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Motivation 1-1
Measuring risk exposure

r(t) = b(t) x(2) = b(t) TZX(D)e(t)
r(t): portfolio returns
b(t): trading strategie
x; € R?: individual returns with cov ¥, (t)
ex(t): stochastic term

VaR; pr = —quantile, {r(t)}
pr: h = l-day or h = 5-day forecasted probability of r(t).

Critical points: estimate ¥, (t)
identify the distributional behavior of £,(t)

GHICA



Motivation 1-2

Popular risk management models
r(t) = b(t) " x(t) = b(t) T2 (t)ex(t)

RiskMetrics

ex(t) ~ N(0,14)

Yo(t) = wi(t — 1)+ (1 — @)x(t — Dx'(t - 1)
(Exponential Moving Average)

t-deGARCH

ex(t) ~ t(df)
Yo(t) =@ + a1 X, (t — 1) + Bix(t — 1)x'(t — 1) (GARCH(1,1))
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Motivation 1-3

Limitations of the popular risk management
models

[J covariance estimation relies on a time-invariant form

Y. (t) = {anx(t— m—1)x"(t—m— 1)}/{277'"}
m=0

m=0
n € [0,1]
Y.(t) = wHax(t—1)x"(t—1)+ L (t—1)

= 17ﬁ+aZﬂmx(t—m—1)xT(t—m—1)
m=0

GHICA



Motivation 1-4

Limitations of the popular risk management
models

Example: Large loss in the US and European stock markets on 13

October 1989.

time period 15
1988,/01/04-1989/10/13 | 8.63e-06 (6. 36e—06) 0.07 (0. 3) 0.87 (0.05)
1989/10/13-1991/08/07 | 6.54e-06 (2.95e-06) 0.17 (0.07) 0.61 (0.12)
1988/01/04-1991/08/07 | 1.61e-05 (6.93e-06) 0.12 (0.04) 0.83 (0.04)

Table 1: ML estimates of the GARCH(1,1) model on the base of the
German stock Allianz. The standard deviation of the estimates are
reported in parentheses.
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Motivation 1-5
L] unrealistic distributional assumption

Example: Log-density of the DAX portfolio, b(t) = unit(1/20).
Time interval: 1988/01/04 - 1996,/12/30.

er(t) ~ GH(—0.5,1.21,—0.21,1.21,0.24).

Data source: FEDC (http://sfb649.wiwi.hu-berlin.de)

T T
~ Nonparametric kemnel density
— GH (NIG)
- - Gaussian
= 1)
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Motivation 1-6

Limitations of the popular risk management
models

(] numerical problems appear when applied to high-dimensional
portfolios

Example: Dynamic conditional correlation (DCC) model:
Y (1) = Di(t)Re(t) Di(t)

D, (t): GARCH(1,1)

Re(t) = Re(1—01 —02) + 01 {ex(t — 1)) (t—1)} + 2R, (t —1)
Ry: sample correlation

ex € IRY: standardized returns
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Motivation 1-7

GHICA

Generalized Hyperbolic distribution + Independent Component
Analysis

r(t) = b(t) x(t) = b(t)" Wly(t)
= b(t) WDy ?(t)e (1)
gw(t)NGH()\,Oé,/B,(s,M), J:177d
W is a d x d nonsingular ICA matrix
y(t) € R? is (approximately) independent
D,(t) = diag(af,l(t), e ,O'}Z,d(t)) is the covariance matrix of y(t)

03,(8) = { oo n Oy (£ = m = 1)} /{5 n" (1)}
GHICA




Motivation 1-8

ICA example

y1(t): generalized hyperbolic variable GH(1,2,0,1,0)
y2(t): GH(1,1.7,0,0.5,0)
y3(t): GH(1,1.5,0,1,0)

1.31  0.14 0.18
A=Wt = —0.42 —-126 —1.25 | 1072
—0.03 0.41 —0.49

x(t) = Ay(t)
Note: W is the estimated linear transformation matrix based on

returns of three DAX components: ALLIANZ, BASF and BAYER
from 1974/01/02 to 1996/12/30 (Data source: FEDC).

GHICA



http://sfb649.wiwi.hu-berlin.de/

Motivation

ICA example

The Mahalanobis transformation:

0.91
—0.09
—0.12

0.79
—0.11
—0.15

—~—1/2 _
cov, =

GHICA

1-9

—0.09 —0.12
1.03 —0.41 | 10?
—0.41 1.04
0.10 0.03
—0.44 1.08 | 102
—0.38 —1.10




Motivation

ICA example

Cross-cumulants:

Transformation Mahalanobis ICA
E[y7ys] 0.04 -0.01
E[y3ys] 0.14 0.00
E[y7ys] 2017 0.00
Ely1y3ys] 0.37 -0.03
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Motivation 1-11
Time plots of three ICs (top), x(t) (middle) and y(t) (bottom).

ICL: GH(1.2.0,1,0) 1C2 GH(1,17,005.0) 1C3 GH(1,1501,0)
600 600 600
300 300 300
000 000 000
300 300 300
250 500 750 1000 250 500 750 1000 250 500 70 1000
x1 x2 x3
008 008 008
004 004 004
000 000 000
004 004 004
250 500 0 1000 250 500 70 1000 250 500 750 1000
Estimated IC1 Esimated 1C2 Esimated IC3
600 600 600
300 300 300
000 000 000
300 300 300
20 500 1000 20 500 7 1000 250 500 750 1000

Q GHICAsim.xpl
GHICA
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Motivation 1-12

Procedure: GHICA

1. Implement ICA to get ICs.

2. Estimate variance of each IC by using the local exponential
smoothing approach

3. Identify GH distributional parameters of the innovations of
each IC

4. Estimate the density of portfolio returns using the FFT
technique

5. Calculate risk measures

GHICA



QOutline

1. Motivation: ICA + GH = GHICA v
2. ICA: properties and estimation

3. Method: GH distribution, adaptive exponential smoothing and
FFT

4. Simulation study
5. Empirical study

6. Conclusion



ICA 2-1

Definition
ICA model:
Yit wilp - Wig X1t
Yt Wa1 -+ Wdd Xdt
y(t) = Wx(t)=(wy, -, wg) x(t)
equivalently x(t) = Ay(t)

where x(t) are d-dimensional observations, y(t) are ICs and W the
nonsingular linear transformation matrix: W~ = A.
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ICA 2-2

Properties of ICA

Scale identification: the scales of the ICs are not identifiable since
both y(t) and W are unknown:

d d
1
aae = e = Y g aHkyi)
j=1 =1

Hence:  prewhiten x(t) by the Mahalanobis transformation
cov(x)~1/2 and assume that each IC has unit variance: E[y7] =1
From now on x(t) is prewhitened!
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ICA 2-3

Properties of ICA

Order identification: the order of the ICs is undetermined.
x(t) = Ay(t) = AP~ Py(t)

where P is a permutation matrix and Py; are the original 1Cs but in
a different order.

GHICA



ICA 2-4

Properties of ICA

ICs are necessarily non-Gaussian
Consider two prewhitened Gaussian ICs y; and y» with pdf:

2 2 2
yi tvy 1 y
1 2 7exp(_|| H )

1
f = |2n1|"2 — =
(y1,y2) = [271| 72 exp( > ) o >
where ||y|| is the norm of the vector (y1,y») .
The joint density of the observation x; and x> is given by:

& 1]

2)'

|| Wx

2

1
f(x1,x2) = |21 "2 exp(— )IdetW| = -~ exp(~
T

Since A is an orthogonal matrix after prewhitening.
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ICA

2-5

How to find ICs? - Minimize mutual

information

I(W,y)

d
min Z H(y;j)
j=1

w; = argminH(y;)

j=1
d

> H(j) — H(x) — log|det(W))
j=1

d

ZmlnH(yJ)

j=1

argmaxJ(wj, y;)

where H(-) is the entropy and J(-) is the negentropy.

GHICA



ICA 2-6

How to find ICs?

Jones and Sibson (1987): projection pursuit

(] Cumulant based measure: e.g. skewness and excess kurtosis:
sensitive to outliers.

(1 Negentropy: Gaussian variable has the maximal entropy given
a fixed variance.

J(w,y) = J(f,) = H{N(0, 1)} — H(y)
entropy: H(y) = H(f)) = —/fy(u) log £, (u)du.

Note that y is now a univariate and prewhitened variable.
Negentropy requires the knowledge of f,.

GHICA




ICA 2.7

How to approximate univariate negentropy?

Given y univariate and prewhitened:

argmax{J(f,)} = argmin{H(f,)}.

Cover and Thomas (1991):
Fix sample expectations ¢; with given functions G;(y)

E[G(y)]—/G y)dy=¢j, j=1,---,s

Problem: f(y) is not identifiable.

GHICA




ICA 2-8

How to approximate univariate negentropy?

Given y univariate and prewhitened:

argmax{J(f,)} = argmin{H(f,)}.

Minimize the univariate entropy w.r.t. the density family:

fo(y; a) = AeXP{Z a;Gj(y)} (1)

GHICA



ICA 2-9
How to approximate univariate negentropy?

Step 1: estimate pdf of y(t) with the smallest entropy, i.e. search
for non-Gaussian distributions:

F() = argmax,[~H{fo(y: a)}]-
Include the following functions for standardization:

Gor1(y) =y, 41 =0 Gopo(y) =y cssa =1

make G; an orthogonal system.

fr=oW{1+> Gy} (2)
j=1

GHICA




ICA 2-10

How to approximate univariate negentropy?

Step 2: approximate the negentropy:

H(y) =~ —/?y(u) log £, (u)du ~ H(ygauss)_§zcj2 (3)

1 S
5 c (4)
j=1

J(y) = H()/gauss) - H(y) ~

Proof in Appendix.
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ICA 2-11

How to approximate univariate negentropy?

Step 3: choose functions G;:

1. E[Gj(y)] should be easily computable and not sensitive to
outliers

2. Gj(y) should not grow faster than quadratically to ensure that
fo(y) in (3) is integrable

3. G;j(-) should capture distributional features of log{f,(-)}.
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ICA 2-12

How to approximate univariate negentropy?

Two important features measure non-Gaussianity:
(] Asymmetry - G; an odd function

[J Tail behavior - Gy an even function

15:2
Jy) = 2 Cj2
j=1

ki E{G1(y)}* + ke[E{Ga(y)} — E{ G2(¥gauss)}]®

Q

GHICA



ICA 2-13

How to approximate univariate negentropy?

Example: Negentropy approximation
Approximation a: k; = 36/(8v/3 —9) and k¥ = 1/(2 — 6/7)
Jy) ~ ki[E{yexp(—y?/2)}]? + K3[Efexp(—y?/2)} — \/1/2)?
Gi(y) = yexp(—y?/2)
Gi(y) = exp(—y*/2)

Approximation b: k; = 36/(8v/3 —9) and k2 = 24/(16v/3 — 27/7)

Jy) ~ klE{yexp(=y?/2)}* + KS[E{ly|} — v/2/7]?
Gl(y) = yexp(—y?/2)
G(y) = lyl

GHICA




ICA 2-14

How to approximate univariate negentropy?

Comparison of the true negentropy (black) and its approximations (a: red, b: blue) of
simulated Gaussian mixture variable: pN(0, 1) + (1 — p)N(1,4) for p € [0, 1]. Q
GHICAnegentropyapp.xpl

Negentropy comparison

GHICA :
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ICA 2-15

Negentropy approximations and FastiICA

In the VaR context: tail behavior is more relevant than asymmetry.
Therefore,

J(y) = C{E[G(y)] — E[G{N(0,1)}]}*.

1
Gly) = ;Iogcosh(sy), 1<s<2

g(y) € G'(y) = tanh(sy)
g'(y) = s{1—tanh®(sy)}

very often, s = 1 is taken in this approximation.

GHICA




ICA 2-16

FastICA

Objective function
{E{G(WX)} — E[G{N(0,1)}]} E{Xg(WX)} =0 (5)
A fast gradient method can be formulated under the constraint
WTW =1,
E{Xg(WX)} + xW =0 (6)

The iteration of w; with respect to y;:

W™ = E[Xg(w" X) — E{g'(w"X)}w!"] (7)

GHICA



ICA 2-17

FastICA

Algorithm

1. Choose an initial vector w; of unit norm, W = (wy,--- ,wg)'.

2. Let w” = E[g(w]" 2] ~ Elg’(w" D0lw(" V. In
practlce the sample mean is used to calculate E[-].

3. Orthogonalization (decorrelated):
(n)
w

n mT
/ = Wj( ) — Zk#J(W( ) Wk)Wk-
4. Normalization: W = W /HW H

5. If not converged, i.e. HWJ — Wj(" 1)|] # 0, go back to 2.
6. Set j =+ 1. For j < d, go back to step 1.

GHICA




QOutline

1. Motivation: ICA + GH = GHICA v
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Method 3-1

GH distribution

X ~ GH with density:

(o)) K12 {04\/ 0% + (x — M)2}
\/%K)\ 51) {\/ﬁ/a}l/%/\
-exp{f(x — )}

Where 12 = a? — 32, K)(-) is the modified Bessel function of the
third kind with index A: Ky(x) = 3 [7°y* Texp{—%(y+y 1)} dy.

for(x; A a, 3,6, )

GHICA



Method 3-2
Parameters of GH distribution

Parameters p and 0: pdf of GH(—0.5,3,0,1,2) (black). On the left is the pdf of
GH(—0.5,3,0,1, —3) and on the right is GH(—0.5,3,0, 2, 2).

GH parameter mu GH parameter delta

S S
© o
5 S
< <
> o > o
o o
S S
o of
10 5 0 5 10 -10 5 0 5 10
X X
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Method 3-3
Parameters of GH distribution

Parameter (3: pdf of GH(—0.5,3,0,1,2) (black). On the left is the pdf of
GH(—0.5,3,—2,1,2) and on the right is GH(—0.5,3,2,1,2).

GH parameter beta (n) GH parameter beta (p)

06
06
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Method 3-4
Parameters of GH distribution

Parameter o: pdfs of GH(—0.5,3,0,1,2) (black) and GH(—0.5,6,0,1,2) (red).

GH parameter alpha

-10 5 0 5 10
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Method 3-5

Subclass of GH distribution

The parameters (11,6, 3, )" can be interpreted as trend, riskiness,
asymmetry and the likeliness of extreme events.

Normal-inverse Gaussian (NIG) distributions: A = —1/2,
s Ki {a\/52 +(x — ,u)2}

fNIG(X; O‘)ﬁa 57,“) = ? 52 T (X — /,L)z eXP{(SH-ﬁ(X—M)}a

where x, p € R, 0 < ¢ and |g| < a.

GHICA



Method 3-6

Tail behavior of GH distribution

for(G A, a, 3,6, 11 = 0) ~ x*1e(FaFBX 55 x 5 400,

Tail behaviors of five normalized distributions: NIG, standard normal, Laplace and

Cauchy distributions.

Distribution comparison Tail comparison

GHICA



Method 3-7

Adaptive exponential smoothing

Chen and Spokoiny (2006)

y(t) = o(t)=(t)

e(t) ~ NIG
&(t): the “best” local estimate from {#(K(t)} for k=1,--- K

1/2

F( {any t—m —1}/{an}
s.t. n,’yk+1<c—>0

GHICA




Method 3-8

Adaptive exponential smoothing

e(t) ~ NIG: quasi ML estimation
Power transformation with 0 < p < 0.5 guarantees E[exp{ps?(t)}]
exists:

yp(t) = sign{y(t)}y(t)”
0(t) = var{yp(t)|Fe-1} = E{ly(t)]*"|Fe-1}
= o*(t)Ele(t)]?P = a? (1),

M My
6() = D nRly(t—m=1)PPY/{> i}
m=0 m=0

GHICA



Method 3-9

Adaptive exponential smoothing

Localization:

. . . N, —
(] decreasing variation: ,f,:l ~ ll—TZL =a>1
where Ny = an/’kzo ny

[J the first local estimate (k = 1) is automatically accepted as
6(K)(t). The consequent local estimate would be accepted if
the fitted Gaussian log-likelihood ratio L is bounded by the
critical value 3y:

L (e 09 (£), 6% (1)) = L (e, BO9(2)) — L, 64 (1))

GHICA



Method 3-10

Algorithm

1. Initialization: 0 (¢) = dM)(¢).
2. Loop: for k > 2
0 (&) = 80 (e), if L (e, B0 (1), BOD(2) ) < e
6A)(k)(‘f) = é(s)(f) = é(k’l)(t) for k < s < K, otherwise
3. Final estimate: if k = K, A(t) = 09)(t).

4. Save the selected local parameter 7j(t). Since C, is only a
constant, the voIatiIity estimate is:

50(1) = [(S Mg ()2t — m— D}/ (S ()]

GHICA




Method 3-11

Parameter choice

L1 Initial values: 713 = 0.60, ¢ = 0.01, a=1.25 and p = 0.25

[J Critical values: Monte Carlo simulation.

> apply the general critical values under the normal distributional
assumption since the transformed variable is close to Gaussian
> estimate C, based on the estimates 6(t) such that

var{&(t)} = var y(t){é,,/é(t)}ﬁ] =1

» estimate the NIG distributional parameters of &(t) = y(t)/6(t)
where 5(t) = {0(t)/C,} %

> calculate the critical values based on the identified NIG
variables.

GHICA




Method 3-12
Characteristic function of portfolio returns
The characteristic function of the NIG variable is:
(2) = exp iz + S (/@7 = 7 — \fo? = (32}
The scaling transformation of NIG r.v. y' = cy:

gy o, 8,8, 1) = fyigleys o/l B/ e, |cld, cp)

Given r(t) = b(t)"W 1Dy(t)l/zay(t) = a(t)ay(t)
aj(t)e;(t) ~ NIG(aJ,ﬁJ, J,,uj) with j=1,---  d:

NIG(&;, B, 07, i) = NIG(eyi/|a; ()], Bj/aj(t), |a; ()16}, a;(t)117)

GHICA




Method 3-13

Density estimation by using FFT

The characteristic function of the portfolio return at time t is:
d .—d v
pr(2) = [ v (2) = exp (i35, 1y
d N v pe) v pe) .
o | S 5{y /a2 - 52—\ Jaz — (7 +iz)2)

The density function is approximated by using the FFT:

+o00o s
f(r)= 1/ exp(—itr)y(z)dt = 217r/ exp(—itr)y(z)dt

21 J_ o —s

GHICA



Procedure: GHICA

1. Implement ICA to get ICs.

2. Estimate variance of each IC by using the local exponential
smoothing approach

3. Identify GH distributional parameters of the innovations of
each IC

4. Estimate the density of portfolio returns using the FFT
technique

5. Calculate risk measures



Simulation study 4-1

Simulation study on covariance estimation

Goal GHICA versus DCC:

Y. (t) = wlD(tyw1T
Y. (1) = Di(t)Re(t)Dx(t)"

Design

() d = 50 centered and symmetric NIG(¢;,0,6;,0) where
aj ~ U[1,2] and «; = §; to guarantee standardization

(] sample size T = 1900, N = 100 simulations

[J covariance shifts 31 = /4, Y5 and X3 are self-correlated
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Simulation study

Ordered eigenvalues of the generated covariance ¥».

4

35k . ordered eigenvalues of 22

251

15F

0 5 10 15 20 25 30 35 40 45

50
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Simulation study

Ordered eigenvalues of the generated covariance X 3.

4

. ordered eigenvalues of 2z,

35"

251

15F

0 5 10 15 20 25 30 35 40 45

50
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Simulation study

Structure shifts of the generated covariance through time.

Structure shifts of covariance matrix

Sigma2 - —

Sigmal

Sigma3 -

I I I I I I I I I
0 400 700 1000 1300140015001600 1700 1800 1900
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Simulation study 4-5

Realized estimates of ¥(2,5) based on the GHICA and DCC
methods.

0.5

Sigma(2,5)(t)

i = i i — DCC estimates
Sigma(2,5) d = 50 dimensions — GHICA esfimates

0.4 1

—0.2 L L L L I I I
300 400 700 1000 1300 1400 1500 1600 1700 1800 1900
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4-6

Simulation study

>3 ((RAE()<1)

Boxplot of the proportion 5d

over 100 simulations, where RAE(i,)) =

fori,j=1,---,d
S EEHICA) 5 (1)
S Lo [EPCC 0200

1
proportion of RAE(i.j)<=1

GHICA



Empirical Study 5-1

Risk measures and requirements

[J Regulatory: to ensure the adequacy of capital and restrict the
happening of large losses of financial institutions.

VaR; ,r = —quantile, {r(t)},

where pr is the h = 1-day forecasted probability of the
portfolio returns

Risk charge, = max (Mf% 2?21 VaR;_; 1%, VaRtJ%),
where My relies on the number of exceptions

(—r(t) > VaRypr) over last 250 days and identifies according
to the “traffic light” rule.

GHICA




Empirical Study

5-2

No. exceptions

Increase of My

Zone

0 bis 4
5
6

8
9
More than 9

0.00
0.40
0.50
0.65
0.75
0.85
1.00

red

Table 2: Traffic light as a factor of the exceeding amount, cited from
Frank, Hardle and Hafner (2004).

GHICA



5-3

Empirical Study

Risk measures and requirements

L1 Minimum requirement of regulatory:
pr < 525 (green zone)
small amount of risk charge:
Risk charge (RC) = mean (VaR¢ )

GHICA




5-4

Empirical Study

Risk measures and requirements

[ Investors: suffer loss (at least the amount of the expected
shortfall) once bankruptcy happens

Expected shortfall (ES) measures the expected size of loss:

ES = E{—r(t)| — r(t) > VaR¢p}
ES as small as possible

L] Internal supervisory: exactly measure the market risk
exposures

No. exceptions

pAr ~ No. total observations
pr close to pr

GHICA



Empirical Study 5-5

DAX portfolio

[ Data: 20 DAX stocks 1974/01/02 - 1996/12/30 (5748
observations). All are heavy-tailed distributed (kurtosis> 3).
The smallest correlation coefficient is 0.3654

[J Static trading strategies: b(t) = b(!) = (1/d,---,1/d)" and
b(t) = b® ~ U0, 1]

[ Goal: GHICA versus RiskMetrics and ES t(6) (exponential
smoothing with t(6) distributional assumption)

GHICA



Empirical Study 5-6
One day log-returns of the DAX portfolio with the static trading
strategy b(t) = b(1). The VaRs are from 1975/03/17 to
1996/12/30 at pr = 0.5% w.r.t. three methods.

0.15 T T
« log-returns with equal weights (b1)
— GHICA VaR at 0.5%
— - RiskMetrics VaR at 0.5%
o1l — - t(6) VaR at 0.5% 1
005} . . R B

-0.05 H

-0.15

-0.2 L L L I I
300 1300 2300 3300 4300 5300
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Empirical Study

Enlarged part

« log-returns with equal weights (b1) h |
— GHICA VaR at 0.5% | |
— - RiskMetrics VaR at 0.5% { ‘
— — (6) VaR at 0.5% | 4

-0.15

I I
2300 3300 4300
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Empirical Study 5-8
Risk analysis of the DAX portfolios with two static trading
strategies. The concerned forecasting interval is h=1or h=15
days. The best results to fulfill the regulatory requirement are
marked by ". The method preferred by investor is marked by /. For
the internal supervisory, the method marked by ° is recommended.

GHICA RiskMetrics N(u, 02) Exponential smoothing ¢(6)
h  b(t) pr pr RC ES pr RC ES pr RC ES
1 6™ 1% | 0.55%  0.0264 0.0456 | 1.18%° 0.0229" 0.0279 | 0.40% 0.0292 0.0269
b 0.5% | 0.44%°  0.0297 0.0472" | 0.75% 0.0254 0.0317 | 0.23%  0.0345 0.0506

b 1% | 0.59%  0.0265 0.0448 | 1.03%° 0.0231" 0.0288 | 0.38% 0.0294 0.0406
b 0.5% | 0.42%° 0.0298 0.0476" | 0.71%  0.0256  0.0315 | 0.21% 0.0347 0.0514

5 oY 1% | 0.83%  0.0550 0.0841 | 1.15%° 0.0481" 0.0602 | 0.19% 0.0665 0.0833
b 0.5% | 0.51%° 0.0612 0.0939° | 0.64%  0.0536  0.0683 | 0.09% 0.0784 0.1067
b® 1% | 0.83%° 0.0554 0.0828" | 1.18%  0.0488" 0.0613 | 0.16% 0.0673 0.0852
b 0.5% | 0.50%° 0.0617 0.0943" | 0.63%  0.0543  0.0676 | 0.07% 0.0794 0.1218
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Foreign exchange rate portfolio

[ Data: 7 FX rate 1997/01/02 to 2006/01/05 (2332
observations).

[J Dynamic trading strategies: b(3)(t) = x(t=1) , where

N Zf:l xj(t—1)
x(t) = {x1(t),--- ,xq(t)} . EUR/USD and EUR/SGD rates
are most correlated with the coefficient 0.6745

[0 Goal: GHICA versus DCCN (DCC with the Gaussian
distributional assumption)

GHICA
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Risk analysis of the dynamic exchange rate portfolio. The best
results to fulfill the regulatory requirement are marked by . The
recommended method to the investor is marked by '. For the
internal supervisory, we recommend the method marked by °.

GHICA DCCN
h  b(t) pr pr RC ES pr RC ES
1 6@ 1% | 1.28%° 0.0453" 0.0778 | 1.59% 0.0494 0.0254
b3 () 0.5% | 0.59%° 0.0493  0.1944° | 0.94% 0.0547 0.0289
5 b3@) 1% | 1.53%° 0.0806" 0.2630" | 4.17% 0.0993 0.1735
b3 () 0.5% | 0.79%° 0.1092  0.2801° | 3.44% 0.1100 0.1389
GHICA




Conclusion 6-1

Conclusion and Outlook

) GHICA Vv

[J Advanced ICA 1:
Gaussian ICs (€ IR®) + non-Gaussian ICs (€ IRV®) with
G >> NG

(] Advanced ICA 2:
Localization of ICA: y(t) = W(t)x(t)

GHICA
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Appendix 7-1

Derivation in Negentropy Approximation

max{—H(f,)} «— theory
s.t. [ Gi(y)f,dy = ¢ — data
[e(y)Gi(y)Gi(y)dy =1if i=j < orthogonality
= 0 otherwise

Je(V)Gi(y)ykdy =0, k=0,1,2

Equation (4): f, = o(y H1+> 1CJG(}/)}

Equation (5): H(y) ~ H(ygauss) — § 7:1 Cj2
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Appendix 7-2

s+2
fi(y;a) = Aexp{d_aG(y)}
j=1

2 S
y 1
= Aexp{—7 + asi1y + (as42 + 5)}/2 + Z ajGj(y)}
j=1
y: 1 3
= Aexp(—?) exp{ass+1y + (as42 + §)y2 + Z ajGj(y)}
j=1

. 1 s
= Ap(){1+ a1y + (as2 + 5)y + D 3Gi(y)}
j=1

with /i = V27 A and o(y) = - exp(~5).
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Appendix 7-3
Functions G; are orthogonal:

[o0ady = [ Ao+ v+ ozt 7+ 3260}

Jj=1

= Mt (aity) =1

/yﬁ)(y: a)dy - Aas-ﬁ-l = 0
v 1
/yzfo(y; a)dy = A{l+3(as2+ ) =1
/G./(y)fd(yva)dy - /aaj:CJ‘7 j:17-..’5

Solution: A =1, as11 =0, asg1o = —% and a; = ¢j, = (4).
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Appendix 7-4
Set B= Y3, GiGi(y), then £, = o(y)(1 + B)

H(y) = —/?ylog?ydy

~ —/wma+mmm¢myu%a+mwy

¢(y)(1 + B)log{x(y)}dy

¢(y)(1 + B)log(1 + B)dy

~
~

o(y)log{w(y)}dy — / Bp(y)log{¢(y)}dy

o(y)[B + 152 +0(B?)] (Taylor expansion)

= }/gauss — Z cr+o Z = (5)
GHICA
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Appendix 7-5

Properties of FastICA

Consistency: Assume that the data follows the ICA model and G
is a sufficiently smooth even function. Then the set of local
maxima of J(y) of corresponding IC y; fulfills:

E{yjg(y;) — &' (%)}HE{G(y;)} — E{G(N(0,1))}] > 0.

Asymptotic variance: The trace of the asymptotic (co)variance
of W is minimized when G is of the form:

Gopt(u) = ¢y log f,(u) + ou’ + .

GHICA



Appendix 7-6

Modified Bessel functions

[J Modified Bessel functions of the first kind:
Wy L -1
K\’ (x) = 7 exp{(x/2)(t+1/t)}t dt

[J Modified Bessel functions of the second kind:

@,y T(A+05)(2x)* [ cost
Ky'(x) = J Nz +X2),\+o.5dt
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Appendix 7-7
Backtesting

[J Risk level test: Hy : E[N] = Ta
LR1 = —2log {(1—a)" MaV}+2log {(1-N/T)""N(N/T)V}

is asymptotically x?(1) distributed, where N the sum of
exceedances happend in the interval [1, T]. a is the expected
risk level.

[ Clustering test: Hy: mgo = mo=m,mo1 =711 =1—7
LR2 = —2log {#™(1 — &)™} + 2log {#§XAgI AT AT
is asymptotically x?(1) distributed, where
mij = P(ly = jlle—1 = i), i,j = 0,1 is the transition probability,
and nj =S 1l =j|h—1=1),i,j =0,1.
ﬁ',:,' = n,-j/(n,-j + n,-vl,j), nj = ngj + nyj, and T = no/(no + nl).
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