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aims and generic challenges 1-1

Aims

Model and estimate implied volatility surfaces (IVS) for

� trading

� hedging of derivative positions

� risk management.

In these contexts the IVS acts as a very high-dimensional state
variable.
Practice requires a low-dimensional representation of the IVS.
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aims and generic challenges 1-2

Challenges

� Large number of observations (> 2 million contracts, > 5 000
observations per day).

� Data appear in ‘strings’.

� Strings are not locally fixed, but ‘move’ through the

observation space (expiry effect).

� In the moneyness dimension observations may be missing in
certain sub-regions for some dates i .
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aims and generic challenges 1-3

Degenerated Design

IVS Ticks 20000502 Data Design
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Figure 1: Left panel: call and put implied volatilities observed on 20000502.

Right panel: data design on 20000502; ODAX, difference-dividend correction

according to Hafner and Wallmeier (2001) applied.
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aims and generic challenges 1-4

Purpose

A modelling strategy in terms of a dynamic semiparametric
factor model (DSFM) for the (log)-IVS
Yi ,j (i = day, j = intraday):

Yi ,j = m0(Xi ,j) +
L∑

l=1

βi ,lml(Xi ,j) . (1)

Here ml(Xi ,j) are smooth factor functions and βi ,l is a multivariate
(loading) time-series.
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aims and generic challenges 1-5

Traditional model fit 20000502
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Figure 2: Traditional model (Nadaraya-Watson estimator) and semi-
parametric factor model fit for 20000502. Bandwidths for both es-
timates h1 = 0.03 for the moneyness and h2 = 0.08 for the time to
maturity dimension.
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2-1

Overview

1. aims and generic challengesX

2. implied volatilities

3. short literature review

4. model

5. algorithm

6. results

7. application

8. outlook
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implied volatilities 3-1

Implied volatilities

Black and Scholes (1973) (BS) formula prices European options
under the assumption that the asset price St follows a geometric
Brownian motion with constant drift and constant volatility
coefficient σ:

CBS
t = StΦ(d1)− Ke−rτΦ(d2) ,

where d1,2 =
ln(St/K)+(r± 1

2
σ2)τ

σ
√

τ
. Φ(u) is the CDF of the standard

normal distribution, r a constant interest rate, τ = T − t time to
maturity, K the strike price.
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implied volatilities 3-2

Implied volatilities

Volatility σ̂ as implied by observed market prices C̃t :

σ̂ : C̃t − CBS
t (St ,K , τ, r , σ̂) = 0 .

Unlike assumed in the BS model, σ̂t(K , τ) exhibits distinct,
time-dependent functional patterns across K (smile or smirk),
and a term-structure T − t: Thus σ̂t(K , τ) is interpreted as a
random surface: the implied volatility surface (IVS).
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short literature review 4-1

Related work

One strand of literature models IVS ‘slices’ using PCA:

� Alexander (2001) analyzes fixed strike deviations,

� Skiadopoulos et al. (1999) explore the smile in different
maturity buckets,

� Avellaneda and Zhu (1997); Fengler et al. (2002) investigate
the term structure.
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short literature review 4-2

Related work

Recently, a more comprehensive surface perspective is adopted:

� Fengler et al. (2003) propose a simultaneous decomposition
of maturity groups in a common principal components
framework.

� Cont and da Fonseca (2002) employ the Karhunen und
Loève decomposition.

This literature does not properly cope with the degenerated design.
Estimates are necessarily biased.
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model 5-1

The semiparametric factor model

Consider DSFM for the IVS:

Yi ,j = m0(Xi ,j) +
L∑

l=1

βi ,lml(Xi ,j) , (2)

Yi ,j is log IV,i denotes the trading day (i = 1, . . . , I ),
j = 1, . . . , Ji is an index of the traded options on day i .
ml(·) for l = 0, . . . , L are basis functions in covariables Xi ,j ,
and βi are time dependent factors.
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model 5-2

For ml(·), l = 0, . . . , L consider two different set-ups in Xi ,j :

(A) Xi ,j is a two-dimensional vector containing time to
maturity τi ,j and forward moneyness, κi ,j = K

F (ti,j )
,

i.e. strike K divided by futures price
F (ti ,j) = Sti,j exp(rτi,j τi ,j)

(B) as in (A) but with one-dimensional Xi ,j that only
contains κi ,j .

Here, we focus on (A).
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model 5-3

Space and time smoothing

Define estimates of m̂l and β̂i ,l with β̂i ,0
def
= 1, as minimizers of:

I∑
i=1

Ji∑
j=1

∫ {
Yi ,j −

L∑
l=0

β̂i ,lm̂l(u)

}2

Kh(u − Xi ,j) du, (3)

where Kh denotes a two dimensional product kernel,
Kh(u) = kh1(u1)× kh2(u2), h = (h1, h2) with a one-dimensional
kernel kh(v) = h−1k(h−1v).
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model 5-4

Replace in (3) m̂l by m̂l + δg and β̂i,l by β̂i,l + δ. Take derivatives wrt δ,
(1 ≤ l ′ ≤ L, 1 ≤ i ≤ I ):

I∑
i=1

Ji β̂i,l′ q̂i (u) =
I∑

i=1

Ji

L∑
l=0

β̂i,l′ β̂i,l p̂i (u)m̂l(u), (4)

∫
q̂i (u)m̂l′(u) du =

L∑
l=0

β̂i,l

∫
p̂i (u)m̂l′(u)m̂l(u) du, (5)

p̂i (u) =
1

Ji

Ji∑
j=1

Kh(u − Xi,j),

q̂i (u) =
1

Ji

Ji∑
j=1

Kh(u − Xi,j)Yi,j .
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model 5-5

Model characteristics

Consider the case L = 0: the log-implied volatilities Yi ,j are
approximated by a surface m̂0 not depending on day i . Then,

m̂0(u) =

∑
i ,j Kh(u − Xi ,j)Yi ,j∑

i ,j Kh(u − Xi ,j)
,

m̂0 is equal to the Nadaraya-Watson estimate based on the pooled
sample of all days.
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model 5-6

Model characteristics

Consider a fixed day i and L = 0:,

m̂
(i)
0 (u) =

∑Ji
j=1 Kh(u − Xi ,j)Yi ,j∑Ji

j=1 Kh(u − Xi ,j)
,

Traditional model fit 20000502
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model 5-7

Model characteristics

IVS’s are fitted in neighborhoods of the observed design points
Xi ,j , i.e.

� we do not fit the surface on the whole design space on each
day (as in a functional PCA (fPCA), Ramsay and Silverman
(1997)).

� we circumvent global fits and thus avoid large bias effects
caused by the degenerated string design.
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model 5-8

Model characteristics

In fPCA factors are eigenfunctions of a covariance operator. Here,
the norm: ∫

f 2(u)p̂i (u)du ,

changes each day i , where p̂i (u) = J−1
i

∑Ji
j=1 Kh(u − Xi ,j).

Eigenfunctions m̂l may not be nested for increasing L:
Hence, the m̂l cannot be calculated iteratively, i.e. by moving from
L− 1 components to L components, and so forth.
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model 5-9

Model characteristics

In the DSFM framework the IVS’s are approximated by surfaces
moving in the function space

{m̂0 +
L∑

l=1

αlm̂l : α1, . . . , αL ∈ R}.

The estimates m̂l are not uniquely defined: they can be replaced
by estimates that span the same affine space.
Natural choice: orthogonalize m̂l in an appropriate function space.
Order the resulting functions according to maximum variance in β̂l .

Implied Volatility String Dynamics

  

0.8 1 1.2
  

0
0.

4
0.

8

 



model 5-10

Orthogonalization
Replace:

m̂0 by m̂new
0 = m̂0 − γ>Γ−1m̂

m̂ by m̂new = Γ−1/2m̂

β̂i by β̂new
i = Γ1/2(β̂i + Γ−1γ)

where:

m̂ = (m̂1, ..., m̂L)
> , β̂i = (β̂i ,1, ..., β̂i ,L)

>, p̂(u) = 1
I

∑I
i=1 p̂i (u)

Γ is (LxL) matrix with Γl ,l ′ =
∫

m̂l(u)m̂l ′(u)p̂(u)du

γ is (Lx1) vector with γl =
∫

m̂0(u)m̂l(u)p̂(u)du.
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Average density
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Figure 3: The average density p̂(u)



model 5-12

Ordering
Define matrix B with Bl ,l ′ =

∑I
i=1 β̂i ,l β̂i ,l ′ and Z = (z1, ..., zL)

where z1,...,zL eigenvectors of B.
Replace:

m̂ by m̂new = Z>m̂

β̂i by β̂new
i = Z>β̂i

The orthonormal basis m̂1, ..., m̂L is chosen such that
∑I

i=1 β̂2
i ,1 is

maximal and given β̂i ,1, m̂0, m̂1 the quantitiy
∑I

i=1 β̂2
i ,2 is maximal

and so forth.

Implied Volatility String Dynamics

  

0.8 1 1.2
  

0
0.

4
0.

8

 



algorithm 6-1

Algorithm

The algorithm exploits equations (4) and (5) iteratively:

1. for an appropriate initialization of

β
(0)
l ,i , i = 1, . . . , I , l = 1, . . . , L

get an initial estimate of m̂(0) = (m̂0, ..., m̂L)
>

2. update β
(1)
i , i = 1, . . . , I ,

3. estimate m̂(1).

4. go to step 2.

until minor changes occur during the cycle.
Optimization implemented in XploRe, DSFM.xpl, Härdle et al.
(2000).
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results 7-1

Data Overview

Min. Max. Mean Median Stdd. Skewn. Kurt.

T. to mat. 0.028 2.002 0.142 0.086 0.166 3.658 21.449
Moneyness. 0.287 3.367 0.996 0.997 0.114 0.686 12.026
IV 0.040 0.799 0.297 0.265 0.105 1.289 4.489

Table 1: Summary statistics from 199901 to 200302. Source: EU-
REX, ODAX, stored in the SFB 649 FEDC.

Ji ≈ 5 200 observations per day
total time series has I ≈ 1000 days.
N = IJi ≈ 2.8 million contracts,
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results 7-2

Model selection

For a data-driven choice of bandwidths we propose a weighted AIC since the
distribution of observations is very unequal:

ΞAIC1 =
1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2w(Xi,j) exp{2L

N
Kh(0)

∫
w(u)du},

alternatively (computationally easier):

ΞAIC2 =
1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 exp{2L

N
Kh(0)

∫
w(u)du∫

w(u)p(u)du
}.

w is a given weight function. Putting w(u) = 1 delivers common AIC , putting
w(u) = 1

p(u)
give equal weight everywhere.
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results 7-3

Model selection

For the model size (L) selection use the:

RV (L) =

∑I
i

∑Ji
j {Yi ,j −

∑L
l=0 β̂i ,lm̂l(Xi ,j)}2∑I

i

∑Ji
j (Yi ,j − Ȳ )2

where Ȳ denotes the overall mean of the observations.

L 1-RV(L) ∆RV

1 0.9638
2 0.9739 0.0101
3 0.9822 0.0083
4 0.9830 0.0007

Table 2: Explained variance for the model size.
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results 7-4

Estimation Results

We fit the model for L = 3, i.e. there are

� one invariant basis function m̂0 and

� 3 ‘dynamic’ basis functions m̂1, m̂2, m̂3

� 3 time series of {βl ,i}I
i=1 with l = 1, 2, 3

The bandwidths were chosen according to AIC2 criterion:
h1 = 0.03, h2 = 0.02
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results 7-5
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Figure 4: ΞAIC2 dependence on the bandwidths.
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Figure 5: Invariant basis function m̂0 and dynamic basis function m̂1
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Figure 6: Dynamic basis functions m̂2 and m̂3
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Figure 7: The dynamic basis function m̂1
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Figure 9: Time series of weights β̂2 and β̂3



results 7-11

Correlogram for β̂1, β̂2 and β̂3

Sample autocorrelation function (acf)
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Figure 10: acf and pacf of β̂1, β̂2 and β̂3 respectively
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results 7-12

Testing for random walk

coeff. lag suggested
differences break date test-value

β̂1 7 2001.11.09 -1.33

β̂2 2 2001.11.09 -1.09
3 -1.04

β̂3 2 1999.06.08 -3.42*

Table 3: Unitroot test in the presence of structural break. Critical
values for rejecting the hypothesis of unit root are -2.88 at 5%
significance level and -3.48 at 1% significance level. (*) indicate
significance at 5% level. Lane et al. (2002)
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results 7-13

We model first differences of β̂1, β̂2 and level β̂3 in the form

Yt = (∆β̂1,∆β̂2, β̂3)
>

Yt = υ + A1Yt−1 + A2Yt−2+, . . . ,+ApYt−p + εt

Yt = (Y1t , . . . ,Ykt)
> are vectors of the k = 3 endogenous

variables

υ = (υ1, . . . , υk)> is a vector of intercept terms, Ai are
(K × K ) coefficient matrices

εt is a white noise with covariance matrix Σε > 0
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results 7-14

Order Selection Criteria

Lag ln(FPE) AIC SC HQ

0 -24.34 -15.83 -15.81 -15.82
1 -24.61 -16.10 -16.04 -16.07
2 -24.66 -16.15 -16.05* -16.11
3 -24.68 -16.17 -16.03 -16.11*
4 -24.68 -16.17 -15.98 -16.10
5 -24.69 -16.16 -15.94 -16.08
6 -24.70* -16.18* -15.91 -16.08
7 -24.69 -16.18 -15.87 -16.06
8 -24.69 -16.17 -15.82 -16.04

Table 4: VAR Lag Order Selection. * indicates lag order selected
by the criterion up to a maximum order 8. We chose to apply a
VAR(2) as indicated by the SC criterion.
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results 7-15

 ∆β̂1t

∆β̂2t

β̂3t

 =

 0.12 0.22 −0.09
−0.09 −0.57 0.08

0.01 0.03 0.74


 ∆β̂1t,t−1

∆β̂2t,t−1

β̂3t,t−1



+

 −0.07 0.03 0.09
−0.01 −0.24 −0.07
−0.01 0.01 0.23


 ∆β̂1t,t−2

∆β̂2t,t−2

β̂3t,t−2



+

 û1,t

û2,t

û3,t


VAR model for first difference levels, (∆β̂1, ∆β̂2, β̂3)

>
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results 7-16

Model Stability

Time invariance of the model has been evaluated through the roots
of the characteristic polynomial for the VAR(2) model as well as
coefficient stability through the cumulative sum of squares of the
residuals.

roots modulus

0.97 0.97
−0.27± 0.4i 0.48

0.04± 0.2i 0.27
-0.23 0.23

Table 5: Roots of characteristic polynomial for the VAR(2): stability
condition is satisied since no root lies outside the unit circle.
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results 7-17

Model Stability

CUSUM-square statistic:

St =

∑t
r=k+1 W 2

r∑T
r=k+1 W 2

r

W 2
r (recursive residuals) is the square one-period ahead prediction

error. r = k + 1, . . . ,T ( k, the number of regressors including a
constant and T , sample size.
We plot Sr together with significance level lines E [Sr ]± C0, the
statistical ”boundaries”. C0 depends on T − k and the significance
level desired, see Harvey (1990).
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results 7-18
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Figure 11: CUSUM-square statistics for ∆z1 and ∆z2 equation
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results 7-19
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Figure 12: CUSUM-square statistics for z3 equation

Coefficient stability is not rejected as all plots lies within the
critical boundaries.
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application 8-1

Hedging exotic options

Knock-out options are financial options that become worthless as
soon as the underlying reaches a prespecified barrier.

0
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ce

Figure 13: Example of two possible paths of asset’s price. When the
price hits the barrier (red) the option is no longer valid regardless
further evolution of the price.
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Figure 14: Newspaper advertisement of Sal. Oppenheim’s knock-out
options (source: Frankfurter Allgemeine Zeitung, November 2004)



Figure 15: Bid-/Ask information of Sal. Oppenheim’s knock-out
options



application 8-4

Hedging exotic options

In BS world prices of barrier options are given analytically, all
greeks can be calculated directly.
There exists static replication for some barrier option if:

� the underlying has no drift

� the IV on the market only depends on time not on strike
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Figure 16: Price of the call knock-out barrier options as a function
of BS-σ. Asset value S0 = 90, strike price K = 80 time to maturity
τ = 0.1 interest rate r = 0.03. Left panel: barrier B = 80. Right
panel: barrier B = 120.



application 8-6

Example
Consider a short position in a knock-out call option (CKO) with
strike 100 and barrier 90. Consider also one long position in a
European call with strike 100 and a short position in 100/90
European puts with strike 81.

� if spot is at the barrier level 90 call and put would be worth
the same

� if barrier was not reached before maturity the payoff of CKO is
equal to the payoff of the call

CKO is replicated with vanilla options.
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application 8-7

Value at time t Value at time T
Position hits barrier doesn’t hit barrier

C BScall(K = 100) (ST − 100)+

−100/90P −100
90 BSput(K = 81) 0

−CKO 0 −(ST − 100)+

Sum 0 0

For each time t and each value of σ if r = 0 and St = 90 then
BScall(K = 100) = 100

90 BSput(K = 81)
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application 8-8

Dynamic hedging

Use approximation of the option value changes and adjust
constantly the hedge portfolio.

∆CKO(∆S ,∆σ) ≈ ∂CKO

∂S
∆S +

∂CKO

∂σ
∆σ

The changes in the asset price (delta risk) can be hedge the asset
itself. The changes in volatility (vega risk) can be hedge with
at-the-money plain vanilla call option (C ).
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application 8-9

Dynamic hedging

The sensitivity of the hedge portfolio HP = a1S + a2C w.r.t. S
and σ should be equal to the sensitivity of the CKO . The hedge
coefficients a1, a2 are given by the equation:(

1 ∂C
∂S

0 ∂C
∂σ

)(
a1

a2

)
=

(
∂CKO

∂S

∂CKO

∂σ

)
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application 8-10

Local Volatility Model

In local volatility (LV) models the asset price dynamics are
governed by the stochastic differential equation:

dSt

St
= µdt + σ(St , t)dWt (6)

where Wt is a Brownian motion, µ the drift and σ(St , t) the local
volatility function which depends on the asset price and time only.
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application 8-11

For pricing the options the partial differential equation (6) is
solved. Price depends on the entire IVS. From the IVS one can
calculate Ct(K ,T ).
Dupire formula:

σ2(St , t) = 2
∂Ct(K ,T )

∂T + rK ∂Ct(K ,T )
∂K

K 2 ∂2Ct(K ,T )
∂K2

gives the local volatility surface σ(St , t).
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application 8-12

Hedging exotic options

Most greeks can be calculated:

� Delta, ∂CKO

∂S , gamma, ∂2CKO

∂S2 and theta, ∂CKO

∂t , can be read
from the grid of the finite difference scheme;

� rho, ∂CKO

∂r , and dividend-rho, ∂CKO

∂δ , are typically computed via
a difference quotient assuming a flat term structure.

What about the vega ??
The usual vega, ∂CKO

∂σ cannot be used since the entire IVS is input.
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application 8-13

Classical vega hedging

Classical vega hedging corresponds to parallel move of IVS

� In BS there is only one volatility number

� In LV it protects only of parallel move of the smile (β1 effect)
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application 8-14

Bucket hedging

With term structure of the IVS one may compute a bucket vega
hedging. It provides a sensitivity measure of parallel movements
over each maturity string.

� The procedure indicates which European option maturities
should be used for hedging

� Sensitivity related to strike is not given
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application 8-15

Superbucket hedging

In superbucket analysis one has to compute sensitivity of exotics
w.r.t. a move of each individual implied volatility.

� Sensitivity by strike and maturity is obtained

� The calculation needs to be done for each single point
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application 8-16

Vega-hedging of the two DSFM factors

In DSFM the IV decomposition is given only by L + 1 factors:

σ̂i = exp

(
L∑

l=0

β̂i ,l m̂l

)
.

We can compute the sensitivities w.r.t. the factor loadings β̂l !
From the interpretations, we receive an immediate understanding
of the sensitivities:

� ∂

∂β̂1
is an up-and-down shift vega of the IVS;

� ∂

∂β̂3
is a slope shift vega of the IVS.
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application 8-17

How to compute the hedge ratios

Take two hedge portfolios HP1 and HP2.
Compute the sensitivities of the hedge portfolios and the
knock-out option with respect to β̂1 and β̂3.
Solve  ∂HP1

∂β̂1

∂HP2

∂β̂1

∂HP1

∂β̂3

∂HP2

∂β̂3

( a1

a2

)
=

 ∂CKO

∂β̂1

∂CKO

∂β̂3


for the hedge ratios a1, a2.

Implied Volatility String Dynamics

  

0.8 1 1.2
  

0
0.

4
0.

8

 



application 8-18

Choice of the hedge portfolio

Idea:
choose HP1 and HP2 with maximum exposure to β̂1 and β̂3,
respectively:

HP1 should be most sensitive to up-and-down shifts:
use a portfolio of at-the-money plain vanilla options;

HP2 should be most sensitive to slope changes:
use a portfolio of vega-neutral risk reversals.

Then ∂HP1

∂β̂3
≈ 0 and ∂HP2

∂β̂1
≈ 0.
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application 8-19

Risk reversal payoff
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asset price
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Figure 17: The payoff of the risk reversal. It is compounded from
long call with strike K1 = 120 and short put with strike K2 = 80.
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outlook 9-1

Outlook

Agenda:

- local-linear smoothing X

- data driven choice of L (number of m), and bandwidth h X

- forecasting exercise (almost done)

- investigate obvious relations to Kalman Filtering, Fengler et
al. (2005):

Yi ,j = m0(Xi ,j) +
L∑

l=1

βi ,lml(Xi ,j) + εi (7)

βi = β̃i (θ) + ηi (8)
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outlook 9-2

Outlook

Agenda:

- hedging empirical studies

- estimation of state price density (SPD)

fT−t(K ) = er(T−t) ∂
2Ct(K ,T )

∂K 2
(9)

where fT−t(K ) is SPD of the time T taken in the time t
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