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aims and generic challenges 1-1

Aims

Model and estimate implied volatility surfaces (IVS) for

(] trading
[ hedging of derivative positions

(] risk management.

In these contexts the IVS acts as a very high-dimensional state
variable.
Practice requires a low-dimensional representation of the IVS.
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aims and generic challenges 1-2

Challenges

[J Large number of observations (> 2 million contracts, > 5000
observations per day).

B

Data appear in ‘strings’.
(] Strings are not locally fixed, but ‘move’ through the
observation space (expiry effect). @

(] In the moneyness dimension observations may be missing in
certain sub-regions for some dates /.
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aims and generic challenges 1-3
Degenerated Design
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Figure 1: Left panel: call and put implied volatilities observed on 20000502.
Right panel: data design on 20000502; ODAX, difference-dividend correction
according to Hafner and Wallmeier (2001) applied.
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Purpose

A modelling strategy in terms of a dynamic semiparametric
factor model (DSFM) for the (log)-IVS
Yij (i =day,j = intraday):

L
Yij = mo(Xij) + Zﬁi,/m/(xu) . (1)
=1

Here m;(X; ) are smooth factor functions and (3;  is a multivariate
(loading) time-series.
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Model fit 20000502

Traditional model fit 20000502

Figure 2: Traditional model (Nadaraya-Watson estimator) and semi-
parametric factor model fit for 20000502. Bandwidths for both es-
timates hy = 0.03 for the moneyness and h, = 0.08 for the time to
maturity dimension.
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implied volatilities 3-1

Implied volatilities

Black and Scholes (1973) (BS) formula prices European options
under the assumption that the asset price S; follows a geometric
Brownian motion with constant drift and constant volatility
coefficient o

CBS> = 5.0(dh) — Ke " d(dbh) ,

152)r .
where di o = In(sf/Kz:gi2 i ®(u) is the CDF of the standard

normal distribution, r a constant interest rate, 7 = T — t time to
maturity, K the strike price.
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Implied volatilities

Volatility 6 as implied by observed market prices Ce:
5: C—CB(S,K,1,r6)=0.

Unlike assumed in the BS model, 6+(K, 7) exhibits distinct,
time-dependent functional patterns across K (smile or smirk),
and a term-structure T — t: Thus §:(K,7) is interpreted as a
random surface: the implied volatility surface (1VS).
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short literature review 4-1

Related work

One strand of literature models IVS ‘slices’ using PCA:
[J Alexander (2001) analyzes fixed strike deviations,

[J Skiadopoulos et al. (1999) explore the smile in different
maturity buckets,

[ Avellaneda and Zhu (1997); Fengler et al. (2002) investigate
the term structure.
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Related work

Recently, a more comprehensive surface perspective is adopted:

[J Fengler et al. (2003) propose a simultaneous decomposition
of maturity groups in a common principal components
framework.

(J Cont and da Fonseca (2002) employ the Karhunen und
Loeve decomposition.

This literature does not properly cope with the degenerated design.
Estimates are necessarily biased.
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model 5-1

The semiparametric factor model

Consider DSFM for the IVS:
L
Yij=mo(Xij)+ > Buumi(Xiy) (2)
=1

Y;j is log IV,i denotes the trading day (i =1,...,/),
j=1,...,J;is an index of the traded options on day i.
my(-) for I =0, ..., L are basis functions in covariables X; j,
and ; are time dependent factors.
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model 5-2

For my(-), I =0,..., L consider two different set-ups in X; :

(A) Xij is a two-dimensional vector containing time to
maturity 7;; and forward moneyness, k;; = %
. . . . . J
i.e. strike K divided by futures price
F(t,"j) = Sti,j exp(rT,.’jT,-L,-)

(B) asin (A) but with one-dimensional X;; that only
contains K ;.

Here, we focus on (A).
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model 5-3

Space and time smoothing

: . ~ ~ s def D
Define estimates of m; and 3;; with (3o = 1, as minimizers of:

I Lo 2
ZZ/{YU—Z/B/,I’?’I(U)} Kn(u — Xij) du,— (3)
=0

i=1 j=1
where K}, denotes a two dimensional product kernel,
Kn(u) = kn,(u1) X kn,(u2), h = (h1, h2) with a one-dimensional
kernel ky(v) = h=1k(h=1v).

Implied Volatility String Dynamics



model 5-4

Replace in (3) m, by m; + dg and Bis by By + 6. Take derivatives wrt 6,
Q1<r<L1<i<I):

1 1 L
ZJ:'E,‘,/'?L‘(U) = Z Z B: pi(u)my(u), (4)
i=1 i=1 1=0
L o~
/’d;(u)ﬁr,/(u) du = ﬂ;,//ﬁ,-(u)r%,/(u)r%/(u) du, (5)
1=0
1
pi(u) = & > Kilu—Xi)),
1 :1
1 JJ"
Qi) = D Ki(u—Xij)Yij.
j=1
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Model characteristics

Consider the case L = 0: the log-implied volatilities Y;; are
approximated by a surface mg not depending on day /. Then,
~ Zij Kh(u — Xij)Yij
mO(u) = = y

Zi,j Kn(u = Xi;)

mo is equal to the Nadaraya-Watson estimate based on the pooled
sample of all days.
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model

Model characteristics

Consider a fixed day i and L = 0:,
7 Kilu = Xig)Yiy

=~ (i)
mgy’ (u) = :
Sy Kn(u— X )

Traditional model fit 20000502

)
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model

Model characteristics

IVS's are fitted in neighborhoods of the observed design points
X,'J, i.e.

(] we do not fit the surface on the whole design space on each
day (as in a functional PCA (fPCA), Ramsay and Silverman
(1997)).

[l we circumvent global fits and thus avoid large bias effects
caused by the degenerated string design.
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Model characteristics

In fPCA factors are eigenfunctions of a covariance operator. Here,
the norm:

[ Popds,

changes each daAy i, where p;(u) = J! Zf:l Kn(u — Xij).
Eigenfunctions m; may not be nested for increasing L:

Hence, the m; cannot be calculated iteratively, i.e. by moving from
L — 1 components to L components, and so forth.

Implied Volatility String Dynamics



model 5-9

Model characteristics

In the DSFM framework the IVS's are approximated by surfaces
moving in the function space

L
{ﬁqo—l—Za/fﬁ/ Do1,...,0q € R}.
1=1

The estimates m; are not uniquely defined: they can be replaced
by estimates that span the same affine space.

Natural choice: orthogonalize m; in an appropriate function space.
Order the resulting functions according to maximum variance in 3,.
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Orthogonalization

Replace:
mo by mie =nmg—~ T 1m
m by mnev=r"12m
B by B =r2(5 4171
where:

= (., L) B = (Bigs e Bit) T B(u) = 2500 Bilu)
[is (LxL) matrix with [y = [ my(u)my(u)p(u)du
7 is (Lx1) vector with v, = [ mo(u)my(u)p(u)du.
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Average density

Figure 3: The average density p(u)
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Ordering

Define matrix B with By = ZI{:]_ 3;,/5;,// and Z = (z1,...,21)
where z;,...,z; eigenvectors of B.

Replace:

m by me=Z"m

Bi by B =273

The orthonormal basis 7, ..., My is chosen such that S21_ 32, is
maximal and given [3; 1, mg, m; the quantitiy Z;Zl /32, is maximal
and so forth.
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Algorithm

The algorithm exploits equations (4) and (5) iteratively:
1. for an appropriate initialization of
B9, i=1.0, I=1..,L
get an initial estimate of m(®) = (g, ..., m;)"
2. update Bfl), i=1,...,1,
3. estimate m(V).

4. go to step 2.

until minor changes occur during the cycle.
Optimization implemented in XploRe, @ DSFM.xpl, Hardle et al.
(2000).
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results

Data Overview

7-1

Min.  Max. Mean Median Stdd. Skewn. Kurt.
T. to mat. 0.028 2.002 0.142 0.086 0.166 3.658 21.449
Moneyness. | 0.287 3.367 0.996 0.997 0.114 0.686 12.026
v 0.040 0.799 0.297 0.265 0.105 1.289 4.489

Table 1: Summary statistics from 199901 to 200302. Source: EU-

REX, ODAX, stored in the SFB 649 FEDC.

Ji = 5200 observations per day

total time series has / =~ 1000 days.

N = IJ; = 2.8 million contracts,
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Model selection

For a data-driven choice of bandwidths we propose a weighted AlC since the
distribution of observations is very unequal:

L
— 1 ~ 2L
Zaa =y DoAY =Y Bumi(Xi)) Y w(Xis) exp{ ; Kn(0) / w(u)du},
i 1=0
alternatively (computationally easier):

= fW(u)du
=AIC = NZ{YJ Zﬁ,/m/ s exp{—Kh(O)m}

wis a given weight function. Putting w(u) = 1 delivers common AIC, putting
w(u) = u) give equal weight everywhere.
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results

Model selection

For the model size (L) selection use the:

| —J; L 5 -~
i Y = Y Biami(Xiy)}?
- I Ji \
i (Yij—=Y)?
where Y denotes the overall mean of the observations.

L[ 1-RV(L) ARV

RV(L)

0.9638

0.9739 0.0101
0.9822  0.0083
0.9830  0.0007

AW N =

Table 2: Explained variance for the model size.
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results

Estimation Results

We fit the model for L = 3, i.e. there are
[J one invariant basis function mg and
[J 3 ‘dynamic’ basis functions my, mp, m3
[ 3 time series of {6/’;},{:1 with / =1,2,3

The bandwidths were chosen according to AI/C2 criterion:

h1 = 0.03, hy = 0.02

Implied Volatility String Dynamics
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results 7-5

Figure 4: =4,c, dependence on the bandwidths.
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mhat 0 mhat 1

Figure 5: Invariant basis function mg and dynamic basis function m;
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Figure 6: Dynamic basis functions my, and ms
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Figure 8: DAX and time series of weights Bl
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Figure 9: Time series of weights 52 and 33



results 7-11

Correlogram for 31. 32 and §3

Sample autocorrelation function (acf. Sample autocorrelation function (acf;
e ot Sample autocorrelation function (acf) » P! (=ch
= 5 N w5
Sample partial_autocorrelation function (pact) Sample partial_autocorrelation function (pach)

Sample partial autocorrel ation function (pach)

Figure 10: acf and pacf of@\l, 32 and 33 respectively
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Testing for random walk

coeff. lag suggested
differences  break date  test-value

B 7 2001.11.09 -1.33

B 2 2001.11.09 -1.09
3 -1.04

B 2 1099.06.08 -3.42%

Table 3: Unitroot test in the presence of structural break. Critical
values for rejecting the hypothesis of unit root are -2.88 at 5%
significance level and -3.48 at 1% significance level. (*) indicate
significance at 5% level. Lane et al. (2002)

Implied Volatility String Dynamics



7-13

results

We model first differences of Bl, 32 and level 33 in the form

Yt = (ABlv A//8\27 B?:)T

Yt =v+ A]_ Yt_]_ + A2 Yt_2+, ceey +Ap Yt—p + &t

Ye = (Y1t,- .., Yie) " are vectors of the k = 3 endogenous
variables
v = (v1,...,0x)" is a vector of intercept terms, A; are

(K x K) coefficient matrices

€¢ Is a white noise with covariance matrix X, > 0
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Order Selection Criteria

In(FPE) _ AIC SC HQ

-24.34 -15.83 -15.81 -15.82
-24.61 -16.10 -16.04 -16.07
-24.66 -16.15 -16.05%  -16.11
-24.68 -16.17 -16.03 -16.11*
-24.68 -16.17 -15.98 -16.10
-24.69 -16.16 -15.94 -16.08
-24.70*  -16.18* -15.91 -16.08
-24.69 -16.18 -15.87 -16.06
-24.69 -16.17 -15.82 -16.04

o~ AW RO
0

Table 4: VAR Lag Order Selection. * indicates lag order selected

by the criterion up to a maximum order 8. We chose to apply a
VAR(2) as indicated by the SC criterion.
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results

APy [ 0.12
ABe | = | —0.09
Bae 0.01

—0.07
+ —0.01
—0.01

¢
+ ¢
us ¢

VAR model for first difference levels, (Aﬁl, ABg,Bg)T

0.22
—0.57
0.03

0.03
—0.24
0.01

—0.09

0.08

0.74 |

0.09 ]

—0.07

0.23 |

APrtr—1
ABar—1
Bt,e—1

APt
Aot
Bat,t—2
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Model Stability

Time invariance of the model has been evaluated through the roots
of the characteristic polynomial for the VAR(2) model as well as
coefficient stability through the cumulative sum of squares of the
residuals.

roots modulus

0.97 0.97

—0.27 0.4/ 0.48
0.04 £0.2/ 0.27
-0.23 0.23

Table 5: Roots of characteristic polynomial for the VAR(2): stability
condition is satisied since no root lies outside the unit circle.
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Model Stability

CUSUM-square statistic:

2
St . Zr k+1 W
T
Zr:kJrl Wr2
W?2 (recursive residuals) is the square one-period ahead prediction
error. r =k +1,..., T ( k, the number of regressors including a

constant and T, sample size.

We plot S, together with significance level lines E[S,] + Cp, the
statistical "boundaries”. Cy depends on T — k and the significance
level desired, see Harvey (1990).
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CUSUM - Square Test: (5%)
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CUSUM - Square Test: (5%)
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Time: 1999:4-2003:3

7-18

Figure 11: CUSUM-square statistics for Az; and Az, equation
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CUSUM - Square Test: (5%)

04402 0 02 04 06 08 1 12

Figure 12: CUSUM-square statistics for z3 equation

Coefficient stability is not rejected as all plots lies within the
critical boundaries.
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application 8-1
Hedging exotic options

Knock-out options are financial options that become worthless as
soon as the underlying reaches a prespecified barrier.

asset price
100

Figure 13: Example of two possible paths of asset’s price. When the
price hits the barrier (red) the option is no longer valid regardless
further evolution of the price.
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Figure 14: Newspaper advertisement of Sal. Oppenheim’s knock-out
options (source: Frankfurter Allgemeine Zeitung, November 2004)



Basiswert:
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Figure 15: Bid-/Ask information of Sal.

options

Dy
Typ
Lorg
Long
Long
Long
Long
Long
Short
Short
Short
Short

413081
Bid
2,470
2.650
22490
1.970
1.730
1.470
0.160
0.410
0.660
0.610

A +41 53 +102% 11.11 2004

Zeit Ask Zeit Strike
TO0S14PM 2,490 70514 PM 0 3.900,00
70524 PM 2670 7:0524PM 390000
TO0514PM 2260 7:0514PM 392500
TO0514FM 1980 70514 PM 395000
70514 P 1750 F0514PM 387500
70514 P 1.490 70514 P 4.00000
TO0S14PM 0480 7:0514PM 450,00
TO514PM 0430 70514PM 447500
70524 PM 0BT0 70524 PM 4.200,00
70527 P 0630 70527 PM 4.200,00

Java-Applet: - Neu Starten

Stoploss
3.900,00
3.900,00
3.925,00
3.950,00
3.875,00
4.000,00
4.150,00
4.175,00
4.200,00
4.200,00

Wahrung
HHP
HHP
HHP
P
HEP
HEP
HHP
HHP
HHP
HHP

BY
0,0
0,0
0,0
0,0
0,0
0,01
0,0
0,0
0,0
0,0

Filligkeit
23.12.2004
24 03.2005
23122004
23122004
2312.2004
2312.2004
23122004
23122004
23122004
24 03,2005

Oppenheim’s knock-out



application

Hedging exotic options

In BS world prices of barrier options are given analytically, all
greeks can be calculated directly.
There exists static replication for some barrier option if:

(] the underlying has no drift

(] the IV on the market only depends on time not on strike

Implied Volatility String Dynamics
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Figure 16: Price of the call knock-out barrier options as a function
of BS-0. Asset value Sqg = 90, strike price K = 80 time to maturity
7 = 0.1 interest rate r = 0.03. Left panel: barrier B = 80. Right
panel: barrier B = 120.
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Example

Consider a short position in a knock-out call option (CK©) with
strike 100 and barrier 90. Consider also one long position in a
European call with strike 100 and a short position in 100/90
European puts with strike 81.

C] if spot is at the barrier level 90 call and put would be worth
the same

O if barrier was not reached before maturity the payoff of CK© is
equal to the payoff of the call

CKO is replicated with vanilla options.
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application 8-7

Value at time t Value at time T
Position hits barrier doesn’t hit barrier
C BSca(K = 100) (St —100)*
—100/90P | —X9BS,, (K = 81) 0
—CKO 0 —(ST —100)*
Sum 0 0

For each time t and each value of ¢ if r =0 and S; = 90 then
BScan(K = 100) = 10 BS,,+(K = 81)

Implied Volatility String Dynamics



application 8-8

Dynamic hedging

Use approximation of the option value changes and adjust
constantly the hedge portfolio.

KO KO
ACKO(AS, Ao) ~ ags AS + ag Ao
g

The changes in the asset price (delta risk) can be hedge the asset
itself. The changes in volatility (vega risk) can be hedge with
at-the-money plain vanilla call option (C).

Implied Volatility String Dynamics



application

Dynamic hedging

The sensitivity of the hedge portfolio HP = a1S + aC w.rit. S
and o should be equal to the sensitivity of the CX©. The hedge
coefficients al, a2 are given by the equation:

3CKO
1 2 ai
aS o oS
0 2 ~\ acke
< do a 9o

8-9
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application 8-10

Local Volatility Model

In local volatility (LV) models the asset price dynamics are
governed by the stochastic differential equation:
dS:

57 = Mdt+0(5t,t)th (6)
t

where W, is a Brownian motion, y the drift and o(S¢, t) the local
volatility function which depends on the asset price and time only.

Implied Volatility String Dynamics
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For pricing the options the partial differential equation (6) is
solved. Price depends on the entire IVS. From the IVS one can
calculate G¢(K, T).

Dupire formula:

dC(K,T)

2(S,, t) = 20T +rK
7 Ot 292G (K,T)
K==

9C(K,T)
oK

gives the local volatility surface o(St, t).
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Hedging exotic options

Most greeks can be calculated:

o2 cko oCKo
[ Delta, as , gamma, “5— and theta, “5—, can be read

from the grid of the finite difference scheme;

[ rho, BCKO, and dividend-rho, M, are typically computed via
or 00

a difference quotient assuming a flat term structure.

What about the ve a ”
The usual vega, 8C cannot be used since the entire IVS is input.

Implied Volatility String Dynamics




application 8-13

Classical vega hedging

Classical vega hedging corresponds to parallel move of VS
(] In BS there is only one volatility number
[J In LV it protects only of parallel move of the smile (/31 effect)

9200 048
104.00 036
116.00 012
12800
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Bucket hedging

With term structure of the IVS one may compute a bucket vega
hedging. It provides a sensitivity measure of parallel movements
over each maturity string.

(] The procedure indicates which European option maturities
should be used for hedging

[] Sensitivity related to strike is not given




application 8-15
Superbucket hedging

In superbucket analysis one has to compute sensitivity of exotics
w.r.t. a move of each individual implied volatility.

(] Sensitivity by strike and maturity is obtained
(] The calculation needs to be done for each single point

104.00 036

11600 o2 0% %
Implied Volatility String Dynamics®®




application 8-16

Vega-hedging of the two DSFM factors

In DSFM the IV decomposition is given only by L + 1 factors:
L ~
o; = exp (Z Bii '7”'/) :
1=0

We can compute the sensitivities w.r.t. the factor loadings 3/!
From the interpretations, we receive an immediate understanding
of the sensitivities:

B % is an up-and-down shift vega of the IVS;
1

B 6& is a slope shift vega of the IVS.
3
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application

How to compute the hedge ratios

Take two hedge portfolios HP; and HP;.

Compute the sensitivities of the hedge portfolios and the
knock-out option with respect to 3; and 33.

Solve

OHPy  OHP acko
0B 0B AN _ [ o’
0 I‘!\Pl 0 f‘L P, P 8C /l\( (o)
9p3 9p3 aBs

for the hedge ratios as, a».
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Choice of the hedge portfolio

Idea:
choose HP; and HP, with maximum exposure to (31 and (s,
respectively:

HP; should be most sensitive to up-and-down shifts:
use a portfolio of at-the-money plain vanilla options;

HP, should be most sensitive to slope changes:
use a portfolio of vega-neutral risk reversals.

M ~ 8H'D2 ~
Then 853 ~ 0 and 831 ~ O

Implied Volatility String Dynamics
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Risk reversal payoff

-/

v ——

J

Figure 17: The payoff of the risk reversal. It is compounded from
long call with strike K1 = 120 and short put with strike K, = 80.

asset price
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Outlook

Agenda:
- local-linear smoothing v
- data driven choice of L (number of m), and bandwidth h v/
- forecasting exercise (almost done)

- investigate obvious relations to Kalman Filtering, Fengler et
al. (2005):

L
Yij = mo(Xij)+ Z Biimi(Xij) + € (7)
=1
Bi = Bi(®)+n (8)
Implied Volatility String Dynamics
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Outlook

Agenda:
- hedging empirical studies
- estimation of state price density (SPD)

0°Ci(K, T)

fr—+(K) = er(7-1) K2 (9)

where fr_¢(K) is SPD of the time T taken in the time t

Implied Volatility String Dynamics
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