Empirical Pricing Kernels and Investor Preferences

K. Detlefsen¹

W. K. Härdle¹

R. A. Moro^{1,2}

1. C.A.S.E., Humboldt-Universität zu Berlin

2. DIW Berlin

http://www.case.hu-berlin.de http://www.diw.de **DIW** Berlin

Motivation ______ 1-1

An investor observes the stock price and forms his subjective opinion about the future evolution.

Figure 1: DAX, 1998 – 2004. Daily observations.

Motivation — 1-2

An opinion on the future value S_t can be described by a **subjective** density p (historical or physical density).

Examples:

- Black-Scholes model (Nobel prize 1997): log normal distribution
- ☐ GARCH model (Nobel prize 2003, Engle): stochastic volatility
- onn-parametric diffusion model (Ait-Sahalia 2000)

Log returns $\{r_i\}$ are modeled with a GARCH-M (discrete Heston) model:

$$r_i = \mu - \frac{1}{2}V_i + \sqrt{V_i}Z_i$$
$$V_i = \omega + \beta V_{i-1} + \alpha(Z_{i-1} - \gamma \sqrt{V_{i-1}})$$

From the initial stock price S_0 the final stock price can be constructed:

$$S_t = S_0 \exp(\sum_{i=1}^t r_i).$$

Motivation — 1-4

Figure 2: Subjective historical density with confidence bands on t=24 March 2000 for half a year returns, (t-0.5,t), $\tau=0.5$ (non-parametric kernel estimator)

Motivation — 1-5

There is also a state-price density (SPD) q implied by the market prices of options.

The SPD (a.k.a. **risk-neutral density**) differs from *p* because it corresponds to replication strategies (*martingale risk neutral measure*).

A person alone does not use in general a replication strategy but thinks in terms of his p density.

For SPD estimation a Heston continuous stochastic volatility model is used, which is an industry standard for option pricing models:

$$\frac{dS_t}{S_t} = rdt + \sqrt{V_t} dW_t^1$$

where the volatility process is modelled by a square-root process:

$$dV_t = \xi(\eta - V_t)dt + \theta\sqrt{V_t}dW_t^2,$$

and W^1 and W^2 are Wiener processes with correlation ρ .

Motivation — 1-7

Figure 3: SPD on 24 March 2000, $r_{0.5}=4.06\%$. Using option prices with time-to-maturity between 0.25 and 1 and moneyness between 0.5 and 1.5 we get the estimate for the SPD $\tau=0.5$ years ahead.

The **pricing kernel** $\mathcal{K}(x)$ is defined as:

$$\mathcal{K}(x) = \frac{q(x)}{p(x)}$$

An estimate of the pricing kernel is called **empirical pricing kernel** (EPK). We use the estimate:

$$\hat{\mathcal{K}}(x) = \frac{\hat{q}(x)}{\hat{p}(x)}$$

where \hat{q} and \hat{p} are the estimated risk-neutral and subjective densities.

Motivation 1-9

Figure 4: Empirical pricing kernel on 24 March 2000 for $\tau = 0.5$ year, $r_{0.5} = 4.06\%$.

EPK and Investor Preferences

Motivation — 1-10

Questions

- Is the EPK monotone?
- What type of utility functions can generate observed pricing kernels and prices?
- What happens if the hypothesis of the existence of the representative investor is abandoned?

Motivation — 1-11

Outline

- 1. Motivation ✓
- 2. Pricing equation and pricing kernel (SDF)
- 3. Pricing kernel estimation and monotonicity test
- 4. Decomposition of the market utility function
- 5. Individual utility functions
- 6. Market aggregation mechanism
- 7. Estimation of the distribution of investor types
- 8. Outlook

Utility Maximisation Problem

$$\max_{\{\xi\}} U(C_0) + \beta E^P [U(C_T)]$$
 (1)

s.t.
$$C_0 = e_0 - P_0 \xi$$

 $C_T = e_T + \psi(S_T) \xi$

```
where \psi(S_T) — a pay-off profile contingent on S_T P_0 — the price of the asset at t=0
```

 ξ – portfolio position

 β – subjective discount factor

 e_0 , e_T – wages at t = 0 and T

 E^P – expectation w. r. to a historical measure P

Pricing Equation

If the utility function depends only on state variables and $\beta = const$, then for **any** security paying $\psi(S_T)$:

$$P_0 = E^P \left[\beta \frac{U'(C_T)}{U'(C_0)} \psi(S_T) \right] = E^P \left[\tilde{m}(C_T) \psi(S_T) \right]$$
 (2)

where the stochastic discount factor (SDF) is:

$$\tilde{m}(C_T) = \beta \frac{U'(C_T)}{U'(C_0)} = const \cdot U'(C_T)$$

Stochastic Discount Factor Projection

Pricing equation using the SDF projection onto asset prices S_T (a state variable alternative to C_T):

$$P_0 = E^P[m(S_T)\psi(S_T)] = \int_0^\infty m(s) \ \psi(s) \ p(s)ds,$$
 (3)

where the projection:

$$m(S_T) = \operatorname{E}^P \left[\tilde{m}(C_T) | S_T \right]$$

Pricing with \tilde{m} and m is equivalent if the projection is unique. The projection is **linear** if $\psi(S_T) = S_T$ (budget constraint).

Risk-neutral pricing equation:

$$P_0 = e^{-r\tau} E^Q \left[\psi(S_T) \right] = e^{-r\tau} \int_0^\infty \psi(s) \ q(s) \ ds = (4)$$

$$= e^{-r\tau} \int_0^\infty \psi(S_T) \, \frac{q(s)}{p(s)} \, p(s) ds \tag{5}$$

where p(s) and q(s) are subjective and risk neutral pdf's

Since (3) and (5) are equivalent (hold for any $\psi(S_T)$), the pricing kernel is:

$$\mathcal{K}(S_T) = \frac{q(S_T)}{p(S_T)} = \frac{U'(S_T)}{U'(S_0)}$$

The Black-Scholes Model

Geometric Brownian motion process:

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t \tag{6}$$

The historical density p is log-normal:

$$p(x) = \frac{1}{x} \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{\log x - \tilde{\mu}}{\tilde{\sigma}}\right)^2\right\}, \ x > 0$$

where
$$\tilde{\mu} = (\mu - \frac{\sigma^2}{2})t + \log S_0$$
 and $\tilde{\sigma} = \sigma\sqrt{t}$

p(x) and q(x) are both log-normal and the pricing kernel is

$$\mathcal{K}(x) = \left(\frac{x}{S_0}\right)^{-\frac{\mu-r}{\sigma^2}} \exp\left\{\frac{(\mu-r)(\mu+r-\sigma^2)T}{2\sigma^2}\right\}$$

Up to a linear transformation the utility function is a CRRA function:

$$U(S_T) = \left(1 - \frac{\mu - r}{\sigma^2}\right)^{-1} S_T^{\left(1 - \frac{\mu - r}{\sigma^2}\right)} \tag{7}$$

In terms of $R_T = \frac{S_T}{S_0}$:

$$U(R_T) = a \frac{R_T^{1-\gamma}}{1-\gamma}$$

Estimation of the Pricing Kernel

The empirical pricing kernel is:

$$\hat{\mathcal{K}}(S_T) = \frac{\hat{q}(S_T)}{\hat{p}(S_T)},$$

PK estimation:

- $oxed{oxed}$ the risk neutral density q from option prices with the Heston model
- the historical subjective density p from stock prices with the GARCH-M, discrete Heston and non-parametric kernel density models

Estimation of the Subjective Density p

Model	History
GARCH in mean	2.0y
discrete Heston	2.0y
non-parametric kernel	1.0y

Table 1: Models and the time periods used for their calibration.

The GARCH-M and discrete Heston is simulated $\tau=$ 0.5y ahead with 2000 repetitions.

Estimation of the Risk Neutral Density q

Risk neutral density q is estimated from DAX option prices using the stochastic volatility Heston model:

$$\frac{dS_t}{S_t} = rdt + \sqrt{V_t}dW_t^1$$

where the volatility process is:

$$dV_t = \xi (\eta - V_t) dt + \theta \sqrt{V_t} dW_t^2$$

 W_t^1 , W_t^2 – Wiener processes with correlation ρ

The parameters in the Heston model can be interpreted as:

- ξ mean-reversion speed, $\xi=2$ (Bergomi, 2005)
- η long-term variance
- V_0 short-term variance
 - ρ correlation
 - θ volatility of volatility

 η and V_0 control the term structure of the implied volatility surface (i.e. time to maturity direction).

 ρ and θ control the smile/skew (i.e. moneyness direction).

Figure 5: Implied volatility surface.

Figure 6: Simulated paths in the Heston model for the parameters $V_0=0.1$, $\eta=0.08$, $\xi=2$, $\theta=0.3$, $\rho=-0.7$. S – stock process, V – variance process.

We estimate the parameters of the SPD by minimising the ASE of the implied volatilities:

$$\frac{1}{n} \sum_{i=1}^{n} (IV_i^{model} - IV_i^{market})^2$$

where IV^{model} and IV^{market} refer to model and market implied volatilities; n is the number of observations on the surface.

Typically, we observe option prices with time to maturity $\tau \in [0.25; 1]$ years and moneyness $K/S_0 \in [0.5; 1.5]$.

Plain vanilla call option prices are calculated by a method of Carr and Madan:

$$C(K, T) = \frac{\exp\{-\alpha \log(K)\}}{2\pi} \int_0^\infty \exp\{-i\nu \log(K)\} \psi_T(\nu) d\nu$$

for a damping factor $\alpha > 0$. The function ψ_T is given by

$$\psi_{T}(v) = \frac{\exp(-rT)\phi_{T}\{v - (\alpha + 1)\mathbf{i}\}}{\alpha^{2} + \alpha - v^{2} + \mathbf{i}(2\alpha + 1)v}$$

where ϕ_T is the characteristic function of $\log(S_T)$.

The characteristic function:

$$\phi_{T}(z) = \exp\left\{\frac{-(z^{2} + iz)V_{0}}{\gamma(z)\coth\frac{\gamma(z)T}{2} + \xi - i\rho\theta z}\right\} \times \frac{\exp\left\{\frac{\xi\eta T(\xi - i\rho\theta z)}{\theta^{2}} + izTr + iz\log(S_{0})\right\}}{\left(\cosh\frac{\gamma(z)T}{2} + \frac{\xi - i\rho\theta z}{\gamma(z)}\sinh\frac{\gamma(z)T}{2}\right)^{\frac{2\xi\eta}{\theta^{2}}}}$$
(8)

where $\gamma(z) \stackrel{\text{def}}{=} \sqrt{\theta^2(z^2 + iz) + (\xi - i\rho\theta z)^2}$ see e.g. (Cizek et al., 2005).

The density $f(\log S_T)$ can be recovered with Fourier inversion:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{itx} \phi_T(t) dt,$$

The risk neutral density $q(S_T)$ is given as a transformed density:

$$q(x) = \frac{1}{x} f\{\log(x)\}\$$

Estimation of the Subjective Density *p*

The log-returns r_i of DAX for 0.5 year are modelled with the GARCH-M model:

$$r_i = \mu + \sqrt{V_i} Z_i$$
$$V_i = \omega + \beta V_{i-1} + \alpha r_{i-1}^2$$

From S_0 we can construct S_t as:

$$S_t = S_0 \exp\left(\sum_{i=1}^t r_i\right)$$

- □ Fit the GARCH-M model for DAX returns
- Simulate *N* time series of the returns (N=2000)
- \Box Evaluate \hat{p} using kernel density estimation

Other applied models:

- discrete Heston
- non-parametric kernel

Figure 7: Empirical historical and risk neutral price densities, 24 March 2000.

5

Figure 8: Empirical pricing kernels on 24 March 2000.

Figure 9: Empirical pricing kernel on 24 March 2000, 30 July 2002 and 30 June 2004.

Relative risk aversion coefficient:

$$RRA(S_T) = -S_T \frac{U''(S_T)}{U'(S_T)}.$$

RRA can be estimated directly from the risk neutral and historical densities:

$$\begin{array}{lcl} \textit{RRA}(S_{\mathcal{T}}) & = & -S_{\mathcal{T}} \frac{q'(S_{\mathcal{T}})p(S_{\mathcal{T}}) - q(S_{\mathcal{T}})p'(S_{\mathcal{T}})}{p^{2}(S_{\mathcal{T}})} / \frac{q(S_{\mathcal{T}})}{p(S_{\mathcal{T}})} = \\ & = & S_{\mathcal{T}} \left\{ \frac{p'(S_{\mathcal{T}})}{p(S_{\mathcal{T}})} - \frac{q'(S_{\mathcal{T}})}{q(S_{\mathcal{T}})} \right\}. \end{array}$$

Figure 10: Relative risk aversion on 24 March 2000, 30 July 2002 and 30 June 2004.

Figure 11: Linear pricing kernel and quadratic utility function (CAPM model). $U(S_T) = -aS_T^2 + bS_T + c$.

EPK and Investor Preferences -

Figure 12: Power pricing kernel and CRRA utility function. $U(S_T) = a \frac{S_T^{1-\gamma}}{1-\alpha}$.

EPK and Investor Preferences

Figure 13: Pricing kernel and utility function suggested by Kahneman and Tversky based on behavioural experiments.

Pricing Kernel Monotonicity Test

 $\{S_i\}_{i=1}^n \sim p$, historical subjective density

q, risk-neutral density; $S_{(k)}$ order statistic

 \mathcal{K} , pricing kernel

$$\mathcal{K}_k = \mathcal{K}(S_{(k)}) = \frac{q(S_{(k)})}{p(S_{(k)})}$$
, decreasing $\forall I$ and $J, I \leq k \leq J$

- □ spacing method to reduce to exp model
- \odot ML test for monotonicity in (I, J)
- oxdot multiple testing to find \hat{I} and \hat{J}

Pyke's theorem: Let i.i.d. $U_i \sim U(0,1)$ and i.i.d. $e_i \sim Exp(1)$, i = 1, ..., n.

$$\mathcal{L}\left(U_{(k+1)}-U_{(k)}\right)=\mathcal{L}\left(\frac{e_k}{\sum_{s=1}^n e_s}\right), \qquad 1 \leq k \leq n-1.$$

Hence:

$$n\left(U_{(k+1)}-U_{(k)}\right)\approx e_k. \tag{9}$$

With the cdf P(x):

$$U_{(k+1)} - U_{(k)} = P(S_{(k+1)}) - P(S_{(k)}) \approx p(S_{(k)})(S_{(k+1)} - S_{(k)})$$

Hence from (9):

$$n\left(S_{(k+1)}-S_{(k)}\right)q(S_{(k)})\approx\frac{q(S_{(k)})}{p(S_{(k)})}e_k=\mathcal{K}\left(S_{(k)}\right)e_k=\mathcal{K}_ke_k.$$

Test with observations

$$Z_k = \mathcal{K}_k e_k$$

whether \mathcal{K}_k is monotone.

Maximum Likelihood Ratio Test

$$\mathcal{M}(I,J) = \{x_k \ge 0: \quad x_k \ge x_{k+1}, \quad I \le k \le J\}$$

For $Z = (Z_1, \dots, Z_k)$ define the log-likelihood:

$$\log\{p(Z,\mathcal{K})\} = -\sum_{k=I}^{J} \frac{Z_k}{\mathcal{K}_k} - \sum_{k=I}^{J} \log \mathcal{K}_k,$$

Maximum log-likelihood:

$$\max_{\mathcal{K}} \log\{p(Z, \mathcal{K})\} = -n - \sum_{k=1}^{n} \log(Z_k).$$

The test statistic:

$$\xi(I,J) = \log \frac{\max_{\mathcal{K} \in \mathcal{M}(I,J)} p(Z,\mathcal{K})}{\max_{\mathcal{K}} p(Z,\mathcal{K})}$$

The critical value ($\mathcal{K}_k = 1$):

$$h_{\alpha}(I,J) = M(I,J) + t_{\alpha}V(I,J)$$

where $M(I, J) = E_0 \xi(I, J)$, $V^2(I, J) = E_0 \{ \xi(I, J) - M(I, J) \}^2$. t_α is calculated by Monte Carlo as the solution of

$$P_0 \left[\max_{I=1,n} \max_{J=I+1,n} \{ \xi(I,J) - M(I,J) - t_{\alpha} V(I,J) \ge 0 \} \right] = \alpha$$

ML ratio monotonicity test:

- \Box compute $Z_k = n(S_{(k+1)} S_{(k)}) q(S_{(k)})$

Estimation of the Market Utility Function

Utility function is derived from the market data under the representative investor assumption:

$$U(S_T) = \int_0^{S_T} m(x) dx$$

A cardinal utility function can be defined up to a linear transformation.

$$U(R_T) = \int_0^{R_T} \frac{q(S_0 x)}{p(S_0 x)} dx$$

Figure 14: Market utility functions on 24 March 2000, 30 July 2002 and 30 June 2004.

Decomposition of the Utility Function

Observation: the portions of the utility function below $R_T = \frac{S_T}{S_0} = 1$ and above 1.15 are very well approximated with hyperbolic absolute risk aversion (shifted CRRA, Sharpe (2006)) functions:

$$U(x) = a(x - c)^{\gamma} + b, \tag{10}$$

The HARA function becomes infinitely negative for x = c and is extended as $U(x) = -\infty$ for x < c. HARA(c = 0)=CRRA.

Figure 15: Decomposition of the utility function, $\tau=0.5$ years, 30 July 2002.

Individual Utility Functions

Investor i has utility comprising two HARA components:

$$U(x, c_{2,i}) = \begin{cases} \max \{ U(x, \theta_1, c_1); U(x, \theta_2, c_{2,i}) \}, & \text{if } x > c_1 \\ -\infty, & \text{if } x \leq c_1 \end{cases}$$

where $\theta = (a, b, \gamma)^{\top}$, $c_{2,i} > c_1$. Investors differ in the parameter $c_{2,i}$.

$$a_i$$
 b_i γ_i c_i $i=1$ (bearish market) 80.58 -20.57 0.25 0.626 $i=2$ (bullish market) -134.75 73.91 2.00 -

Table 2: θ estimated from upper/lower quantiles, 30 July 2002.

Figure 16: Individual and market utility functions with a switching point, $\tau=0.5$ years, 30 July 2002.

Investor Types

- \Box Switching from bearish to bullish happens at $z=z(c_{2,i})$
- Different investors have different perceptional boundaries between "good" and "bad" states
- Switching points are in [0.95; 1.1], i.e. in the area that corresponds to present unit returns times half-year risk free interest rates
- There is a distribution of switching points (inverse problem)

Naive Utility Aggregation

- oxdot Specify the **observable** states of the world in the future by returns R_T
- □ Problem: utility functions of N different investors cannot be summed up since they are incomparable

Investor's Attitude Aggregation

- Specify perceived states of the world given by utility u
- $oxed{\Box}$ Aggregate the outlooks concerning the **returns** in the future R_T for each perceived state
- Estimate the distribution of switching points
- Aggregation leads to an inverse problem

Figure 17: Inverse market and individual utility functions, $\tau=0.5$ years, 30 July 2002.

For a **subjective** state described with utility u:

$$u = U^{(1)}(R_T^{(1)}, z_1) = U^{(2)}(R_T^{(2)}, z_2) = \dots = U^{(N)}(R_T^{(N)}, z_N)$$

The aggregate estimate of the resulting return is

$$R_T^A(u) = N^{-1} \sum_{i=1}^N R_T^{(i)}(u) = N^{-1} \sum_{i=1}^N U^{-1}(u, z_i)$$

if all investors have the same market power.

Important property: the return aggregation procedure is invariant of *any* monotonic transformation

Distribution of Switching Points

The aggregate return in the **perceptional** state u is given by:

$$R^{A}(u) = \int U^{-1}(u,z)f(z)dz \tag{11}$$

In oder to solve (11) for $f(\cdot)$:

$$\min_{f(\cdot)\in\mathcal{F}} \int \left\{ R_f^A(u) - U_M^{-1}(u) \right\}^2 \tilde{P}(du), \tag{12}$$

where $U_M^{-1}(u)$ is the inverse of the estimated market utility function, \tilde{P} is the distribution of utility levels.

Take

$$f \in \mathcal{F} = \left\{ f = \sum_{j=1}^J \theta_j I_{\{z \in B_j\}}, \theta_j \ge 0, \sum_{j=1}^J \theta_j h_j = 1, h_j = |B_j| \right\}.$$

The problem (12) becomes a quadratic programming problem:

$$\min_{ heta} \sum_{i=1}^n \left\{ R_f^A(u_i) - R_i
ight\}^2$$
 $heta_j \geq 0$
 $extstyle \sum_{i=1}^J heta_j h_j = 1$

Figure 18: Left panel: the market utility function (red) and the fitted utility function (blue). Right panel: the distribution of the reference points. 24 March 2000, a bearish market.

Figure 19: Left panel: the market utility function (red) and the fitted utility function (blue). Right panel: the distribution of the reference points. 30 July 2002, a stable market.

Figure 20: Left panel: the market utility function (red) and the fitted utility function (blue). Right panel: the distribution of the reference points. 30 June 2004, a bullish market.

Outlook — 8-1

Summary

- □ Representation of individual utility functions as consisting of two parts: for "good" and "bad" states of the world
- Investors behave as risk averse individuals in "good" and "bad" states but become risk seeking when switching occurs
- Utility function aggregation procedure based on subjective states of the world
- Formulation of an inverse problem for the estimation of the switching points distribution

Outlook — 8-2

Outlook

- Testing alternative utility function designs
- Refining the technique for estimating the distribution of switching points as an inverse problem
- Study of the dynamics of pricing kernels and individual utility functions (Giacomini et al., 2006)
- Testing the hypothesis of the local utility function non-concavity due to switching in a behavioural experiment

References

- Aït-Sahalia, Y. and Lo, A. W. (2000) Nonparametric Risk Management and Implied Risk Aversion, *Journal of Econometrics*, **94**, 9-51.
- Barone-Adesi, G. and Engle, R. and Mancini, L. (2004) GARCH Options in Incomplete Markets, working paper, University of Lugano.
- Bergomi, L. (2005) Smile Dynamics 2, Risk, 18.
- Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities, *Journal of Political Economy*, **81**, 637-659.

- Borak, S. and Detlefsen, K. and Härdle, W (2000) FFT Based Option Pricing, SFB 649 Discussion Paper 2005-011.
- Breeden, D. and Litzenberger, R. (1978) Prices of State-Contingent Claims Implicit In Option Prices, *Journal of Business*, **51**, 621-651.
- Carr, P. and Madan, D. (1999) Option Evaluation Using the Fast Fourier Transform, *Journal of Computational Finance*, **2**, 61-73.
- Chernov, M. (2003) Empirical Reverse Engineering of the Pricing Kernel, *Journal of Econometrics*, **116**, 329-364.

- Cizek, P. and Härdle, W. and Weron, R. (2005) Statistical Tools in Finance and Insurance, Springer, Berlin.
- Cochrane, J. H. (2001) Asset Pricing, Princeton University Press, Princeton, NJ.
- Franke, J. and Härdle, W. and Hafner, C. (2004) Statistics of Financial Markets, Springer, Berlin.
- Friedman, M. and Savage, L. P. (1948) The Utility Analysis of Choices Involving Risk, *Journal of Political Economy*, **56**, 279-304.

- Giacomini, E., Handel, M. and Härdle, W. (2006) Time Dependent Relative Risk Aversion, *SFB 649 Discussion Paper 2006-020*.
- Heston, S. (1993) A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, *Review of Financial Studies*, **6**(2), 327-343.
- Heston, S. and Nandi, S. (2000) A Closed-Form GARCH Option Pricing Model, *Review of Financial Studies*, **13**, 585-625.
- Jackwerth, J. C. (2002) Recovering Risk Aversion from Option Prices and Realized Returns, *Review of Financial Studies*, **13**, 433-451.

References — 9-5

- Merton, R. C. (1973) An Intertemporal Capital Asset Pricing Model, *Econometrica*, **41**(5), 867-887.
- Proschan, F. and Pyke, R. (1967) Tests for Monotone Failure Rate, Fifth Berkley Symposium, 3, 293-313.
- Rosenberg, J. V. and Engle, R. F. (2002) Empirical Pricing Kernels, *Journal of Financial Economics*, **64**, June, 341-372.
- Sharpe, W. F. (2006). Investors and Markets: Portfolio Choices, Asset Prices and Investment Advice, Princeton University Press, Princeton, NJ (in print).

