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Volatility

Investors on equity markets "trade volatility" for
� speculation (trade implied volatility)
� hedging (vega hedging)

To these ends, European options are often used.

But volatility can also be traded directly...
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Realized variance

The realized variance of a stock price process (St) over the business
days 0 = t0 < t1 < . . . < tn = T is defined as

252
n

n∑
i=1

(log Sti − log Sti−1)
2

The markets of variance swaps have become very liquid.

Modern option pricing approaches derive models for the stock from
models for variance swaps.
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Option pricing models

Option pricing models are judged by their fit to observed price
surfaces of European calls and puts.

Modern options like e.g. cliquets

f ∨ (
n∑

i=1

fi ∨ (
Sti

Sti−1

− 1) ∧ ci ) ∧ c

depend on the dynamics of the price surfaces.

Hence, forecasting is an essential model criterion today.
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Yield curve forecasting

Thus, we analyze the forecasting of variance swap curves that serve
as building blocks for modern option pricing models.

Diebold and Li (2006) obtained good forecasting results in the
Nelson-Siegel framework for yield curves.

We analyze similar models motivated by the popular stochastic
volatility model of Heston and compare our results.
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Outline

1. introduction X

2. modeling variance swap curves
3. forecasting variance swap curves
4. conclusion, outlook
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Variance swap curves

Models of variance swaps are based on the approximation of the
quadratic variation:

n∑
i=1

(log Sti − log Sti−1)
2 ≈< log S >T

for business days 0 = t0 < t1 < . . . < tn = T .

Denoting this quadratic variation by V (T )
def
=< log S >T we

identify the variance swap prices as V (T )/T .
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Curves

curve definition
variance swap curve T → V (T )/T
variance swap curve in “volatility strikes” T →

√
V (T )/T

variance curve T → V (T )
forward variance curve T → v(T ) := V ′(T )

As all these curves change daily they should have a time subscript t.
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Constructing variance curves

In order to transform the discrete observations into curves we apply
on each day a local quadratic regression to the variance prices.

Observing the variance swap prices V (xi )/xi for the maturities
x1, . . . , xn on day t we construct the variance and forward variance
curve by

min
β

n∑
i=1

{V (xi )− β0 − β1(xi − x)− β2(xi − x)2}Kh(xi − x).

Then we have V (x) = β̂0(x) and v(x) = β̂1(x).

variance swap dynamics
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Data grid

Using this approach we construct variance curves at the maturities
1.5, 3, 6, 9, 12, 18 and 24 months on a weekly basis from

1. prices of variance swaps
2. on S & P 500 index
3. between 1 October 2003 and 30 September 2005

variance swap dynamics
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Data grid II
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Data grid III
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Data grid IV
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Models

We consider
1. the Heston model
2. the Nelson-Siegel approach
3. a semiparametric factor model

variance swap dynamics
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Heston model

The Heston model is given by

dSt

St
= µdt +

√
VtdW 1

t

dVt = ξ(η − Vt)dt + θ
√

VtdW 2
t

where W 1 and W 2 are Wiener processes.

Using the approximation by the quadratic variation the prices of
variance swaps are given by

θ + (ζ0 − θ)
1− exp(−κT )

κT
.
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Heston model II

Reparametrization leads to the forward variance curve model

v(T ) = z1 + z2 exp(−κT )

that implies the variance swap prices

z1 + z2
1− exp(−κT )

κT
. (1)
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Nelson-Siegel approach

The Nelson-Siegel parametrization

v(T ) = z1 + z2 exp(−κT ) + z3κT exp(−κT )

is a generalization of the above forward variance curve model.

The variance swap prices V (T )/T are given in this model by

z1 + z2
1− exp(−κT )

κT
+ z3{

1− exp(−κT )

κT
− exp(−κT )}. (2)

because of V (T ) =
∫ T
0 v(t)dt.
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Factors
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Meaning of factors

1st factor: long term factor; level

2nd factor: short term factor; slope

3rd factor: medium term factor; curvature

variance swap dynamics
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Semiparametric factor model

Let Yi ,j be an observed price of a variance swap on day i with
maturity Tj ∈ {0.12, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0}.

Let Xi ,j be a one-dimensional variable representing the
time-to-maturity.

Then the model regresses Yi ,j on Xi ,j by

Yi ,j = m0(Xi ,j) +
L∑

l=1

βi ,lml (Xi ,j),

variance swap dynamics
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Estimation of parametric models

Loadings z and parameter κ can be estimated by nonlinear LS.

problems:
1. numerically difficult
2. the factors change with changing κ

solution:
1. common approach in Nelson-Siegel in ir: fix κ

2. common approach in Heston in option pricing: fix κ

Hence, we use κ = 2 as in Bergomi (2004) and estimate the factor
loadings z by OLS.
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Estimation of semiparametric model

The factors m̂l and the loadings β̂i ,l are estimated by minimizing:

I∑
i=1

Ji∑
j=1

∫ {
Yi ,j −

L∑
l=0

β̂i ,lm̂l (u)

}2

Kh(u − Xi ,j) du

The minimization procedure searches through all functions
m̂l : R −→ R and time series β̂i ,l ∈ R by an iterative procedure.

Afterwards the estimates are orthogonalized and normalized, see
Fengler (2005) for details.
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Factors of semiparametric model
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In-sample fit

Maturity (Months) Heston Nelson-Siegel semiparametric model
1.5 0.17 0.09 0.26

3 0.10 0.11 0.09
6 0.11 0.04 0.10
9 0.06 0.03 0.01

12 0.03 0.06 0.04
18 0.05 0.03 0.00
24 0.07 0.05 0.01

Table 1: MAE of variance swap curves residuals [E−2].
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Residuals of in-sample fit

Figure 1: Variance swap curve residuals, 01/10/03 - 30/09/05. left: Hes-
ton, middle: generalized Heston, right: semiparametric model.
variance swap dynamics
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Factor loadings
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Figure 2: Factor loadings in the models and in the data.
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Modeling the loadings series

Diebold and Li (2006) model loadings in the Nelson-Siegel
framework for ir by AR(1).

Cont and da Fonseca (2002) model loadings in a principal
components framework for ivs by AR(1).

For comparability we follow this accepted approach.

Because of low correlation between the loadings we do not consider
VAR. Moreover, the results do not improve for ARIMA.

variance swap dynamics
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Autocorrelations
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Figure 3: Factor loadings in the Heston model.
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Forecasting the loadings series

The forecasts of variance swap curves τ weeks ahead are given by

̂Vt+τ (T )/T = ẑ1,t/t+τ f1(T ) + ẑ2,t/t+τ f2(T ) + ẑ3,t/t+τ f3(T )

where ẑi ,t/t+τ are the forecasts of the i-th factor loading and
f1, f2, f3 are the factors.

These loading forecasts can be computed by repeated 1-day
forecasts.
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Benchmark models

1. The static Heston model
Heston without forecasting the loadings

̂Vt+τ (T )/T =
Vt(T + τ)− Vt(τ)

T

where Vt denotes the variance curve at time t.
2. The random walk

no change forecast:

̂Vt+τ (T )/T = Vt(T )/T

variance swap dynamics
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Forecasting errors

The forecast errors at time t + τ are defined as:

̂Vt+τ (T )/T − Vt+τ (T )/T

for T = 1.5, 3, 6, 9, 12, 18 or 24 months.

We consider the two error measures, the mean absolute error:

MAE def
=

1
n

∑
t

‖ ̂Vt+τ (T )/T − Vt+τ (T )/T‖

and the mean absolute relative error:

MARE def
=

1
n

∑
t

‖
̂Vt+τ (T )/T − Vt+τ (T )/T

Vt+τ (T )/T
‖

variance swap dynamics
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Forecasting results: MAE, 1-month

Maturity Heston Nelson-Siegel semipara. static Heston RW
1.5 0.39 0.45 0.54 0.42 0.32

3 0.31 0.37 0.34 0.30 0.27
6 0.32 0.46 0.35 0.29 0.28
9 0.33 0.53 0.39 0.31 0.29

12 0.35 0.55 0.38 0.33 0.30
18 0.37 0.51 0.38 0.35 0.30
24 0.36 0.44 0.37 0.34 0.32

Table 2: MAE out-of-sample 1-months-ahead forecasting results [E−2].
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Forecasting results: MARE, 1-month

Maturity Heston Nelson-Siegel semipara. static Heston RW
1.5 27.7 33.4 38.9 30.2 20.9

3 17.2 21.4 19.3 16.8 14.8
6 15.3 23.0 17.3 14.5 13.2
9 15.2 24.8 18.1 14.4 12.7

12 15.2 24.5 16.4 14.4 12.4
18 14.6 21.1 15.3 13.7 12.0
24 13.5 16.7 13.6 12.7 11.6

Table 3: MARE out-of-sample 1-months-ahead forecasting results [E−2].
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Forecasting results: MAE, 6-month

Maturity Heston Nelson-Siegel semipara. static Heston RW
1.5 0.54 0.82 0.97 1.16 0.33

3 0.44 0.79 0.74 0.90 0.32
6 0.46 0.92 0.77 0.76 0.36
9 0.50 0.98 0.84 0.69 0.38

12 0.53 0.99 0.79 0.64 0.40
18 0.53 0.87 0.74 0.57 0.44
24 0.50 0.71 0.64 0.54 0.48

Table 4: MAE out-of-sample 6-months-ahead forecasting results [E−2].
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Forecasting results: MARE, 6-month

Maturity Heston Nelson-Siegel semipara. static Heston RW
1.5 39.8 62.3 71.8 84.4 24.0

3 26.0 46.1 43.2 52.5 18.9
6 24.6 46.9 39.7 39.5 18.9
9 24.9 47.0 40.5 34.0 18.9

12 24.8 44.8 36.1 30.3 18.8
18 23.1 36.9 31.3 25.1 19.1
24 20.6 28.6 26.0 22.2 19.2

Table 5: MARE out-of-sample 6-months-ahead forecasting results [E−2].
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Conclusion in-sample

� semiparametric better than Nelson-Siegel better than Heston
� but all models similar fits
� all models fit long maturities better
� fit for short maturities not satisfactorily
� residuals show structural problems for short maturities (also for

semiparametric)
� Nelson-Siegel gives better fit to yield curves
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Conclusion out-of-sample

� random walk better than all models
� confirms Duffie and Kan (1996) and disagrees with Diebold

and Li (2006)
� two factor models better than three factor models
� for long forecasts ahead static Heston not good
� for long forecasts ahead random walk only a bit better than

(dynamic) Heston

variance swap dynamics
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Outlook

� variance swap modeling and forecasting interesting because
yield curve approach perform badly

� bad performance of Heston for short maturities well known
� other models (e.g. Bates (1996)) can be analyzed
� other mean reversion speeds (κ) can be considered
� other forecasting techniques can be applied

variance swap dynamics
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