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Introduction 1-2

Karhunen-Loéve decomposition (FPCA)

Task: construct a factor model for random sample X;,i=1,...,n.
Popular solution motivated by Karhunen-Loeve decomposition is:

[e.e]
XI:/’L+Z/8U7J7 /.:17‘-'7”7 (1)

Jj=1

= E(X;) is the mean function

v, eigenfunctions of Covariance operator,
corresponding to the r-th largest eigenvalue A\,

Bir = fX t)dt factor loadings, Var(8;,) = A,

Common Functional Component Modelling




Introduction 1-3

Properties of KL-decomposition

best “empirical” basis:
L

p(vi,...,v)) =E(| Xi — pn— Z<Xi — i)y |I7)
j=1

is minimized by v; = 7;,

linear transformation with max. variance:
Var(v, X;),

is maximized by v, =~,,r=1,2,...,L

for any choice of L orthonormal basis functions vi,..., v,

Common Functional Component Modelling




Introduction 1-4

Two sample problem in principal components

We are mainly interested in two sample problems:
X X x and P xP L xBP) (2)

Goal: Compare the distribution of functions in both samples
by comparing their KL-decompositions:

XP =1 3750 =12, (3)

r=1
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Comparison of KL-decompositions

Common Eigenfunctions Hypothesis
-~ Hy, A =4O
2,r " r r

Common Eigenspaces Hypothesis
- Ho“ : 5{1) = 5{2), EEP) def span{'yip), . ,fyfp)}, p=1,2

Common Mean-functions hypothesis
_ H01 . ‘u(l) — [14(2)

Common eigenvalues hypothesis
- Ho,, : A =\
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Applications

- Stability analysis of KL factor (FPC) models

- Direct applications in finance:
Implied volatility (IV) analysis
Analyze the dynamics and term structure of IV surface
Construct FPC model for slices of IV at fixed maturity
Can we use same (common) model for different maturities ?

— Additional dim. reduction and precision
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Volatility Surface

ODAX Implied Volatility Surface 8+(x,7), t = 20030307, € [0.8,1.2] denotes
moneyness (Standardized strike) and 7 € [0, 1] time to maturity (in years).
Surface estimated using DSFM model, red points are raw Vs calculated from
contract-data <film>
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Introduction 1-8

log IV returns, 1M log IV returns, 3M

o5 050 05 ATM 105 o5 050 05 aTM 105

Figure 1: Two functional samples of interest: (estimated) daily log-returns of
the "slices” of the IV Surface at 1-Month maturity , X,-(l)(/-c) = Alogoi(k,1M)
(left figure) and 3-Months maturity X,.(Z)(/i) = Alogoi(k,3M) (right figure), Jan
2004-Jun 2004.

Common Functional Component Modelling



Introduction 1-9

Estimated Eigenfunctions, 1M Estimated Eigenfunctions, 3|

Estimated eigenfunctions 1M group (left plot) and 3M group (right plot), blue
— first function, red — second function, black — third function

Common Functional Component Modelling




Introduction 1-10

Outline of the talk

1. Introduction Vv

2. One sample inference

3. Two sample problem

4. Implied volatility analysis
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One sample inference 2-11

One sample inference

Given sample Xi(t), i=1,...,n
estimate 7,, A, by eigenfunctions and eigenvalues 9,,\,
of empirical covariance operator Cp:

i=1

[Dauxois, J., Pousse, A. and Romain, Y. (1982)]

~

give asymptotical results on 4,,A,
ie || v =4 = OP(”il/z)
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One sample inference
Dual approach

Focus on the matrix

My = (X; — X, Xk = X), I,k=1,...,n.

Denote eigenvalues, eigenvectors of M by h > b ..., p1,p2,...

Some calculations show

1. A =1l/n
2. Bir = (X = X, %) = VIpir

N _ _ n
39 = (VI) L P (= X) = (VI) T X i
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Estimation procedure — Model

In practice the functional values are observed on a discrete grid
and possibly contaminated with additional error:

Y,'k:X,'(t,'k)-f-é‘,'k, k=1,....T; (6)

where ¢, are independent noise terms with E(gjx) = 0,

. . def .
Var(eix) = a,-2, ti is fixed or random design, T = minT;.
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Estimation of M

Define

T:
' ti—1) + ti) i) + i

xi(t) =Y jm-)l(te[ R ““)D, te o1,
j=1

and estimate Mj; by

1
1y = [ {u(e) = X0} () - T(e) o,
where x(t) def 1 > xi(t), 1(-) denotes indicator function,
tiy,J = 1,... T; ordered sample of design points, tjo) = —tiq),
ti(t;+1) = 2 — tj(7;) and Yj(;) observation belonging to ).
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Bias correction for M;

Redefine tj1) := —tj2) and tj7,41) =2 — i(Ti)

. ) tiGy tig) +
‘”Z 01)l<te[ 2 9,20 2(”+1)])

Estimate the diagonal terms M;; by

Wy = / Dot - 1O} @) — KO de (@)

Aim: avoid additional bias implied by: E.(Y3) =
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Estimation of 4,

n
Hr = (\ﬁr)il ;Pirxi

1. Estimate M by M and calculate 71 pi.j=1,...,n

2. Estimate X; by X; (e.g. local smoothers with bandwidth b)
(Choice of b: cross validation)

I~

—1 n .
3. Calculate 4, 7 = ( lr) > pirXi
i=1
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Choice of smoothing parameter

Cross-Validation (leave-one-out) argument:

bcy = arg;ninz Z {YU — /’),T7,,'(t,-j) _
i

For a fixed s ¢ N

S

2
DA, 7 —i(tij) }

r=1

fit—i and 4.7 _;, r =1,...,5 denote /i and 4, estimated from
(ij,tkj), k=1,...,i—1,i+1,....nj=1,..., Tk

~

¥, denote OLS estimates of B,J
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Asymptotic results — Basic assumptions

1. X1,..., X, isi.i.d. sample of a.s. twice continuously
differentiable random functions on L»[0, 1]

2. The estimates X; are determined by local linear or
Nadaraya-Watson estimator with bandwith b
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Asymptotical results - Estimation error

Under assumptions 1) and 2) and using some further regularity
conditions we obtain
I) n~! Z?:l(ﬂir - ﬁir;T)2 = OP(Til) and

1 /r — —
A= 2= 0p(T™ 4+ 17" (8)

i) If additionally (Th?)™1 — 0 as n, T — oo, then
A (6) =3 7(2)] = Op(b>+(nTb) 2 +(Tb2) " +n71) (9)

for all t € [0,1]
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Asymptotic results - Eigenfunctions

Under assumption 1) and using some further regularity conditions
we obtain:

1) 4r(t) = 9(8) = Cosr { sy S Beilh | 35(8) + Re(e),

where ||R,|| = Op(n71) for all t € [0,1] and

fz{ )Zﬁs,ﬁ,,}%(twfv(o > o ns(t))

S#r s;ér
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Asymptotic results - Mean and eigenvalues
2) If, furthermore, A\,_1 > A, > A,41 for some r then
V(3 = A) 5 N0, 2(\)), (10)

3) Forall t € [0,1]

VAR (8) = ()} = 3 {\} Zﬁn} OB (o, > m(r)z) :
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One sample inference

When is the estimation error negligible ?

1) T is much larger than n, n/T*/®> — 0,
and use “optimal” bandwidth b ~ T~1/5.

2) T is smaller than n but n/ T2 — 0,

and use “undersmoothing” bandwidth b ~ (nT)~1/>.

In both cases 1) and 2) the theorems imply that

Er! = 0p(|Ar = Ar]) and [[§r = Ar 7|l = Op([1Ar = ¢l])-
Inference about FPC will then be first order equivalent to an
inference based on known functions X;.

~

3, -
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Simulated example

Random linear combinations of two Fourier functions:

1 1
sin(2mt) 4+ fo———=cos(2nt) +¢  (11)
(1/2) (1/2)
B1 ~ N(0,6), B2 ~ N(0,4), e ~ N(0,0.25)
generated on the grid U ~ U[0,1],
j=1,...,150, i =1,...,40.

Xi(t) = b
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One sample inference

Simulated functions Simulated example

Figure 2: Simulated example, in the left picture the Nadaraya-Watson estima-
tor of simulated functions are plotted (b=0.07) and estimated mean functions
(black thick), in the right picture the estimated first (blue) and second (red)

eigenfunction, true eigenfunctions: (first blue, second red dashed).
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Monte Carlo Simulation

Figure 3: Monte Carlo Simulation, \y = 6, A\, = 4, N = 70, T = 100,
e ~ N(0,0.1) 50 replications, thin lines are estimated first eigenfunctions, the

bold black line is true eigenfunction
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Two sample problem in principal components

We are mainly interested in two sample problems:
X xB L x and X2, xP L xB) (12)

Goal: Compare the distribution of functions in both samples
by comparing their KL-decompositions:

X =y 4 375 P p 12, (13)

r=1
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Testing Common Eigenfunctions Hypothesis

1 2
Hop, =) =71

In case where Xi(l)(t),Xz(z)(t) are directly observable
we may use following test statistics:

Do =47 =47 1l -

Reject Ho,, if Dp, > A ;1o where Aj 114 is critical value
of distribution of:

(1)

Bar =135 =1 = G5 =)

9
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Bootstrap procedure

Distribution of A, , depends on unknown (true) eigenfunction,
but can be approximated by bootstrap distribution of A}:

s s SR O

where 41* and 42* are estimates to be obtained from independent
bootstrap samples Xl(l)*(t),Xz(l)*(t), . ,X,Sf)*(t) and

2)* 2)x 2)x
X2 (6), X2 (2), ... XD ().
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Validity of the test

1) Under Hp: we have 'yﬁl) = 752) and, therefore, Dy , = Ay , =
asymptotically correct level (P(Dy,r > A2 r1-a) = ).
2) Under Hy, then Do, # Aj .. The distribution of Ay, the

distribution of D, , is shifted by the difference q/ﬁl) — ,y£2) =
Power.
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Common Eigenspaces Test

H04,L : 821) = 8{2)

Ho, , corresponds to:

L L
S @ D (s) = 3P (0P(s) forall s € [0,1]
r=1 r=1
Test Statistics:

D“def//{Z“(l (£ i: 59(s) }2dtds

r=1

Common Functional Component Modelling




Two sample problem 3-31

Using same arguments as for Ho, ,, the distribution under Hp, , can
be approximated by the bootstrap distribution of:

A%, / / [Z{W“* 037" (s) = AP (A ()}

G R e - 52)(t)a£2>(s)}] deds
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Common Mean and Eigenvalues Tests

Ho, : p® = 1) and Ho, , : )\9) = )\Sz)’ r=1,2,...
The corresponding test-statistics

ef || A n of o ~
Dy [ — 4O, and D;, % 3D 3B

Again, the critical values can be approximated using bootstrap
distributions of:

* def A * A A~ * ~
A7 = M = p® — (pB — pChy)2,

A3, S A" 30 (3@ 3@y
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Theoretical results

Assume two independent samples each fulfilling 1) and some
further regularity conditions then we obtain for any § > 0
) |P(A1=0) = P(A] = 6| X1, A2) [ = 0p(1)

i) 1F AN > AW S AW and AP > AP 5 AB) hold for some

r=1,2,..., then
|P(Ak’r 25)—/3( >Ik<,r > 5| Xl,Xg) ’ :Op(l), k:2,3

i) 1.0 > A, and AP > AP, holds for all r = 1,..., L, then

’P(A47L > (5) - P (AZ,L > (5‘ Xl,.)(g) ’ = Op(l)

as n — oQ.
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Simulated example — common eigenfunctions

Random linear combinations of Fourier functions on [0, 1]:

X6y = 49 0(e) + 80,0 (2)

XP(t) = 8P o(t + shift) + 55 (¢ + shift)
1 2

/ng) ~ N(O, )\S-P)), ﬁép) ~ N(O,)\gp))

generated on the equidistant grid ty = tx, k=1,... T,
i=1,...,N. T=100, n=70
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Simulations results
AN AP AP [ shift  shift  shift  shift  shift  shift
0 005 01 015 02 025
10 5 8 4]013 041 085 096 1 1
4 2 2 1/012 048 087 0.96 1 1
2 1 15 2014 0372 0704 0.872 092 0.9

Table1: « = 0.1, n=70, T =100
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Implied volatility modeling - Data description

- German DAX Options IV, Jan 2004-Jun 2004
- Daily prices
- Analysis performed on log returns of o¢(k, 7x), T« =1M,3M

- ok, k), Tk=1M,3M
interpolated from the IV observable on the day t
using arbitrage-free interpolation in total variance 02(k).7

For deeper discussion of financial aspects, see [Fengler (2005)]
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Factor models for both maturity groups

Construct factor models for Aloga¢(r, 1M):

Kim

Alogai(k,1M) = Alogc(r,1M) + Zﬁtle"y}lM(,@)’ t=1,..., iy
j=1
Ksm

NlogGi(r,3M) = Alogae(r,3M) + Y B35 (k), t =1,..., Nau.

j=t

Is common factor model (with ﬁ\le = @-3"”) appropriate ?

— Test the equality of the factor functions
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log IV returns, 1M log IV returns, 3M

Figure 4: Nadaraya-Watson estimator of the IV-log-returns for maturity 7 = 0.12
(1IM) in left figure and 7 = 0.36 (3M) in right figure. The bold line is the sample

mean of corresponding group
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Estimated Eigenfunctions, 1M
: : R

Figure b: Estimated eigenfunctions 1M group, blue — first function, red — second
function, black — third function
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Estimated Eigenfunctions, 3M

085 0% 095 ATM 106

Figure 6: Estimated eigenfunctions 3M group, blue — first function, red — second

function, black — third function
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Variance explained by the eigenfunctions

var. explained 1M  var. explained 3M

31 89.9% 93.0%
A 7.7% 4.2%
A 1.7% 1.0%
4 0.6% 0.4%

Table 2: Variance explained by the eigenfunctions for the group 1M (first
column) and 3M group (second column)
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Common Eigenfunctions Test

We tested the equality of eigenfunctions:
using the bootstrap test with B = 2000.

test result
MM = ~3M rejected
2™ = ~753M  not rejected

M = ~33M " ot rejected

Table 3: Results of Pairwise Common Eigenfunctions Tests, a = 0.05,
using Bootstrap test with B = 2000.
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Common Eigenspaces Test

We tested the equality of eigenspaces
using the bootstrap test with B = 2000.

test result P-value
EIM = £3M " not rejected 0.61
é'%M = 533M not rejected 0.09

Table 4: Results of Common Eigenspaces Tests, a = 0.05, using Bootstrap
test with B = 2000.
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Conclusions — IV analysis

+ We extracted the three factor functions for 1V,
already known from empirical finance

-+ Eigenfunctions have similar shape
— The test rejected the equality the eigenfunction
+ The test doesn't reject the equality of the eigenspaces

OUTLOOK: Analysis of loadings-distribution
Adaptive estimation
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