9

Small Modeling Bias Condition

The SMB condition for the interval /., and given some 6 € O:
EAL(0) <A (7)

and

Ay =3 K{r(0).r(£:6)}

tel,

K{re, rt(0)} : Kullback-Leibler divergence between P, () and
Pr(t;@)'

Oracle Choice k*: the largest Iy« s.t. (7) holds.
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Adaptive Interest Rate 2-10

Propagation Condition and Stability

Propagation: ~
Eg, |le (elk?elk”r < pR,(6o) (8)

Stability: /i is accepted interval, then HA,k = é/k

L(01,,0,.,) < 3k (9)

For fixed A, the loss |L;, (0}, ,60)|" stochastically bounded by a
constant proportional to e®

Adaptive Interest Rate



Adaptive Interest Rate 2-11

Critical Value

(] Sequential choice of critical values 3.
(1 Change point detected at step ¢ < k
(] By: rejection at step £.
Byo={T1 <31, Tom1 <301, Te > 3¢}
and é/k = 9~/e71 on By, (=1,2,--- k.
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Adaptive Interest Rate 2-12

Critical Value

To determine 31,

max Egy LBy, 0) "L(B1) < p9R(0o) /K (10)

B, only depends on 31, -+ , 3¢, controlled by 3. The minimal value
ensures o

max Eqy (L, 0 )IL(B) = p%, (0)/K (1)

R, (6o) is parametric risk bound.
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Adaptive Interest Rate 2-13

Choice of the Length of Interval

lo with length mq.

Interval li: my = [mpa¥] with a > 1.

Results not sensitive to a.

r=0.5, power of the loss function.

p= 0.2, level of the test.

mg = 40, a = 1.25, and K= 15, my = 1136.

I3 Y B Y B O R S R
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Oracle Property

lg+ is the oracle interval, EA) (9 < A, k < k*, and é’;} close to

the oracle estimate élk*

Ly, (0., 0, Sl

Elog{l + %,(0)

P< (12)
For k > k*, the adaptive estimator é’;} satisfies

Ly (O, 01"
%, (6)

}<p+A+log{l+ e +(13)

Elog{1l + %, (0)
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Simulation 3-1

Simulation Setup

We simulate CIR process with 1500 observations and 100 times.

t a b o
t € [1,500] 02 004 003

t € [501,10000 05  0.06 0.1
t € [1001, 1500] 0.8 0.01 0.07

Table 1: The parameter settings for simulations of the CIR process
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Simulation

1200

900

300

1200

600

Figure 5: LPA estimator 3 and b with simulated CIR paths
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Simulation
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Figure 6: LPA estimator & and selected time homogeneous inte
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Empirical Study 4-1

Data

Yield of 3M US T-Bill from the Federal Reserve Bank of St. Louis
from 19980102 to 20090513.

Mean SD Skewness  Kurtosis
re 0.0319 0.0176 -0.1159 -1.4104
dry -1.764 x10™> 0.0006 -0.7467  34.4856

Table 2: Statistical Summary of 3-month T-Bill
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Figure 7: 3-month Treasure Bill Rate: 19980102—20090513. Top panel:

Daily yields. Bottom panel: Changes of daily yields.
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Empirical Study 4-3

MLE Estimator of CIR model

Sample Size E] b %)
19980102-20090513 0.2657 0.0153 0.0944
19980102-20070731 0.1424 0.0252 0.0428
20070801-20090513 3.6792 0.0081 0.2280

Table 3: Estimated parameters of CIR model using MLE
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Figure 8: Critical values with mg = 40, K=15
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Figure 9: Estimated 3 by LPA
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Figure 10: Estimated b by LPA
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Empirical Study
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Figure 11: Estimated & by LPA
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Figure 12: Selected time homogeneous intervals with p = 0.2, and r = 0.5
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Empirical Study

In Sample Fitting
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Figure 13: Confidence Interval (Red); Real Data (Black); LPA CIR (Blue);

CIR (Purple)
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Empirical Study 4-10

Forecasting

H: the prediction period horizon, then the absolute prediction
error(APE):

APE(t) = Z |Feh — ?t+h|t‘/|7'[| (14)
heH
. APELpa(t)
APE Ratio = APEwy (1)

LPA: Local Parametric Approach.
MW: Moving Window Estimation.
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Empirical Study

Forecasting
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Figure 14: The APE ratio between LPA and MW with window size 250.
Left: 1-day ahead forecasting; Right: 10-day ahead forecasting.
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Empirical Study

4-12
Performance of Forecasting
Horizon MAE
| =250 | =500 | =750
One Day LPA 4.74x10~% 4.85x10~% 4.96x10~%
MW 4.78x107* 4.41x107* 4.16x107*
Ten Days LPA 0.0201 0.0215 0.0232
MW 0.1868 1.0032 1.8054

Table 4: The MAE of 1 day and 10 days ahead forecasting of the short
rate based on the LPA and MW.
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Conclusion 5-1

Conclusion

[ Interest rate in recession is more volatile.

[] The selected time homogeneous intervals can not last long due
to the complexities of macroeconomy.

(] The LPA can detect jumps and structural break points in the
interest rate dynamics.

(] The LPA outperforms the moving window estimation especially
in long horizon forecasting.
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