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Motivation 1-1

A Stylized Fact in Financial Markets

Estimated density (nonparametric) Estimated log density (nonparametric)

Figure 1: Densities (left) and log-densities (right) of the devolatilized return of daily
DEM/USD FX rate from 1979/12/01 to 1994/04/01 (3720 observations). The kernel

density estimate of the residuals (red) and the normal density (blue) with /i = 0.55 (rule
of thumb). Q GHADAfx.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAfx.xpl

Motivation 1-2

A Stylized Fact in Financial Markets

Estimated density (nonparametric) Estimated log density (nonparametric)
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Figure 2: Densities (left) and log-densities (right) of the devolatilized DEM/USD
return on the basis of GARCH(1,1) fit: 67 = 1.65e — 06 + O.O7rt271 + 0.890?71 + e
The kernel density estimate of the residuals (red) and the normal density (blue) with
h = 2.17 (rule of thumb). Q GHADAgarch.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAgarch.xpl

Motivation 1-3

Risk Management Models

Heteroscedastic model
Ry = ocer, t=1,2,---

R: (log) return, o; volatility, e; i.i.d. stochastic term.
Typical assumptions
1 The stochastic term is normally distributed, €; ~ N(0, 1).

2 A time-homogeneous structure of volatility:

0 ARCH model, Engle (1995)
[ GARCH model, Bollerslev (1995)
[0 Stochastic volatility model, Harvey, Ruiz and Shephard (1995)
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Motivation 1-4

Improvements

A The generalized hyperbolic (GH) distribution family fits the
empirical distribution observed in financial markets.

[0 Hyperbolic (HYP) distribution in finance, Eberlein and Keller
(1995),

[0 GH distribution + (parametric) stochastic volatility model,
Eberlein, Kallsen and Kristen (2003).

B A time inhomogeneous model yields precise volatility
estimation.
(] Adaptive volatility estimation 4+ normal distribution, Mercurio
and Spokoiny (2004).

Combine A & B!
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Motivation 1-5
Motivation

GH distribution + adaptive volatility estimation (GHADA)
1. Adaptive volatility technique to estimate the volatility o; by 6

2. Standardize the returns using

R
€t = ~
Ot
3. Maximum likelihood to estimate the parameters

(N, o, 3,6, )" of GH distribution

4. Apply to risk measurement, e.g. Value at Risk (VaR) and
TailVaR.

Backtesting: GHADA performs better than a model based
on normal distribution.
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Motivation 1-6

Outline
1. Motivation v
2. Generalized hyperbolic (GH) distribution and its maximum

likelihood (ML) estimation

3. Adaptive volatility estimation
4.

5. VaR applications

6.

Standardized (devolatilized) returns

Multivariate VaR and independent component analysis (ICA)

All calculations may be replicated in XploRe.
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http://www.i-xplore.de

GH Distribution 2-1

Generalized Hyperbolic (GH) Distribution
X ~ GH with density:

(1/5)  Ka-ap2 {am} '
V21K (6¢) {\/52#/05}1/2_A

Where 12 = a2 — 32, K)\(-) is the modified Bessel function of the

third kind with index A: Ky(x) = 1 [y  Texp{—%(y + y 1)} dy

Furthermore, the following conditions must be fulfilled:

Hdé>0 8l <a ifA>0
06>0 |8 <a ifA=0
Hd>0 |8 <a ifA<O

GHADA i
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GH Distribution 2-2

GH parameters 1, ¢

1 and d control the location and the scale.

2 L
Elx] = “*istf&(lg))
vl = { @ - QR - )

The term in the big brackets is location and scale invariant.
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GH Distribution 2-3

GH parameter mu GH parameter delta

Figure 3: The GH pdf (black) with A= —0.5, « =3, 3=0,5 =1 and u = 2. The
left red line is obtained for © = —3 and the right red line is for § = 2 holding the other
parameters constant. Q GHADAghexample.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAghexample.xpl

GH Distribution 2-4

GH parameters [

( describes the skewness. For a symmetric distribution 3 =10
according to the following lemma.

Lemma

The linear transformation Y = aX + b of X ~ GH is again GH
distributed with parameters \y = A\, ay = «/|a|, By = (3/|al,
dy =dla| and py = ap + b.

=0
fGH(y = _X;)‘aaaﬂv 57 _/'L)ﬂ: fGH(X;A7aaﬁa 67#)
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GH Distribution 2-5

GH parameter beta (n) GH parameter beta (p)

Figure 4: The GH pdf (black) with A= —0.5, « =3, 3=0,5 =2 and u = 2. The
left red line is obtained for © = —3 and the right red line is for § = 2 holding the other
parameters constant. Q GHADAghexample.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAghexample.xpl

GH Distribution 2-6
GH parameters o

« has an effect on kurtosis.

GH parameter apha

10 5 0 5 10
x

Figure 5: The GH pdf (black) with A= —0.5, « =6, 3=0,5 =1 and u = 2. The
left red line is obtained for u = —3 and the right red line is for 6 = 2 holding the other
parameters constant. Q GHADAghexample.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAghexample.xpl

GH Distribution 2-7

Subclass of GH distribution

The parameters (11,6, 3, )" can be interpreted as trend, riskiness,
asymmetry and the likeliness of extreme events.
Hyperbolic (HYP) distributions: A =1,

nyp(X;Oz,ﬁ,(i,u) 2a5K1(5L) { a\/erﬁx u)} (1)

where x, u € IR, 0 < ¢ and |3| < a.
Normal-inverse Gaussian (NIG) distributions: A = —1/2,

ad Ki {am}
@ 0% + (x — p)?

where x,p € IR, 0 < 6 and || < .

GHADA i
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GH Distribution 2-8

Tail behavior of GH distribution

feH(x; A\, a, 8,0, u = 0) ~ x* e (@=AX 35 x — oo, (3)

where a(x) ~ b(x) as x — oo means that both a(x)/b(x) and
b(x)/a(x) are bounded as x — oo.

Comparison with other distributions:

_ (x=w)?

2(2

. . . . _ 1
[J Normal distribution: fyormar = Tf(%)e

[J Laplace distribution: fiapjace = - ¥ 7HI/¢

[J Cauchy distribution: fcaychy = m

where p is the location parameter, ¢ is the scale parameter and M
is the Median.
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2-9

GH Distribution

Distribution comparison Tail comparison

o e © Laplace

Figure 6:  Graphical comparison of the NIG distribution (line), standard normal
distribution (dashed), Laplace distribution (dotted) and Cauchy distribution (dots). @

GHADAtail.xpl

i
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAtail.xpl
http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAtail.xpl

GH Distribution 2-10

Maximum Likelihood (ML) Estimation

Lyyp = nlogt— nlog2 — nloga — nlogd — nlog K1(d¢)
+> {—a\/6% + (xe — p)? + Bx — 1)}
t=1

Lnyig = nloga+ nlogd — nlogm + née

+§ [Iog Ki {aM} - % log{0% + (x: — M)z}]

+ Z B(xe — 1)
t=1
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GH Distribution 2-11

Example 1: DEM/USD exchange rate

VaR timeplot

s E2

Figure 7: The time plot of VaR forecasts using EMA (green) and RMA (blue) and the
associated changes (dots) of the P&L of the DEM/USD rates. Exceptions are marked

in red. Q GHADArevartimeplot.xpl @ SFEVaRbank.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADArevartimeplot.xpl
http://www.quantlet.org/mdstat/codes/sfe/SFEVaRbank.html

GH Distribution 2-12

ML estimators of HYP distribution: & = 1.744, 3 = —0.017,
§=0.782 and /i = 0.012.

Estimated fx density (HYP) Estimated fx log density (HY P)

- 2 o 2 4 - 2 o 2

Figure 8: The estimated density (left) and log density (right) of the standardize
returns of FX rates (red) with nonparametric kernel (h = 0.55) and a simulated HYP
density (blue) with the maximum likelihood estimators. Q GHADAfx.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAfx.xpl

GH Distribution 2-13

The HYP likelihood surface w.r.t. 8 and u on the basis of
DEM/USD data.

HY P lohlikelihood fct wrt beta and mu

270811 T
317940 T
365069 T
412198 T

459327

Figu re 9: The partial HYP IikelihooT:ln surface of the standardize returns of FX rates,
the largest ML is marked in red. Q GHADAliksurf.xpl

GHADA i


http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAliksurf.xpl

GH Distribution 2-14
ML estimators of NIG distribution: & = 1.340, 5 = —0.015,
0 = 1.337 and /i = 0.010.

Estimated fx density (NIG) Estimated fx log density (NIG)

Figure 10: The estimated density (left) and log density (right) of the standardize
return of FX rates (red) with nonparametric kernel (h = 0.55) and a simulated NIG
density (blue) with the maximum likelihood estimators. Q GHADAfx.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAfx.xpl

GH Distribution 2-15

Example 2: A German bank portfolio (kupfer.dat)

VaR timeplot

reuns'E2

merE3

Figure 11: The time plot of VaR forecasts using EMA (green) and RMA (blue) and
the associated changes (dots) of the P&L of the German bank portfolio. Exceptions
are marked in red. Q GHADArevartimeplot.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADArevartimeplot.xpl

GH Distribution 2-16

density (nor i i log density (nonp

Figure 12: Graphical comparison of densities (left) and log-densities (right) of a Ger-
man bank portfolio rate (5603 observations). The kernel density estimate of the stan-
dardized residuals (red) and the normal density (blue) with i = 0.61 (rule of thumb). @
GHADAkupfer.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAkupfer.xpl
http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAkupfer.xpl

GH Distribution 2-17
ML estimators of HYP distribution: & = 1.819, § = —0.168,
0 = 0.705 and /i = 0.145.

Estimated bank portfolio density (HYP) Estimated bank portfolio log density (HYP)

——

Figure 13: The estimated density (left) and log density (right) of the standardize re-
turn of bank portfolio rates (red) with nonparametric kernel (h = 0.61) and a simulated
HYP density (blue) with the maximum likelihood estimators. Q GHADAkupfer.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAkupfer.xpl

GH Distribution 2-18

ML estimators of NIG distribution: & = 1.415, 3 = —0.171,
0 = 1.254 and i = 0.146.

Estimated bank portfolio density (NIG) Estimated bank portfolio log density (NIG)

Figure 14: The estimated density (left) and log density (right) of the standardize re-
turn of bank portfolio rates (red) with nonparametric kernel (h = 0.61) and a simulated
NIG density (blue) with the maximum likelihood estimators. Q GHADAkupfer.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAkupfer.xpl

Adaptive Volatility 3-1

Adaptive Volatility Estimation

Adaptive Volatility Estimation

Assumption:

For a fixed point 7, volatility is locally time-homogeneous in a
short time interval [T — m, ), thus we can estimate

62 =67 = |/| > s RZ, where |/] is the number of observations in

I =[r—m,T).

123 T

|
|
n

I m
i up]

GHADA i




Adaptive Volatility 3-2
Adaptive Volatility Estimation

Adaptive Volatility Estimation
For a fixed point 7, volatility is locally time-homogeneous in a
short time interval [T — m,T), thus we can estimate

£2 _
Gz =067 = |/| > ¢c; RZ, where |/] is the number of observations in

I =[r—m,T).

{33 T

|
|
n

| M
S

Questions:
[J How to estimate the volatility? v

(1 How to specify the time homogeneous interval?

GHADA i




Adaptive Volatility 3-3

Volatility estimation

Volatility estimation

Power transformation yields lighter tails. The random variable
|R:|7 is distributed more evenly.

For every v > 0, we have

E(IR["|Fe-1) = o{E(lee|"|Fe-1) = Cyo
E[(IR]" — Co?*|Feca] = b El(|leel” — C)?[Ferl]
= U?7D$
IR:|" = C 0? =+ Dwat Ct, (4)

where C, is the conditional mean and D% the conditional variance
of e[ and (; = (|e¢|” — C)/D, is i.i.d. with mean 0.
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Adaptive Volatility 3-4

Denote by §; = C o the conditional mean of |R;|".
In a time-homogeneous interval /, the constant §; = C,0] can be

0, = MZ\RH

tel

estimated by 0;:

We employ the “nearly constant” 6, to determine the length of the
interval /.

GHADA i




Adaptive Volatility 3-5
Use ‘Rt"}’ = 91& + D,YUZC,_L:

0 = |I|Z| Re|" = |/|Zet+ ZetCt

tel

Var[f)|Fi] = “|2E262

tel

where s, = D, /C,. We denote v? = |/|2 EY",.c; 07, the conditional

variance of 9,, whose estimator is

GHADA i



Adaptive Volatility 3-6
Time homogeneous interval

Split interval [ into J C [ and I\J C I.
r ; bl
A r—m I\J J r=1
Denote 0\, and 0, as the estimators of the subintervals in the

time-homogeneous interval /. Then the deviation A = é\[\J —y
must be small.

Opns =041 < Tir (5)
where T - is an unknown critical value in the homogeneity test.

I* = max {/ : I fulfills (7)}.
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Adaptive Volatility 3-7

Time homogeneous interval

T

T—m I\J } J =1

‘é,\_j — é_/| < T/,T.

Questions:
(] How to estimate the volatility? v
[J How to specify the time homogeneous interval? v

[J How to choose ~7
[ How to specify T; ;7

GHADA i




Adaptive Volatility 3-8

Homogeneity test

Lemma
For every 0 < v <1 there exists a constant a, > 0 such that

2
log E elly < 377”7

where (y = (|e¢|” — C,)/D, and € is a GH distributed stochastic
term.
t

If Lemma 2 holds, then T, = exp (3 5_; psCs — (a1/2) >ot_1 p2) is
a supermartingale, where ps is a predictable process w.r.t. the
information set F;_1. Since:

GHADA i




Adaptive Volatility 3-9

E(T¢|Fe—1) — Tee1 = E(Te| Feo1) — E(Te—1|Feo1)

t t t—1 t—1 \
ZEW%éhﬁ—QQQFQ—M«ZmQ%WQZ£
s=1 s=1 s=1 s=1 ,

t—1 t—1
= E[exp (Z psCs — (3,/2) > P?) (exp(peCe — ay/2p7) — 1)| Fe-1]
s=1 s=1

exp(piG1)  exp(pe—1Ge-1) - exp(peCe)

. —1|F 1
exp(ay/2p1)  exp(ay/2pe—1) exp(ay/2p:) Feal
<1,Lemma2 <1 gl

< 0

i.e. E(Tt|ft_]_) < Tt—l-
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Adaptive Volatility 3-10

Theorem

If R1, ..., R obey the heteroscedastic model and the volatility
coefficient o, satisfies the condition b < o2 < bB with some
positive constant b and B, then given a large value 1 it holds for
the estimate é/ of 0, :

P(|0; — 07 > A1+ ns, |1]7Y2) + i)
2

< 4/en(l+ /ogB)EXp(—W)‘

where A is the bias defined as A7 = 1|71 3", ., (6 — 0:)%.

Theorem 1 indicates that the estimation error |#; — 6. is small
relative to n¥ (=~ T, ,) for 7 € | with a high probability, since in a
time homogeneous interval the squared bias A is negligible.

GHADA i




Adaptive Volatility 3-11

Test homogeneity: Under homogeneity |6, — 6| is bounded by
n¥; provided that 7 is sufficiently large.
16) — 0. < niy

Based on the triangle inequality, we get: é/\_j — 6 is bounded by
7](\7/\J + Vy) for JC 1, ie.

100y =01 < Tir = 000+ 03) = 0/ (\/ B3I + /67 SINJIY),

where 1’ = 7s,.

GHADA i



Adaptive Volatility 3-12
Test homogeneity: Under homogeneity |6, — 6,| is bounded by
n¥; provided that 7 is sufficiently large.

’é/ — 97—| < 77\7/
100y — 0,1 < Tie =m0y + ) =1/ (/0311 + \/éf\ﬂl\J\_l%

Questions:
(] How to estimate the volatility? v
(] How to specify the time homogeneous interval? v
[J How to specify T, .7 v
(1 How to choose ~7?
[J How to choose 71'?
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Adaptive Volatility 3-13

Cross-validation (CV) method:

T—1

0" = argmin{» (\RJV - 9(t,n')>2},

t=tp

where ty is the starting point.
Choice of transformation parameter ~: we choose v = 0.5 to
compare with the normal distribution based model.

GHADA i




Adaptive Volatility 3-14
Cross-validation (CV) method:

T—1
o = argmint " (IRI" ~ Bery) 1

t=tp

Choice of transformation parameter v: we choose v = 0.5 to
compare with the normal distribution based model.

Questions:
(1 How to estimate the volatility? v
(] How to specify the time homogeneous interval? v/
[ How to choose ~7 v
[0 How to choose 7'? v

GHADA i




Adaptive Volatility 3-15

Iteration

Start from a short homogeneous interval [T — mg, 7 — 1], the
algorithm consists of 4 steps.

[J Step 1: At 7 — 1, enlarge the interval | from [T — mg, T) to
[T — k x mg,T), i.e. m=k x mg. The parameters mgy and k
are integers specified according to data. Values of mg =5 and
k = 2 are recommended.
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Adaptive Volatility 3-16
(] Step 2: Inside interval /, do multiple homogeneity tests based
on subintervals J = [t — Im,7) until J = [r — 3m, 7).
J
J
T—{m T—2/3m 7-1/3m =1

(] Step 3: If homogeneity hypothesis is rejected at point s, the
loop stops. Otherwise go back to Step 1.

[J Step 4: Do Step 1 to Step 3 for t € [ty, 7 — 1] with different
7's. Choose 7’ that gives the minimal global forecast error.

T—1

(I

t=tp

GHADA i




Simulation 4-1

Simulation

Goal: Estimate the local volatility using GHADA.

Simulation: 200 processes with HYP and NIG distribution with
(o, 3,6,11) " =(2,0,1,0)" respectively. Each process has

T = 1000 observations.

Parameters: starting point ty = 201, power transformation
parameter v = 0.5, mg =5 and k = 2.

GHADA i



Simulation 4-2

Case 1: 200 simulated HYP random variables and

001 : 1<t<400
o1t = 0.05 : 400< t<750
0.01 : 750 <t <1000

Case 2: 200 simulated NIG random variables

0.02t —5| : 1<t<300
o2 =4 [0.02t—10] : 300 < t < 600
0.12t — 100] : 600 < t < 1000

GHADA i



Simulation 4-3

sim 115

X*E2

Figure 15: The estimated local volatilities for simulation 115 (HYP). Q
GHADAsiml.xpl

http://ise.wiwi.hu-berlin.deychen/ghada/simulation1.AVI
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAsim1.xpl
http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAsim1.xpl

Simulation 4-4

sim 44

X*E2

Figure 16: The estimated local volatilities for simulation 44 (NIG). Q
GHADAsim2.xpl

http://ise.wiwi.hu-berlin.deychen /ghada/simulation2.AVI
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAsim2.xpl
http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAsim2.xpl

Simulation 4-5
Sensitivity Analysis: Define a percentage rule that tells us after
how many steps a sudden jump is detected at 40%, 50% or 60% of
the jump level.

\ mean  std max min
o1: Detection delay to the first jump at t = 400
40% rule 59 24 15 1
50% rule 6.9 26 19 2
60% rule 79 29 19 2
o1: Detection delay to the second jump at t = 750
40% rule | 11.8 4.4 39 3
50% rule | 13.5 6.5 58 5
60% rule | 15.9 10.9 98 6

Table 1: Descriptive statistics for the detection delay of the sudden
vola jumps.
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Simulation 4-6

\ mean std max min
02: Detection delay to the first jump at t = 300
40% rule 49 24 13 0
50% rule 6.2 3.0 18 2
60% rule 7.6 4.2 33 2
oo Detection delay to the first jump at t = 600
40% rule 47 19 12 0
50% rule 57 27 23 2
60% rule 6.8 34 24 2

Table 2: (Continued) Descriptive statistics for the detection delay
of the sudden vola jumps.
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Empirical Study

Data set and devolatilized return

5-1

DEM/USD  bank portfolio

period
observations
mean

std

skewness
kurtosis

791201 to 940401

3720 5603
-0.0052 0.0113
0.9938 0.9264
-0.0121 -0.0815
4.0329 5.1873

Table 3: Descriptive statistics for the standardized residuals of DEM/USD data and
bank portfolio data. The data sets are available in http://www.quantlet.org/mdbase/.

GHADA
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Empirical Study

5-2

Daily DEM/USD returns from 1679/12/01 to 1994/04/01

GARCH(L1) volaesimators (exchange rate)

Figure 17: The return process of DEM/USD exchange rates (top), the GARCH(1,1)
(62 = 1.65e — 06 + 0.07r2_; + 0.8902_,; + ¢t) volatility estimates (bottom). Q
GHADAgarch.xpl

GHADA
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAgarch.xpl
http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAgarch.xpl

Empirical Study

Y*E-3

Adaptive local constant volatility estimators (exchange rate)

Er L
oo AN I,
: |
5 10 15 20 25 30 35
X*E2

Length of homogeneousintervals

0 50005800

X*E2

5-3

Figure 18: The adaptive volatility estimates (top) and the lengths of the homo-
geneous intervals for tp = 501, n’ = 1.06 and mg = 5. The average length of time

homogeneous interval is 51.

GHADA

Q GHADAfx.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAfx.xpl

Empirical Study 5-4

Daily returns of a German bank

L L L L L
o.

Y*E-2
1050 51
il
T

ik T T T T T
0 1 2 3 4 5
X*E3

Adaptive local constant volatility estimators (bank portfolio)

1 2 3 4 5
X*E3

E
1234%

Length of homogeneousintervals

1 2 3 4 5
X*E3

9 1234

Figure 19:  The return process of a German bank’s portfolio (upper), its adaptive
volatility estimates (middle) for tp = 501, n’ = 1.23 and mg = 5, the lengths of the
homogeneous intervals (bottom). The average length of time homogeneous interval is

72. Q GHADAkY Al
GHADA



http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAkupfer.xpl

Empirical Study 5-5

‘ p—— ‘ -

1. Exchange rate 2. Bank portfolio

Figure 20: Boxplots of the DEM/USD exchange rates (left) and the German bank
portfolio data (right). The mean values of the homogeneous interval length are 51 for
DEM/USD and 72 for bank portfolio data. Q GHADAboxplot.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAboxplot.xpl

Empirical Study 5-6

Value at Risk (VaR)

qp is the p-th quantile of the distribution of ¢, i.e.
P(et < qp) = p.
P(R: < otqp| Fr1) =p

VaRp7t = O'tqp

0+ are estimated by the described adaptive procedure.
qgp is given by the quantile of the HYP or NIG distribution

GHADA i



Empirical Study 5-7
GHADA VARs

Parameters estimation is based on the previous 500 observations
(standardized returns), which varies little.

Figure 21: Quantiles based on DEM/USD data vary over time. From the top the
evolving HYP quantiles for p = 0.995, p = 0.99, p = 0.975, p = 0.95, p = 0.90,
p=0.10, p = 0.05, p =0.025, p = 0.01, p = 0.005.
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Empirical Study 5-8

GHADA model vs. normal model

() p=0.005

Figure 22: Value at Risk forecast plots for DEM/USD data. (a) p = 0.005. Dots
denote the exchange rate returns. Exceptions relative to the HYP quantile are displayed
as +. The blue line is the VaR forecasts based on GHADA while those based on the
normality is colored in yellow. Q GHADAfxvar.xpl
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http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAfxvar.xpl

Empirical Study 5-9

(b) p=0.01

Figure 23: Value at Risk forecast plots for DEM/USD data. (b) p = 0.01.Dots
denote the exchange rate returns. Exceptions relative to the HYP quantile are displayed
as +. The blue line is the VaR forecasts based on GHADA while those based on the
normality is colored in yellow. Q GHADAfxvar.xpl
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(c) p=0.025
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Figure 24: Value at Risk forecast plots for DEM/USD data. (c) p = 0.025.Dots
denote the exchange rate returns. Exceptions relative to the HYP quantile are displayed
as +. The blue line is the VaR forecasts based on GHADA while those based on the
normality is colored in yellow. Q GHADAfxvar.xpl
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(d)p=0.05

Figure 25: Value at Risk forecast plots for DEM/USD data. (d)p = 0.05.Dots denote
the exchange rate returns. Exceptions relative to the HYP quantile are displayed as +.
The blue line is the VaR forecasts based on GHADA while those based on the normality
is colored in yellow. Q GHADAfxvar.xpl
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Backtesting VaR

Testing VaR levels:
Ho:EN=pT vs. Hji:not Hp (6)

where N is the number of the exceptions on the basis of T
observations. Likelihood ratio statistic:

LR1 = —2log {(1—p)"~"p"} +2l0g {(1 - N/T)"""(N/T)V},

where LR1 is asymptotically x?(1) distributed
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Let /; denote the indicator of exceptions at time point t,
t=1,.., T, mj = P(ly = jll;—1 = i) be the transition probability
with i,j=0o0r 1, and nj =30 I(l = jlle—1 = i),i,j = 0, 1.
Testing Independence:

Hy:mpo=mwo=m,mp1 =711 =1—7 vs. Hi : not Hp
Likelihood ratio statistic:
LR2 = —2log {#™(1 — 7)™} + 2log { g’ Aot A1 A1 }+

where 7 = nji/(njj 4+ ni1—j), nj = noj + nyj, and & = no/(no + ny).
Under Hg, LR2 is asymptotically x?(1) distributed as well.
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Model p N/T LR1 p-value | LR2  p-value
Normal | 0.005 | 0.01025 13.667 0.000* | 0.735  0.391
0.01 0.01460 6.027 0.014 0.138 0.710
0.025 | 0.02858 1.619 0.203 0.056 0.813
0.05 0.05250 0.417 0.518 0.007 0.934
HYP 0.005 | 0.00403 0.640 0.424 0.189  0.664
0.01 0.00963 0.045 0.832 0.655 0.419
0.025 | 0.02485 0.003 0.957 0.666 0.415
0.05 0.05312 0.648 0.421 0.008  0.927
NIG 0.005 | 0.00404 0.640 0.424 0.189 0.664
0.01 0.00994 0.001 0.973 0.694  0.405
0.025 | 0.02516 0.004 0.953 0.719  0.396
0.05 0.05405 1.086 0.297 0.040 0.841

5-14

Table 4: Backtesting results for DEM/USD example. * indicates the rejection.
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Model p N/T LR1 p-value | LR2  p-value
Normal | 0.005 | 0.010 19.809 0.000* | 1.070 0.301
0.01 0.016 13.278 0.000* | 0.422 0.516
0.025 | 0.028 2.347 0.126 0.781 0.377
HYP 0.005 | 0.003 5.111 0.024 0.160 0.689
0.01 0.008 2.131 0.144 0.705 0.401
0.025 | 0.025 0.053 0.819 1.065 0.302
NIG 0.005 | 0.003 5.111 0.024 0.160 0.689
0.01 0.009 0.747 0.387 0.841 0.359
0.025 | 0.027 0.438 0.508 1.429 0.232

GHADA

Table 5: Backtesting results for bank portfolio example.
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Multivariate VaR

Background:

(] Multivariate GH distribution, Prause(1999), Schmidt, Hrycej
and Stiitzle(2003).

[J First two principal components and multinormal distribution,
Hardle, Herwatz and Spokoiny(2003).

New idea: Independent Component Analysis (ICA) + univariate
GHADA

GHADA i



Outlook 6-2

ICA

Definition of ICA:

[ Observation vector x; = (x1¢,- - - ,xd,t)T

[ Independent vector s; = (si¢,- - ,sd7t)T: assumption in ICA -
the components s; are statistically independent, i =1,--- ,d.

(] Unknown mixing matrix A — d x d dimensions: x = As

GHADA i
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Example: Two independent components s; and s, are uniform

distributed. The mixing matrix A = < g i’ > .

R £ 3 2|
S
%?WW 2TH8 3

Figu re 26: The joint distribution of the independent components s; and s;. Below
is the joint distribution of the observed mixtures x; and xo. Q@ GHADAicaexample.xpl
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BASF-Bayer returns ICA: BASF-Bayer

Flgu re 27: Independent component analysis on the basis of Allianz and Bayer returns
from 1974-01-02 to 1996-12-30. Q GHADAica.xpl

GHADA i



http://ise.wiwi.hu-berlin.de/~ychen/ghada/codes/GHADAica.xpl

Outlook 6-5

Conclusion

(] The adaptive volatility estimation method by Mercurio and
Spokoiny (2004) is applicable to a general model with
generalized hyperbolic innovations.

(] The critical value can be chosen by cross-validation method.

B

The distribution of the devolatilized returns from the adaptive
volatility estimation is found to be leptokurtic and,
sometimes, asymmetric. We found that the distribution of
innovations can be perfectly modelled by the class of
generalized hyperbolic distributions.
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(] The proposed approach can be applied easily to risk measures
such as value at risk, expected shortfall, and so on.

(] We have got a justification of the proposed appoach for use in
risk management by backtestings of value at risk model
applied to real data.
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