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Motivation 2

An important realized volatility fact

-0.2
0.0
0.2
0.4
0.6
0.8

 20  40  60  80  100  120

sa
cf

 (
19

95
)

lag

-0.2
0.0
0.2
0.4
0.6
0.8

 20  40  60  80  100  120sa
cf

 (
19

85
-F

eb
.2

00
5)

lag

Figure 1: Sample autocorrelations of log RV for different sample periods.
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A dual view

� The long memory point of view:
Volatility is generated by long memory processes, i.e.
fractionally integrated, I (d), processes.

� The short memory point of view:
Volatility may equally well be generated by a short memory
process with structural changes.
Example: GARCH model with changing parameters.
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Realized volatility

� Volatility forecasts are important for an adequate risk
management and derivative pricing.

� Realized volatility is based on high-frequency information.

� It is a more precise volatility estimator than daily squared or
absolute returns.

� Exhibits better forecast properties, Andersen, Bollerslev,
Diebold and Labys (2001).
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Localized realized volatility

� For a point τ in time, find a past time interval for which a
local volatility model is a good approximator.

� The time interval is determined by adaptive statistical
methods.

� Represents a local analysis, i.e. changes are detected close to
the forecasting time point.
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Realized volatility

Daily realized volatility

R̃V t =
M∑

j=1

r2
t,j ,

with rt,j = pt,nj − pt,nj−1 , j = 1, . . . ,M, and pt,nj the log price
observed at time point nj of trading day t.
It converges to the quadratic variation for M →∞ (Andersen and
Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002b).
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Realized volatility (smoothed)

Tukey-Hanning kernel

RVt = R̃V t,1 +
H∗∑
h=1

k
(

h − 1
H∗

)
(γt,h + γt,−h)

k(x) = sin2 {π
2 (1− x)2},

γt,h =
∑M

j=1 rt,j rt,j−h (one-minute returns),

H∗ = 5.74 R̃V t,1/2M
R̃V t,15

√
M with RVt,i the realized variance estimator

based on i minute returns.
(Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008)
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Data

S&P500 index futures from January 2, 1985 to February 4, 2005.

Series Mean Std.Dev. Skewness Kurtosis LB(21)(1)

RVt 1.07 8.16 59.08 3861 1375

log(RVt) -0.51 0.87 0.43 4.99 46809
(1) The critical value of this Ljung-Box test is 32.671.

Table 1: Descriptive statistics.
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Figure 2: Kernel density estimates (solid line: log RV , shaded area: point-

wise 95% confidence intervals, dashed line: normal distribution).

Localized Realized Volatility Modeling



Realized volatility 11

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

 20  40  60  80  100  120

sa
cf

lag

  -8
  -6
  -4
  -2
  0
  2
  4
  6
  8

86 88 90 92 94 96 98 00 02 04

lo
g.

 R
V

time

Figure 3: log RV and its sample autocorrelation function.
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Localized realized volatility

LAR(1) model with parameter set θt = (θ1t , θ2t , θ3t)>:

logRVt = θ1t + θ2t logRVt−1 + εt , εt ∼ N(0, θ2
3t). (1)

Suppose θt ≡ θ∗ for t ∈ I = [1,T ]

θ̃t = argmaxθ∈ΘL(logRV ; θ)

= argmaxθ∈Θ

{
−T

2
log 2π − T log θ3

− 1
2θ2

3

T∑
t=1

(logRVt − θ1 − θ2 logRVt−1)2

}
.

Goal: identify a local homogeneous interval Iτ for time point τ .
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Identify local homogeneity

At time point τ , choose a local homogeneous interval from

{I k
τ }Kk=1 = {I 1

τ , I
2
τ , · · · , IK

τ }

where I k
τ = [τ − sk , τ) with 0 < sk < τ , which leads to the best

possible accuracy of estimation.

� Under local homogeneity θτ ≡ θ∗τ within I k
τ = [τ − sk , τ):

θ̃
(k)
τ estimates θ∗τ at rate 1/

√
sk

� The modeling bias of approximating LAR(1) increases w.r.t. k .

The optimal choice Îτ : balances the bias and variation.
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Estimation under local homogeneity

Given Iτ = [τ − s, τ), the local MLE is:

θ̃τ = argmaxθ∈ΘL(logRV ; Iτ , θ)

Under local homogeneity: θτ ≡ θ∗τ , the fitted likelihood ratio
measures the estimation risk:

LR(Iτ , θ̃τ , θ∗τ ) = L(Iτ , θ̃τ )− L(Iτ , θ∗τ ). (2)
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Estimation under local homogeneity

The estimation risk LR(Iτ , θ̃τ , θ∗τ ) is stochastically bounded:

Eθ∗τ
∣∣LR(Iτ , θ̃τ , θ∗τ )

∣∣r ≤ ξr
with ξr = 2r

∫
ξ≥0 ξ

r−1e−ξdξ = 2rΓ(r).
It leads to the confidence set:

E(ε) = {θ : LR(Iτ , θ̃τ , θ∗τ ) ≤ ε}

in the sense that Pθ∗
{
E(ε) 63 θ∗

}
≤ α, Polzehl and Spokoiny

(2006).
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Localized AR(1) model

Interval set {I k
τ } for k = 1, · · · ,K :

I 1
τ = [τ − 1w, τ) I 2

τ = [τ − 1m, τ) · · · IK
τ = [τ − 5y, τ)

↓ ↓ ↓ ↓

θ̃
(1)
τ θ̃

(2)
τ · · · θ̃

(K)
τ

� The interval is growing in length.

� Local homogeneity is assumed at I 1
τ .

� Final estimate θ̂τ is based on a sequential testing.

Localized Realized Volatility Modeling



Localized realized volatility 17

Sequential testing

Suppose that I k−1
τ is a homogeneous interval: θ̂(k−1)

τ = θ̃
(k−1)
τ . The

null hypothesis at step k :

H0 : I k
τ is an homogeneous interval.


 	& %τI k−1
τ is homogeneous: θ̂k−1

τ = θ̃k−1
τ

Test homogeneity of I k
τ : θ̂

k
τ = θ̃k

τ or terminates atI k−1
τ

Test:
∣∣∣LR(I k

τ , θ̃
k
τ , θ̂

k−1
τ )

∣∣∣r ≤ ζk , where ζk is critical value (CV).
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Adaptive procedure

1. Initialization: θ̂1
τ = θ̃1

τ .

2. k = 1
while

∣∣∣LR(Iτ , θ̃k+1
τ , θ̂k

τ )
∣∣∣r ≤ ζk+1 and k < K ,

k = k + 1

θ̂k
τ = θ̃k

τ

3. Final estimate: θ̂τ = θ̂k
τ
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Parameter choice: Interval set

� {I k}13
k=1 for every τ with the following interval lengths:

{sk}13
k=1 = {1w, 1m, 3m, 6m, 1y, 1.5y,

2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y},

where w denotes a week (5 days), m refers to one month (21
days) and y to one year (252 days).
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Parameter choice: CV

� Monte Carlo simulation: generate AR(1) processes with
θt = θ∗ = (θ∗1, θ

∗
2, θ
∗
3)> for all t

I yt = θ∗1 + θ∗2yt−1 + εt , εt ∼ N(0, θ∗23 ).
I y0 = θ∗1/(1− θ∗2)

I 100 000 paths, each including 1261 observations

� Choice of critical values:
Parametric case θt ≡ θ∗:

Eθ∗
∣∣∣LR

(
IK , θ̃K

t , θ̂
K
t(ζ1,...,ζK )

)∣∣∣r ≤ ξr (3)

Eθ∗
∣∣∣LR

(
I k , θ̃k

t , θ̂
k
t(ζ1,...,ζk)

)∣∣∣r ≤ k − 1
K − 1

ξr (4)
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Parameter choice: CV

Sequential choice of critical values

� Choice of ζ1 =∞ initializing the procedure θ̂1
t (ζ1) = θ̃1

t

� Choice of ζ2 leading to θ̂k
t (ζ1, ζ2) by setting

ζ3 = . . . = ζK =∞:

Eθ∗
∣∣LR

(
I k , θ̃k

t , θ̂
k
t (ζ1, ζ2)

)∣∣r ≤ 1
K − 1

ξr , k = 2, . . . ,K .

� Choice of ζ3 leading to θ̂k
t (ζ1, ζ2, ζ3) by setting

ζ4 = . . . = ζK =∞:

Eθ∗
∣∣LR

(
I k , θ̃k

t , θ̂
k
t (ζ1, ζ2, ζ3)

)∣∣r ≤ 2
K − 1

ξr , k = 3, . . . ,K .
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Parameter choice: CV

Sequential choice of critical values

� Choice of ζk leading to θ̂l
t(ζ1, · · · , ζk) by setting

ζk+1 = . . . = ζK =∞:

Eθ∗
∣∣LR

(
I k , θ̃l

t , θ̂
l
t(ζ1, . . . , ζk)

)∣∣r ≤ k − 1
K − 1

ξr , l = k , . . . ,K .
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Parameter choice: CV and r

� The critical values (CV) depend on θ∗τ used in the Monte Carlo
simulation:
I local global CV: global parameter θ∗τ = θ∗ over the whole

sample
I local adaptive CV: time varying parameter θ∗τ using a moving

window with fixed size.

� r : default choice 1/2
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Figure 4: CV for r = 1/2 and θ∗ = (−0.1197, 0.7754, 0.5634)> (global). Data

source: log RV of the S&P500 index futures.

Localized Realized Volatility Modeling



Localized realized volatility 25

Simulation

Figure 5: The average values for θ∗1t ∈ {−0.120, 1.197}.
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Simulation

Figure 6: The average values for θ∗2t ∈ {−0.775, 0.775}.
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Simulation

Figure 7: The average values for θ∗3t ∈ {0.100, 0.563}.
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The ARFIMA model

ARFIMA(p, d , q), model:

φ(L)(1− L)d (logRVt − µ) = ψ(L)ut ,

with φ(L) = 1− φ1L− · · · − φpLp, ψ(L) = 1 + ψ1L + · · ·+ ψqLq

L denoting the lag operator, d ∈ (0, 0.5), ut
iid∼ N(0, σ2).

(Andersen, Bollerslev, Diebold and Labys, 2003)
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The HAR model

Heterogeneous autoregressive model:

logRV t = α0 + αd logRV t−1 + αw logRV t−5:t−1

+ αm logRV t−21:t−1 + ut

with the multiperiod realized volatility components

RVt+1−k:t =
1
k

k∑
j=1

RVt−j .
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Empirical evidence

� The HAR model is no long memory model, but provides an
approximation.

� The HAR and ARFIMA models exhibit similar in-sample and
out-of-sample performance.

� Both strongly outperform conventional volatility models.
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Forecast setup

� The first five years (1985-1989) of the S&P 500 index futures
data serve as training set.

� The remaining data serve as forecast evaluation period
(January 2, 1990 to February 4, 2005).
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Forecast setup

� Consider 5 sets of critical values: the global ones and the
adaptive ones based on a sample period of 1 month, 6 months,
1 year and 2.5 years.

� The interval of homogeneity is always selected based on the
following set of interval lengths:

{sk}13
k=1 = {1w, 1m, 3m, 6m, 1y, 1.5y,

2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y},
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Figure 8: Boxplot of the homogenous intervals selected by the LAR(1)

procedure based on different sets of critical values.
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Forecast setup

� ARFIMA forecasts are based on an ARFIMA(2,d ,0) model (as
indicated by the AIC and BIC using the full sample period).

� Estimation and prediction is performed using a rolling window
scheme with different window sizes, i.e.
{3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y}.

� Same setup is used to assess the predictability of the HAR
model and a constant AR(1) model, i.e.
logRVt = α0 + α1 logRVt−1 + ut , ut

iid∼ N(0, σ2).
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crit. values LAR(1) sample size AR(1) ARFIMA HAR

local adaptive 1m 0.4858 3m 0.5149 0.5328 0.5381

local adaptive 6m 0.4811 6m 0.5288 0.5225 0.5240

local adaptive 1y 0.4876 1y 0.5398 0.5178 0.5185

local adaptive 2.5y 0.4916 1.5y 0.5462 0.5143 0.5172

local global 0.5014 2y 0.5509 0.5133 0.5158

2.5y 0.5555 0.5132 0.5153

3y 0.5574 0.5123 0.5155

4y 0.5649 0.5129 0.5171

5y 0.5712 0.5129 0.5176

Table 2: Root mean square forecast errors.
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crit. values LAR(1) sample size AR(1) ARFIMA HAR

local adaptive 1m 0.3667 3m 0.3900 0.3978 0.4025

local adaptive 6m 0.3654 6m 0.3987 0.3902 0.3862

local adaptive 1y 0.3704 1y 0.4057 0.3860 0.3857

local adaptive 2.5y 0.3748 1.5y 0.4103 0.3836 0.3843

local global 0.3824 2y 0.4136 0.3826 0.3836

2.5y 0.4157 0.3816 0.3839

3y 0.4177 0.3814 0.3843

4y 0.4238 0.3817 0.3851

5y 0.4300 0.3819 0.3858

Table 3: Mean absolute forecast error.
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Empirical results

� Mincer–Zarnowitz regression:
Evaluate the predictive performance of the different models
based on Mincer–Zarnowitz regressions:

logRVt = α + β ̂logRVt,i + νt

with ̂logRVt,i denoting the log realized volatility forecast of
model i .
I Assess R2 of the regression.
I Test on unbiasedness of the different forecasts:

H0 : α = 0 and β = 1.
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Model α β p-value R2

global LAR -0.0130 1.0128 0.1007 0.6959

adaptive LAR, 1y 0.0025 1.0014 0.9780 0.7117

1y AR(1) -0.0010 1.0117 0.6002 0.4669

5y AR(1) 0.0221 1.0367 0.2216 0.6052

1y ARFIMA 0.0008 1.0011 0.9962 0.6747

5y ARFIMA 0.0009 1.0154 0.4907 0.6811

1y HAR -0.0076 0.9907 0.7509 0.6742

5y HAR 0.0145 1.0237 0.2036 0.6756

Table 4: Mincer–Zarnowitz regression results.
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Empirical results

� Test on equal forecast performance:
Diebold–Mariano test on equal MSFEs:

e2
t,LAR − e2

t,i = µ+ vt

with et,i denoting the forecast error of model i .
I H0 : µ = 0.
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global LAR t-values for adaptive LAR,1y t-values for

compared to H0 : µ = 0 compared to H0 : µ = 0

1y AR(1) -4.1667 1y AR(1) -5.5154

5y AR(1) -1.2935 5y AR(1) -4.9189

1y ARFIMA -1.5412 1y ARFIMA -2.8148

5y ARFIMA -1.0825 5y ARFIMA -2.3211

1y HAR -1.6827 1y HAR -3.0097

5y HAR -1.5865 5y HAR -2.5048

Table 5: Diebold–Mariano test results.
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Conclusion

� Dual view on the long memory diagnosis of volatility.

� Long memory phenomenon can be reproduced by localized
short memory.

� Identification of homogeneity by a localized realized volatility
model.
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Conclusion

� The localized approach outperforms long memory-type models
and constant AR(1) models in terms of predictability.

� An adaptive choice of the critical values (and a decrease in the
underlying sample period) improves the estimation and
forecast accuracy of the localized approach.
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