Localized Realized Volatility Modeling

Ying Chen Wolfgang Karl Härdle Uta Pigorsch

National University of Singapore Humboldt-Universität zu Berlin University of Mannheim

An important realized volatility fact

Figure 1: Sample autocorrelations of log RV for different sample periods.

Localized Realized Volatility Modeling

2

A dual view

⊡ The long memory point of view:

Volatility is generated by long memory processes, i.e. fractionally integrated, I(d), processes.

□ The short memory point of view:

Volatility may equally well be generated by a short memory process with structural changes.

Example: GARCH model with changing parameters.

3

Realized volatility

- Volatility forecasts are important for an adequate risk management and derivative pricing.
- □ Realized volatility is based on high-frequency information.
- It is a more precise volatility estimator than daily squared or absolute returns.
- Exhibits better forecast properties, Andersen, Bollerslev, Diebold and Labys (2001).

Localized realized volatility

- : For a point τ in time, find a past time interval for which a local volatility model is a good approximator.
- The time interval is determined by adaptive statistical methods.
- Represents a local analysis, i.e. changes are detected close to the forecasting time point.

5

Outline

- 1. Motivation \checkmark
- 2. Realized volatility
- 3. Localized realized volatility
- 4. Long memory models
- 5. Empirical analysis
- 6. Conclusion

6

Realized volatility

Daily realized volatility

$$\widetilde{RV}_t = \sum_{j=1}^M r_{t,j}^2,$$

with $r_{t,j} = p_{t,n_j} - p_{t,n_{j-1}}$, j = 1, ..., M, and p_{t,n_j} the log price observed at time point n_j of trading day t.

It converges to the quadratic variation for $M \rightarrow \infty$ (Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002b).

Realized volatility (smoothed)

Tukey-Hanning kernel

$$RV_{t} = \widetilde{RV}_{t,1} + \sum_{h=1}^{H^{*}} k\left(\frac{h-1}{H^{*}}\right) \left(\gamma_{t,h} + \gamma_{t,-h}\right)$$

$$\begin{split} k(x) &= \sin^2 \left\{ \frac{\pi}{2} (1-x)^2 \right\},\\ \gamma_{t,h} &= \sum_{j=1}^M r_{t,j} r_{t,j-h} \text{ (one-minute returns)},\\ H^* &= 5.74 \frac{\widetilde{RV}_{t,1/2M}}{\widetilde{RV}_{t,15}} \sqrt{M} \text{ with } RV_{t,i} \text{ the realized variance estimator}\\ \text{based on } i \text{ minute returns.} \end{split}$$

(Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008)

Data

S&P500 index futures from January 2, 1985 to February 4, 2005.

Series	Mean	Std.Dev.	Skewness	Kurtosis	LB(21) ⁽¹⁾
RV_t	1.07	8.16	59.08	3861	1375
$\log(RV_t)$	-0.51	0.87	0.43	4.99	46809

⁽¹⁾ The critical value of this Ljung-Box test is 32.671.

Table 1: Descriptive statistics.

9

Figure 2: Kernel density estimates (solid line: log *RV*, shaded area: pointwise 95% confidence intervals, dashed line: normal distribution).

Figure 3: log RV and its sample autocorrelation function.

Localized Realized Volatility Modeling

11

Localized realized volatility

LAR(1) model with parameter set $\theta_t = (\theta_{1t}, \theta_{2t}, \theta_{3t})^\top$:

 $\log RV_t = \theta_{1t} + \theta_{2t} \log RV_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \theta_{3t}^2).$ (1) Suppose $\theta_t \equiv \theta^*$ for $t \in I = [1, T]$

$$\begin{split} \tilde{\theta}_t &= \operatorname{argmax}_{\theta \in \Theta} L(\log RV; \theta) \\ &= \operatorname{argmax}_{\theta \in \Theta} \left\{ -\frac{T}{2} \log 2\pi - T \log \theta_3 \right. \\ &\left. -\frac{1}{2\theta_3^2} \sum_{t=1}^T (\log RV_t - \theta_1 - \theta_2 \log RV_{t-1})^2 \right\}. \end{split}$$

Goal: identify a local homogeneous interval I_{τ} for time point τ .

Identify local homogeneity

At time point au, choose a local homogeneous interval from

$$\{I_{\tau}^{k}\}_{k=1}^{K} = \{I_{\tau}^{1}, I_{\tau}^{2}, \cdots, I_{\tau}^{K}\}$$

where $I_{\tau}^{k} = [\tau - s_{k}, \tau)$ with $0 < s_{k} < \tau$, which leads to the best possible accuracy of estimation.

 $\begin{array}{l} \hline \quad \mbox{Under local homogeneity } \theta_{\tau} \equiv \theta_{\tau}^{*} \mbox{ within } I_{\tau}^{k} = [\tau - s_{k}, \tau): \\ \\ \tilde{\theta}_{\tau}^{(k)} \mbox{ estimates } \theta_{\tau}^{*} \mbox{ at rate } 1/\sqrt{s_{k}} \end{array} \end{array}$

• The modeling bias of approximating LAR(1) increases w.r.t. k. The optimal choice \hat{l}_{τ} : balances the bias and variation.

Estimation under local homogeneity

Given $I_{\tau} = [\tau - s, \tau)$, the local MLE is:

$$ilde{ heta}_{ au} \;=\; ext{argmax}_{ heta\in\Theta} L(\log RV; I_{ au}, heta)$$

Under **local homogeneity**: $\theta_{\tau} \equiv \theta_{\tau}^*$, the fitted likelihood ratio measures the estimation risk:

$$LR(I_{\tau}, \tilde{\theta}_{\tau}, \theta_{\tau}^{*}) = L(I_{\tau}, \tilde{\theta}_{\tau}) - L(I_{\tau}, \theta_{\tau}^{*}).$$
(2)

Estimation under local homogeneity

The estimation risk $LR(I_{\tau}, \tilde{\theta}_{\tau}, \theta_{\tau}^*)$ is stochastically bounded:

 $\mathsf{E}_{\theta_{\tau}^{*}}\big| LR(I_{\tau}, \tilde{\theta}_{\tau}, \theta_{\tau}^{*})\big|^{r} \leq \xi_{r}$

with $\xi_r = 2r \int_{\xi \ge 0} \xi^{r-1} e^{-\xi} d\xi = 2r \Gamma(r)$. It leads to the **confidence set**:

$$\mathcal{E}(\varepsilon) = \{ \theta : LR(I_{\tau}, \tilde{ heta}_{\tau}, \theta_{\tau}^*) \leq \varepsilon \}$$

in the sense that $P_{\theta^*} \{ \mathcal{E}(\varepsilon) \not\supseteq \theta^* \} \leq \alpha$, Polzehl and Spokoiny (2006).

Localized AR(1) model

Interval set $\{I_{\tau}^k\}$ for $k = 1, \cdots, K$:

$$l_{\tau}^{1} = [\tau - 1\mathsf{w}, \tau) \quad l_{\tau}^{2} = [\tau - 1\mathsf{m}, \tau) \quad \cdots \quad l_{\tau}^{K} = [\tau - 5\mathsf{y}, \tau)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\tilde{\theta}_{\tau}^{(1)} \qquad \tilde{\theta}_{\tau}^{(2)} \qquad \cdots \qquad \tilde{\theta}_{\tau}^{(K)}$$

- □ The interval is growing in length.
- \Box Local homogeneity is assumed at I_{τ}^1 .
- \boxdot Final estimate $\hat{\theta}_{\tau}$ is based on a sequential testing.

Sequential testing

Suppose that I_{τ}^{k-1} is a homogeneous interval: $\hat{\theta}_{\tau}^{(k-1)} = \tilde{\theta}_{\tau}^{(k-1)}$. The null hypothesis at step k:

 $H_0: I_{\tau}^k$ is an homogeneous interval.

Test: $\left| LR(I_{\tau}^{k}, \tilde{\theta}_{\tau}^{k}, \hat{\theta}_{\tau}^{k-1}) \right|^{r} \leq \zeta_{k}$, where ζ_{k} is critical value (CV).

Adaptive procedure

1. Initialization:
$$\hat{\theta}_{\tau}^{1} = \tilde{\theta}_{\tau}^{1}$$
.
2. $k = 1$
while $\left| LR(I_{\tau}, \tilde{\theta}_{\tau}^{k+1}, \hat{\theta}_{\tau}^{k}) \right|^{r} \leq \zeta_{k+1}$ and $k < K$,
 $k = k+1$
 $\hat{\theta}_{\tau}^{k} = \tilde{\theta}_{\tau}^{k}$

3. Final estimate: $\hat{\theta}_{\tau} = \hat{\theta}_{\tau}^k$

Parameter choice: Interval set

 \therefore $\{I^k\}_{k=1}^{13}$ for every τ with the following interval lengths:

$$\{s_k\}_{k=1}^{13} = \{1w, 1m, 3m, 6m, 1y, 1.5y, \\ 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\},$$

where w denotes a week (5 days), m refers to one month (21 days) and y to one year (252 days).

Parameter choice: CV

Monte Carlo simulation: generate AR(1) processes with θ_t = θ* = (θ₁*, θ₂*, θ₃*)^T for all t

y_t = θ₁* + θ₂*y_{t-1} + ε_t, ε_t ~ N(0, θ₃*²).

y₀ = θ₁*/(1 - θ₂*)

100 000 paths, each including 1261 observations

• Choice of critical values:

Parametric case $\theta_t \equiv \theta^*$:

$$\mathsf{E}_{\theta^*} \left| LR \left(I^{\kappa}, \tilde{\theta}_t^{\kappa}, \hat{\theta}_{t(\zeta_1, \dots, \zeta_K)}^{\kappa} \right) \right|^r \leq \xi_r$$
(3)

$$\mathsf{E}_{\theta^*} \left| LR \left(I^{k}, \tilde{\theta}_t^{k}, \hat{\theta}_{t(\zeta_1, \dots, \zeta_K)}^{k} \right) \right|^r \leq \frac{k-1}{K-1} \xi_r$$
(4)

Parameter choice: CV

Sequential choice of critical values

- \Box Choice of $\zeta_1 = \infty$ initializing the procedure $\hat{\theta}_t^1(\zeta_1) = \tilde{\theta}_t^1$
- \Box Choice of ζ_2 leading to $\hat{\theta}_t^k(\zeta_1, \zeta_2)$ by setting

$$\zeta_3 = \ldots = \zeta_K = \infty$$
:

$$\mathsf{E}_{\theta^*} \big| LR\big(I^k, \tilde{\theta}_t^k, \hat{\theta}_t^k(\zeta_1, \zeta_2) \big) \big|^r \leq \frac{1}{K-1} \xi_r, \qquad k = 2, \dots, K.$$

 $\begin{array}{ll} \hline & \mbox{Choice of } \zeta_3 \mbox{ leading to } \hat{\theta}_t^k(\zeta_1,\zeta_2,\zeta_3) \mbox{ by setting} \\ & \zeta_4 = \ldots = \zeta_K = \infty \\ & \mbox{ } E_{\theta^*} \big| LR\big(I^k, \tilde{\theta}_t^k, \hat{\theta}_t^k(\zeta_1,\zeta_2,\zeta_3) \big) \big|^r \leq \frac{2}{K-1} \xi_r \,, \qquad k = 3,\ldots,K. \end{array}$

Parameter choice: CV

Sequential choice of critical values

 \Box Choice of ζ_k leading to $\hat{\theta}_t^l(\zeta_1, \cdots, \zeta_k)$ by setting

$$\zeta_{k+1}=\ldots=\zeta_{K}=\infty$$
:

$$\mathsf{E}_{\theta^*} \big| \mathsf{LR}\big(I^k, \tilde{\theta}^l_t, \hat{\theta}^l_t(\zeta_1, \ldots, \zeta_k) \big) \big|^r \leq \frac{k-1}{K-1} \xi_r, \qquad l = k, \ldots, K.$$

Parameter choice: CV and r

- ⊡ The critical values (CV) depend on θ_{τ}^* used in the Monte Carlo simulation:
 - ► local global CV: global parameter θ^{*}_τ = θ^{*} over the whole sample
 - ▶ local adaptive CV: time varying parameter θ_{τ}^* using a moving window with fixed size.
- \therefore r: default choice 1/2

Critical values

Figure 4: CV for r = 1/2 and $\theta^* = (-0.1197, 0.7754, 0.5634)^{\top}$ (global). Data source: log RV of the S&P500 index futures.

Simulation

Figure 5: The average values for $\theta_{1t}^* \in \{-0.120, 1.197\}$.

Simulation

Figure 6: The average values for $\theta_{2t}^* \in \{-0.775, 0.775\}$.

Simulation

Figure 7: The average values for $\theta_{3t}^* \in \{0.100, 0.563\}$.

The ARFIMA model

ARFIMA(p, d, q), model:

$$\phi(L)(1-L)^d(\log RV_t-\mu)=\psi(L)u_t,$$

with $\phi(L) = 1 - \phi_1 L - \dots - \phi_p L^p$, $\psi(L) = 1 + \psi_1 L + \dots + \psi_q L^q$ L denoting the lag operator, $d \in (0, 0.5)$, $u_t \stackrel{iid}{\sim} N(0, \sigma^2)$. (Andersen, Bollerslev, Diebold and Labys, 2003)

The HAR model

Heterogeneous autoregressive model:

$$\log RV_t = \alpha_0 + \alpha_d \log RV_{t-1} + \alpha_w \log RV_{t-5:t-1} + \alpha_m \log RV_{t-21:t-1} + u_t$$

with the multiperiod realized volatility components

$$RV_{t+1-k:t} = \frac{1}{k} \sum_{j=1}^{k} RV_{t-j}.$$

29

Empirical evidence

- The HAR model is *no* long memory model, but provides an approximation.
- The HAR and ARFIMA models exhibit *similar* in-sample and out-of-sample performance.
- Both strongly *outperform* conventional volatility models.

Forecast setup

- ⊡ The first five years (1985-1989) of the S&P 500 index futures data serve as *training set*.
- The remaining data serve as *forecast evaluation period* (January 2, 1990 to February 4, 2005).

Forecast setup

- Consider 5 sets of critical values: the global ones and the adaptive ones based on a sample period of 1 month, 6 months, 1 year and 2.5 years.
- The interval of homogeneity is always selected based on the following set of interval lengths:

$$\{s_k\}_{k=1}^{13} = \{1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\},\$$

Empirical analysis

Figure 8: Boxplot of the homogenous intervals selected by the LAR(1) procedure based on different sets of critical values.

Forecast setup

- ARFIMA forecasts are based on an ARFIMA(2,d,0) model (as indicated by the AIC and BIC using the full sample period).
- Estimation and prediction is performed using a rolling window scheme with different window sizes, i.e.

 $\{3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\}.$

□ Same setup is used to assess the predictability of the HAR model and a constant AR(1) model, i.e. $\log RV_t = \alpha_0 + \alpha_1 \log RV_{t-1} + u_t$, $u_t \stackrel{iid}{\sim} N(0, \sigma^2)$.

crit. values	LAR(1)	sample size	AR(1)	ARFIMA	HAR
local adaptive 1m	0.4858	3m	0.5149	0.5328	0.5381
local adaptive 6m	0.4811	бm	0.5288	0.5225	0.5240
local adaptive 1y	0.4876	1y	0.5398	0.5178	0.5185
local adaptive 2.5y	0.4916	1.5y	0.5462	0.5143	0.5172
local global	0.5014	2у	0.5509	0.5133	0.5158
		2.5y	0.5555	0.5132	0.5153
		Зу	0.5574	0.5123	0.5155
		4y	0.5649	0.5129	0.5171
		5у	0.5712	0.5129	0.5176

Table 2: Root mean square forecast errors.

crit. values	LAR(1)	sample size	AR(1)	ARFIMA	HAR
local adaptive 1m	0.3667	3m	0.3900	0.3978	0.4025
local adaptive 6m	0.3654	бm	0.3987	0.3902	0.3862
local adaptive 1y	0.3704	1y	0.4057	0.3860	0.3857
local adaptive 2.5y	0.3748	1.5y	0.4103	0.3836	0.3843
local global	0.3824	2у	0.4136	0.3826	0.3836
		2.5y	0.4157	0.3816	0.3839
		Зу	0.4177	0.3814	0.3843
		4y	0.4238	0.3817	0.3851
		5у	0.4300	0.3819	0.3858

Table 3: Mean absolute forecast error.

Empirical results

○ Mincer–Zarnowitz regression:

Evaluate the predictive performance of the different models based on Mincer–Zarnowitz regressions:

$$\log RV_t = \alpha + \beta \widehat{\log RV_{t,i}} + \nu_t$$

with $\log RV_{t,i}$ denoting the log realized volatility forecast of model *i*.

- Assess R^2 of the regression.
- ► Test on *unbiasedness* of the different forecasts:

 $H_0: \ \alpha = 0 \text{ and } \beta = 1.$

Model	α	eta	<i>p</i> -value	R^2
global LAR	-0.0130	1.0128	0.1007	0.6959
adaptive LAR, 1y	0.0025	1.0014	0.9780	0.7117
1y AR(1)	-0.0010	1.0117	0.6002	0.4669
5y AR(1)	0.0221	1.0367	0.2216	0.6052
1y ARFIMA	0.0008	1.0011	0.9962	0.6747
5y ARFIMA	0.0009	1.0154	0.4907	0.6811
1y HAR	-0.0076	0.9907	0.7509	0.6742
5y HAR	0.0145	1.0237	0.2036	0.6756

Table 4: Mincer-Zarnowitz regression results.

Empirical results

Test on equal forecast performance: Diebold–Mariano test on *equal MSFEs*:

$$e_{t,LAR}^2 - e_{t,i}^2 = \mu + v_t$$

with $e_{t,i}$ denoting the forecast error of model *i*.

•
$$H_0: \mu = 0.$$

global LAR	t-values for	adaptive LAR,1y	<i>t</i> -values for
compared to	$H_{0}: \mu = 0$	compared to	$H_0: \mu = 0$
1y AR(1)	-4.1667	1y AR(1)	-5.5154
5y AR(1)	-1.2935	5y AR(1)	-4.9189
1y ARFIMA	-1.5412	1y ARFIMA	-2.8148
5y ARFIMA	-1.0825	5y ARFIMA	-2.3211
1y HAR	-1.6827	1y HAR	-3.0097
5y HAR	-1.5865	5y HAR	-2.5048

Table 5: Diebold-Mariano test results.

Conclusion

Dual view on the long memory diagnosis of volatility.

- Long memory phenomenon can be reproduced by localized short memory.
- Identification of homogeneity by a localized realized volatility model.

Conclusion

- The localized approach outperforms long memory-type models and constant AR(1) models in terms of predictability.
- An adaptive choice of the critical values (and a decrease in the underlying sample period) improves the estimation and forecast accuracy of the localized approach.

References

Andersen, T. G. and Bollerslev, T.

Answering the skeptics: yes, standard volatility models do provide accurate forecasts

International Economic Review, 39, 885-905, 1998.

- Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. The distribution of realized exchange rate volatility *Journal of the American Statistical Association*, 96, 42-55, 2001.
- Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. Modeling and forecasting realized volatility

Econometrica, 71, 579-625, 2003. Localized Realized Volatility Modeling

References

- Barndorff-Nielsen, O. E. and Shephard, N.
 Estimating quadratic variation using realized variance Journal of Applied Econometrics, 17, 457-477, 2002.
- Barndorff-Nielsen, O.E., Hansen, P. R., Lunde, A. and Shephard, N.

Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise

Econometrica, 76, 1481-1536, 2008.

