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Motivation 1-1
Aims

Dynamic Semiparametric Factor Models (DSFM) for Implied
Volatility (IV) Dynamics yield time dependent factor loadings.
Loading series

[ explain the nature of volatility risk

(] allow to hedge positions of 'volatility derivatives’

Vector autoregressive (VAR) modelling of loading series
[J How do the factor loadings jointly evolve over time?

(] How are they related to macroeconomic indicators?

Improve assessment of market risk @
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Motivation 1.2

An Implied Volatility Surface
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Figure 1: Implied volatility surface from DSFM fit for the
DAX-Option on 20000502 (2 May 2000)
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Motivation 1-3
The semiparametric factor model

Log-implied volatility Y ;

L
Yej =Y zami(Xej) +erj (1)

1=0
zo=1j=1,...,J: (t=1,...,T)is number of IV
observations on day t, L is number of basis functions
Xt is two-dimensional containing moneyness and maturity
zy are time dependent loadings or weights of the smooth basis
function my, for (/=0,...,L).

[Borak, Hardle and Fengler (2005)]

A
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Motivation 1-4

The semiparametric factor model

The estimates Z; and my(.) are obtained by minimizing w.r.t (z,m):

| Jr L 2
ZZ/ {Ytu' - Zzt/m/(u)} Kn(u — Xt ) du, (2)
k=0

t=1 j=1

zp=1

Kh(u) = kn, (u1) X kn,(u2)

kn(v) = h=1K(v/h) is a one-dimensional kernel function
h = (hy, hp)T are bandwidths
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Motivation 1-5

Literature review

[J [Skiadopoulos et al. (1999)] analyzed the IVS of S&P 500
and reported that at least two and at most six factors are
necessary to capture the dynamics.

[J [Cont and Fonseca (2002)], on dynamics of the S&P 500
implied volatility reported that the first three principal
components account for 95% of the daily variance.
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Motivation 1-6

Literature review cont.

(J [Fengler, M.R. (2005)] indicated three factors are sufficient to
capture 95% variation in DAX implied volatilities.

[J [Hafner (2004)] with a parametric approach, uses a four-factor
model for DAX implied volatilities.

[0 [Borak, Hardle and Fengler (2005)] identified three loading
series after fitting a DSFM for European DAX options.
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Motivation 1-7

Overview
1. Motivation v/
2. Factor loadings series from DSFM for DAX options
3. Integration analysis and unit root tests
4. VAR modelling and dynamic interaction between loadings
5. Loadings and macroeconomic indicators
6. Conclusion
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Factor loadings series from DSFM 2-1

Data

(] time series data on factor loadings are from a DSFM model
on European DAX options

[0 T = 1052 observations on z; from 04.01.1999 to 25.02.2003,
excluding days with no option trades
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Factor loadings series from DSFM
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Factor loadings series from DSFM
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Factor loadings series from DSFM 2-4
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Factor loadings series from DSFM 2-5

Factor loadings series

Factor loadings determine the movements of the Implied Volatility
Surface (IVS)

[J z;1 may be interpreted as representing the overall shift (up
and down movement) of the IVS

(] zp terms structure change of the IVS
(] z:3 represent changes in moneyness slope of the IVS

(] effect of factor loadings on IVS for 251 days
(19990104 - 19991229)

el e e
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Integration analysis and unit root tests 3-1

Unit root tests

z; is investigated for unit roots

stationarity /(0): VAR model for levels
integration /(1): VAR model in first differences
application of ADF test and ERS test

O OQ o
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Integration analysis and unit root tests

Unit root test results

Series ADF-AIC p ADF-HQ p  ERS-AIC ERS-HQ b

z1 -1.982 6 2241 2 3787 2.953%F 6
[0.295] [0.192]

Azy —15.199*** 5 —23.582"** 1  0.007*** 0.075*** 2
[0.000] [0.000]

B —3.361°" 8§  —4.2197F 4 5205 3.338% 4
[0.013] [0.001]

Az —15.646*** 7 —15.646*** 7 0.663™** 0.663*** 7
[0.000] [0.000]

73 —2.874%%F 7 —2.8747F 7 1.44677F 1.446%%% 7
[0.049] [0.049]

Az —13.855*** 6  —13.855™** 6  0.005"** 0.005*** 6
[0.000] [0.000 ]

Table 1: ADF-AIC and ADF-HQ refer to ADF tests using AIC and HQ criteria
respectively to estimate lag length p. ERS-AIC and ERS-SC criteria used, refer
to the lag length b chosen for the estimation regression of the autoregressive

spectral density estimator.

10% level respectively
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Integration analysis and unit root tests 3-3
Unit root test results

Test results do not agree in all cases but suggest
[ stationarity of the three loading series

For possible structural breaks, unit root tests on subsample
04.01.1999 — 31.07.2001 (655 obs.) are applied for each series

(] ADF and ERS tests confirm stationarity for z;» , z:3 and
nonstationarity for z;;

Models for levels is analyzed to avoid over differencing
Robustness check by analyzing model in first differences
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VAR modelling and dynamic interaction between loadings ——— 4-1

Models for Loadings Dynamics

The dynamics underlying z; is modelled by a VAR(p) process
Llinlevel zz = v+ A1ze 1+ -+ Apze—p + Ut
[J in first difference Az; = z; — z;_1,
Azy =v+A1Az 1+ -+ ApDzi_p + Uy
v is L x 1 vector of intercept parameters
A;, i=1,...,pare L x L parameter matrices

unobservable error term u; = (uy1, .. ., utL)T with mean zero,
time-invariant and non-singular covariance matrix ¥, = E[usu, ]
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VAR modelling and dynamic interaction between loadings ———— 4-2

VAR Models diagnostics

Full sample (04.01.1999 — 25.02.2003)
L] p=7 for z: and p = 6 for Az; reveal no autocorrelation
Sub-sample (04.01.1999 — 31.07.2001)
(] lag length p = 3 reveals residuals with autocorrelation.
[] lag length p = 8 reveals residuals free of autocorrelation

Evidence for non-normality and ARCH in the residuals is observed
but left for further analysis
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VAR modelling and dynamic interaction between loadings 4-3
VAR Models diagnostics
Model Sample p Q(20) LMF(4) LMF(8) LBJ ARCH(1)

Zt full 7 022 0.09 0.38 0.00 0.00
zt sub 3 0.01 0.13 0.00 0.00 0.00
zt sub 8 0.16 0.18 0.27 0.00 0.00
Az full 6 022 0.13 0.16 0.00 0.00
Az sub 8 0.18 0.53 0.49 0.00 0.00

Table 2: Diagnostic tests for full sample: 1999/4/1-2003/2/25 and
sub-sample 1999-2001/7/31. Lag order p of diagnostic tests. Ad-
justed portmanteau test Q(20) involving 20 autocorrelation matri-
ces, LM tests for autocorrelation of order 4 and 8. Multivariate
Lomnicki-Jarque-Bera tests for nonnormality (LJB) and multivari-
ate first order ARCH test

A

VAR - DSFM Modelling




VAR modelling and dynamic interaction between loadings ———— 4-4

Impulse Response Analysis

Effect of a shock in one variable at time t on variables in VAR
system

[J Impulse e.g. in uy + while uj; =0for j=2,...,L and

Utyp =0 for h>0

Response in z;, where n is forecast horizon.
Unreasonable analysis if error terms are strongly correlated.
Orthogonalization of error terms (Cholesky factorization):
orthogonalized impulse responses

~ 1 —0.49 —0.23
P,=| —0.49 1 —0.10 (3)
—0.23 —0.10 1
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VAR modelling and dynamic interaction between loadings ——— 4-5

Interpretation of Shocks

(] positive shock in z;1: higher overall risk

[] positive shock in z: risk of longer maturities decrease
relative to shorter maturities

(] positive shock in z:3: raises relative risk of options with lower
moneyness values (lower strike)

VAR - DSFM Modelling




VAR modelling and dynamic interaction between loadings ———  4-6

Impulse Response Analysis

Starting with a fairly general VAR(7) model (Figure 5):

(] innovation in z;; has permanent negative effect on z;» and a
small positive effect on z;3, which becomes insignificant after
about 6 periods

(] innovation in z;» has permanent positive effect on itself but
no significant effect with other variables.
Similar result is obtained for a shock in z3
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VAR modelling and dynamic interaction between loadings
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Figure 5: Impulse-Responses: VAR(7) for z;
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Sample period: 04.01.1999 — 25.02.2003
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VAR modelling and dynamic interaction between loadings ———  4-8
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Figure 5b: Impulse-Responses to shocks in z;1: VAR(7)
Sample period: 04.01.1999 — 25.02.2003
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VAR modelling and dynamic interaction between loadings ———  4-9

Generalized Impulse Response Analysis

Orthogonalized IRs depend on ordering of variables

(1 GIRF are unique and invariant to orderings of variables
[Pesaran, M.H. & Shin,Y. (1998)]:
the difference of conditional expectation given a one time
shock occurs in series z;.

Linear model: GIRF independent of observed hisory.
Results are similar to orthogonalized IRs; exceptions: Figure 6
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VAR modelling and dynamic interaction between loadings ——— 4-10
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Figure 6: Generalized Impulse-Responses: VAR(7) for
z; = (211, 212, 23) | . Period: 04.01.1999 — 25.02.2003

A
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VAR modelling and dynamic interaction between loadings ——— 4-11

Granger causality

Addresses the usefulness of each loading series in forecasting the
others. Application of Granger causality tests

[] testing zero restrictions of some VAR coefficients

(] overfitting the VAR model by one lag to remove the
singularity of the coefficient covariance matrix

[Granger (1969)]
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VAR modelling and dynamic interaction between loadings ———— 4-12

Granger causality tests

Ho Test result
za — zp,zs F(14,3072) = 4.53 (0.00)
zio + z11, 23 F(14,3072) = 1.66 (0.06)
23+ zn,zo F(14,3072) = 0.86 (0.60)
Zi3 + Zn X2(7) = 5.04 (0.65)
Zi3 > Zp x*(7) = 6.84 (0.45)
Zn - Zs3 X*(7) = 8.02 (0.33)
Zp » 713 X*(7) = 6.44 (0.49)
Zt1, Zt2 7 Zi3 X2(14) = 12.41 (0.57)

Table 2: - denotes ‘does not Granger cause’. Results are based
on model for z; using p =7 and full sample period 04.01.1999 -
25.02.2003. p-values in square brackets.

A
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VAR modelling and dynamic interaction between loadings ———  4-13

Granger causality tests

(1 Granger non-causality of z;; for z;» and z:3 and non-causality
of zs for z;1 and z3 is rejected at the 10% significance level
(] zs is neither Granger-caused by z41 nor z;p and Granger

non-causality from z;; to z;3 and from z;» to z;3 cannot be
rejected

z;3 does not influence the dynamics of z;; and zx in terms of the
VAR model
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Loadings and macroeconomic variables 5-1

Loadings and macroeconomic variables

(] benchmark specification VAR model is extended to include
macrovariables, log of euro/us exchange rate (LEX), log of oil
prices (LPOIL) and interest rates (R12M) for the German
stock market from 1.04.1999 — 2.25.2003.

[J model and analyze a VAR(8) for
(z¢1, 22, 23, LEX, LPOIL, R12M) T

(] examine impulse response analysis of the system with possible
economic intepretation of results
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Loadings and macroeconomic variables

Time series of loadings and economic indicators
L L L

-05 0 05 1 15 2 25 3 35 4 45 5 55

1999 2000 2001 2002 2003

5-2

Figure 7: Factor loadings and economic indicators: z(blue),
zi2(green), zi3(cyan), LEX(red), LPOIL(magenta), R12M(yellow).

A
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Loadings and macroeconomic variables 5-3
Impulse responses in R12M

(] response in R12M: changes in risk compensation
[ positive shock in z: significant positive response in R12M
[J positive shock in z:: (significant) negative response in R12M

[J positive shock in z:s3: (significant) positive response in R12M
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Loadings and macroeconomic variables 5-4

Response of R12M to Z1 Response of R12M to Z2
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Response of R12M to Z3

Figure 8: Generalized impulse responses in R12M: from VAR(8)
for z; = (zn, Zt2,Zt3)T- :
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Loadings and macroeconomic variables 5-5

Responses to impulses in R12M

[ positive shock in R12M: worse economic outlook and rising
inflation expectations

(] significant positive response in z;;

[ (signficant) negative response in zs

(] no signficant response in z;3:
(macro)economic effects seem to feed into financial market
risk via the maturity channel rather than via the moneyness
dimension
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Loadings and macroeconomic variables

Response of Z1 to R12M Response of Z2 to R12M
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Figure 9: Generalized impulse responses in loading series to shocks
in R12M: from VAR(8) for z; = (21, zt2, z:3) |
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Loadings and macroeconomic variables 5-7

Further Results: LPOIL and LEX

(] no significant links between LPOIL and loading series

(] significant impulse-response relationship between LEX and
z;1: appreciation of Euro reduces volatility of DAX-options
and higher volatility (financial market risk) induces EURO
depreciation
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Conclusion 6-1

Conclusion

(] the VAR - DSFM Modelling framework provides a fairly good
description of the IV dynamics and interrelations between the
loadings that determine the movements of the IVS

(] a VAR model reveals significant interaction between first and
second loading series

(1 12-month interest rate is significantly linked to volatility risk
factors of German stock market

[] interest rate channel seems to be most important for relation
of macro and financial market risks

(] an important outlook is to develop useful strategies for
hedging against IV risk factors

A
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Appendix 7-1

Unit root tests

The Augmented Dickey-Fuller (ADF) test refers to the regression
equation

P
Azt = ¢zi 1 + Z aiDz_j + U, (4)
i=1
where p is the number of lags of Az, by which the regression
equation (4) is augmented in order to get residuals free of
autocorrelation.
Under Hp, the unit root the parameter ¢ should be zero. Hence,
the t-statistic of the OLS estimator of ¢ is used as the ADF test
statistic.

A
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Appendix 7-2

The limiting distribution of the test statistic is nonstandard.
Critical or p-values have to be derived by the help of simulation
methods.

The critical values used for the ADF test are —2.57 (10%), —2.86
(5%), and —3.44 (1%) (see, [Mackinnon, J.G (1991)])

Lag order p is determined by the AIC, HQ, and SC information
criteria and test decisions may depend on the suggested order.

(1 ADF test suffers from low power and therefore may fail to
detect a stationary time series
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Appendix 7-3

Point-optimal unit root test: (ERS) Elliot, Rothenberg and Stock
(1996).

Superior to ADF procedure also in case of processes affected by
conditional heteroscedasticity.

Test is based on quasi-differences of z; , which are defined by

1 ift=1

d Zt ||d) =

( ’ ’ ) Zy k — aZt—1 k ift > 1,
a is the point alternative against which the null of a unit root is
tested. Following the suggestion of Elliot et al. (1996), we use
a=3a=1-—7/T since only a constant term is considered.

A
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Appendix 7-4

Let & be the residuals from a regression of the time series on a
quasi-differenced constant and let S(3) and S(1) be the sums of
squared residuals for the cases a = 3@ and a = 1 respectively. Then
the test is defined by

ERS = (5(a) — a5(1)) /s, (5)

where @y, is the spectral density estimator of & at frequency zero.
We apply the autoregressive spectral density estimator as proposed
by Elliot et al. (1996).

Critical values for the ERS test

(see,[Elliot, G., Rothenberg, T. J & Stock, J. H(1996)]) are 4.48
(10%), 3.26 (5%) and 1.99 (1%).
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Appendix 7-5

Residual correlation matrix

P, is estimated residual correlation matrix for VAR(7): benchmark

model
1 -0.49 -0.23

P,=| —0.49 1 -0.10 |. (6)
—0.23 —0.10 1

Components of P, are contemporaneously correlated, meaning
that they have overlapping information to some extend.
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Appendix 7-6

To single out the individual effects, P, is orthogonalized to be
contemporaneously uncorrelated.

Cholesky decomposition provide a lower triangular matrix with
positive main diagonals.

(] Unfortunately, orthogonalization is not unique

Results of the IR analysis may depend to some extent on the
ordering of the variables in the system. All possible variable
orderings have been tried in computing the impulse responses.
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Appendix 7-7

Impulse Response Function (IRF)

Tracing the effect of a shock of size § hitting the VAR system at
time t on the state of the system at time t + n given that no other
shock hit the system. n is forecast horizon, w;_1 is information set.

IRF(n7 5) wt—l) = E [Zt+n|5t = 67€t+1 = 07 <o €40 = wat—I]

- E [Zt+n|€t =0,6¢41=0,...,6t40 = 07wt—1]

To single out the individual effects, P, is orthogonalized to be
contemporaneously uncorrelated.
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Appendix 7-8

Generalized Impulse Response Function
(GIRF)

The difference of conditional expectation given a one time shock
occurs in series z;.

n is forecast horizon, &;_1 is the observed history and ¢; ; is the
chosen shock

G/RF(”JS? wt—l) =E [Zt—l—n‘gj,tawt—l] - E[Zt—l—n‘aa}t—l]

GIR are unique and invariant to orderings of variables.
GIR coincide with orthogonalized IR if the residual covariance
matrix is diagonal.
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