Time Varying Hierarchical Archimedean Copulae

Wolfgang Härdle
Ostap Okhrin
Yarema Okhrin

Institut für Statistik and Ökonometrie CASE - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin Universität Bern

Correlation

Gaussian

Gumbel

Figure 1: Scatterplots for two distributions with $\rho=0.4$
\square same marginal distributions
\checkmark same linear correlation coefficient
Time-Varying HAC
容

Simple AC over time

Figure 2: Estimated copula dependence parameter $\widehat{\theta}_{t}$ with the Local Change Point method for 6-dimensional data: DC, VW, Bayer, BASF, Allianz and Münchener Rückversicherung. Clayton Copula.
Giacomini et. al (2008)

Time-Varying HAC

Grid-type Copula

Figure 3: Grid-Type Copula approximation with $\mathfrak{a}_{\mathfrak{i}_{1}, \ldots, i_{d}}(n)$-matrix
Time-Varying HAC

Grid-type Copula

Grid-type copula with 9 subsquares: $\operatorname{dim}=2$ and $n=3$.

$$
\left[\begin{array}{ccc}
a & b & 1 / 3-a-b \\
c & d & 1 / 3-c-d \\
1 / 3-a-c & 1 / 3-b-d & -1 / 3+a+b+c
\end{array}\right]
$$

with suitable real numbers $a, b, c \in[0,1 / 3]$ and

$$
d=1-4 a-2 b-2 c
$$

For this choice $\operatorname{corr}\left(X_{1}, X_{2}\right)=0$!

COPICA

\square Coctail-party problem

Time-Varying HAC
䌝

Blind Source Separation (BSS)

\checkmark Recover the original sources from their mixtures without knowing the mixing process
\square Model: $\mathbf{X}(t)=A \mathbf{S}(t)$.

- $\mathbf{X}(t)=\left\{x_{1}(t), \ldots, x_{m}(t)\right\}^{\top}$: observation at time t
- $\mathbf{S}(t)=\left\{s_{1}(t), \ldots, s_{M}(t)\right\}^{\top}$: independent unknown sources, $s_{1}(t), \ldots, s_{M}(t)$, at time t
- A: unknown mixing matrix
\square Goal of BSS: Given $\mathbf{X}(1), \ldots, \mathbf{X}(T)$
- Recover the original "independent" sources,

$$
s_{i}(t), i=1, \ldots, M, t=1, \ldots, T
$$

- Infer the unknown mixing matrix A.

CDO Dynamics

Figure 4: Time series of iTraxx spreads, Series 7, Maturity: 5 years, 21.03.2007-22.01.2008

Time-Varying HAC

Dependence Matters

The normal world is not enough.

Figure 5: Gaussian one factor model with constant correlation.
Time-Varying HAC

Base Correlation Over Time

time to maturity (in years)

Figure 6: Film of base correlation over time.
Time-Varying HAC

Why are copulae important?

\square interpretability
\square margins
\square flexible range of dependence
\square closed-form representation of cdf and pdf
\square fat tails
\square dimension reduction

Time-Varying HAC
禺

Main Idea

\square combine interpretability with flexibility without loosing statistical precision
\square determine the optimal structure of HAC for a given data set
\square find the intervals of the homogeneity of the dependency

Outline

1. Motivation \checkmark
2. Archimedean copulae
3. Quality of the Fit
4. Copulae in Tempore Varintes
5. LCP for the HAC
6. References

Time-Varying HAC

Archimedean Copulae

Multivariate Archimedean copula $C:[0,1]^{d} \rightarrow[0,1]$ defined as

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=\phi\left\{\phi^{-1}\left(u_{1}\right)+\cdots+\phi^{-1}\left(u_{d}\right)\right\} \tag{1}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0,1]$ is continuous and strictly decreasing with $\phi(0)=1, \phi(\infty)=0$ and ϕ^{-1} its pseudo-inverse.

Example

$$
\begin{aligned}
\phi_{\text {Gumbel }}(u, \theta) & =\exp \left\{-u^{1 / \theta}\right\}, \text { where } 1 \leq \theta<\infty \\
\phi_{\text {Clayton }}(u, \theta) & =(\theta u+1)^{-1 / \theta}, \text { where } \theta \in[-1, \infty) \backslash\{0\}
\end{aligned}
$$

Disadvantages: too restrictive, single parameter, exchangeable

Hierarchical Archimedean Copulae

Simple AC with $s=(1234)$

$$
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)
$$

Fully nested AC with $s=(((12) 3) 4)$ $C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left[C_{2}\left\{C_{3}\left(u_{1}, u_{2}\right), u_{3}\right\}, u_{4}\right]$

AC with $s=((123) 4)$
$C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}, u_{3}\right), u_{4}\right\}$

Partially Nested AC with $s=((12)(34))$ $C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}\right), C_{3}\left(u_{3}, u_{4}\right)\right\}$

Time-Varying HAC

Hierarchical Archimedean Copulae

Advantages of HAC:

\square flexibility and wide range of dependencies:
for $d=10$ more than $2.8 \cdot 10^{8}$ structures
\square dimension reduction:
$d-1$ parameters to be estimated
\square subcopulae are also HAC

Hierarchical Archimedean Copulae

Figure 7: Scatterplot of the
$C_{\text {Gumbel }}\left[C_{\text {Gumbel }}\left\{\Phi\left(x_{1}\right), t_{2}\left(x_{2}\right) ; \theta_{1}=2\right\}, \Phi\left(x_{3}\right) ; \theta_{2}=10\right]$
Time-Varying HAC

Hierarchical Archimedean Copulae

Figure 8: Scatterplot of the
$C_{\text {Gumbel }}\left[\Phi\left(x_{2}\right), C_{\text {Gumbel }}\left\{t_{2}\left(x_{1}\right), \Phi\left(x_{3}\right) ; \theta_{1}=2\right\} ; \theta_{2}=10\right]$

Time-Varying HAC

Determining Structure

$$
\begin{aligned}
(12) & \rightsquigarrow \widehat{\theta}_{12} \\
(13) & \rightsquigarrow \widehat{\theta}_{13} \\
(14) & \rightsquigarrow \widehat{\theta}_{14} \\
(23) & \rightsquigarrow \widehat{\theta}_{23} \\
(24) & \rightsquigarrow \widehat{\theta}_{24} \\
(34) & \widehat{\theta}_{34} \\
\hline(123) & \rightsquigarrow \widehat{\theta}_{123} \\
(124) & \rightsquigarrow \widehat{\theta}_{124} \\
(234) & \rightsquigarrow \widehat{\theta}_{234} \\
(134) & \rightsquigarrow \widehat{\theta}_{134} \\
(1234) & \rightsquigarrow \widehat{\theta}_{1234}
\end{aligned}
$$

Time-Varying HAC

Determining Structure

Time-Varying HAC

Determining Structure

Time-Varying HAC

Determining Structure

Time-Varying HAC

Determining Structure

Determining Structure

$$
\begin{aligned}
& \text { (12) } \rightsquigarrow \widehat{\theta}_{12} \\
& \text { (13) } \rightsquigarrow \widehat{\theta}_{13} \\
& (14) \rightsquigarrow \widehat{\theta}_{14} \\
& \text { (23) } \rightsquigarrow \widehat{\theta}_{23} \\
& \text { (24) } \rightsquigarrow \widehat{\theta}_{24}
\end{aligned}
$$

$$
\begin{aligned}
& (124) \rightsquigarrow \widehat{\theta}_{124}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (134) } \rightsquigarrow \widehat{\theta}_{134} \\
& (1234) \rightsquigarrow \widehat{\theta}_{1234} \\
& z_{((13) 4), i}=\widehat{C}\left\{z_{(13) i}, \widehat{F}_{4}\left(x_{4 i}\right)\right\} \\
& ((13) 4) 2 \rightsquigarrow \widehat{\theta}_{((13) 4) 2}
\end{aligned}
$$

Criteria for grouping: goodness-of-fit tests, parameter-based method, etc.
Estimation: multistage MLE with nonparametric and parametric margins

Data and Copula

daily returns of four companies listed in DAX index
company: Commerzbank (CBK), Merck (MRK), ThyssenKrupp (TKA) and Volkswagen (VOW)
timespan $=[13.11 .1998-18.10 .2007](n=2400)$
$\mathcal{M}=\left\{\phi=\exp \left(-u^{1 / \theta}\right)\right\}-$ Gumbel generator

Data and Copula

\square GARCH-residuals are conditionally distributed with estimated copula

$$
\varepsilon \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
$$

where F_{1}, \ldots, F_{d} are marginal distributions and θ_{t} are the copula parameters.
\square margins are $t_{3.163}, t_{3.420}, t_{3.023}$ and $t_{2.879}$ distributed

Changes of the Quality of the Fit over Time

$$
M L=\sum_{i=1}^{n} \log \left\{f\left(u_{i 1}, \ldots, u_{i d}, \widehat{\boldsymbol{\theta}}\right)\right\}
$$

where f denotes the joint multivariate density function.

$$
A I C=-2 M L+2 m, \quad B I C=-2 M L+2 \log (m)
$$

where m is the number of parameters to be estimated.

Changes of the Quality of the Fit over Time

Figure 9: Time-varying HAC: BIC for the multivariate t distribution, multivariate \mathbb{N} distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms N
Time-Varying HAC

$$
{\underset{\sim}{\hat{\sigma}}}^{\circ}
$$

Changes of the Quality of the Fit over Time

Figure 10: Time-varying HAC: BIC for the multivariate t distribution, multivariate \boldsymbol{N} distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms t Time-Varying HAC
采

Changes of the Quality of the Fit over Time

Figure 11: Time-varying HAC: BIC for the multivariate t distribution, multivariate \mathbb{N} distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms t and N Time-Varying HAC

$$
\stackrel{\text { 僉。 }}{\substack{0}}
$$

Copulae in tempore variantes

window for 250 days
$\boldsymbol{\Theta}_{t}(d \times d)$ - matrix of the pairwise θ based on the 250 days before t

$$
\begin{aligned}
\left\|\widehat{\boldsymbol{\Theta}}_{t}-\widehat{\boldsymbol{\Theta}}_{t-1}\right\|_{1} & =\max _{1 \leq i \leq d} \sum_{j=1}^{d}\left|\widehat{\theta}_{i j, t}-\widehat{\theta}_{i j, t-1}\right| \\
\left\|\widehat{\boldsymbol{\Theta}}_{t}-\widehat{\boldsymbol{\Theta}}_{t-1}\right\|_{2} & =\sqrt{\lambda_{\max }\left\{\left(\widehat{\boldsymbol{\Theta}}_{t}-\widehat{\boldsymbol{\Theta}}_{t-1}\right)\left(\widehat{\boldsymbol{\Theta}}_{t}-\widehat{\boldsymbol{\Theta}}_{t-1}\right)^{\top}\right\}}
\end{aligned}
$$

Copulae in tempore variantes

Figure 12: Film of time-varying HAC \mathbf{Q}
Time-Varying HAC

Local Change Point Detection

1. define family of nested intervals

$$
\begin{aligned}
& I_{0} \subset I_{1} \subset I_{2} \subset \ldots \subset I_{K}=I_{K+1} \text { with length } m_{k} \text { as } \\
& I_{k}=\left[t_{0}-m_{k}, t_{0}\right]
\end{aligned}
$$

2. define $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$

Local Change Point Detection

1. test homogeneity $H_{0, k}$ against the change point alternative in \mathfrak{T}_{k} using I_{k+1}
2. if no change points in \mathfrak{T}_{k}, accept I_{k}. Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0, k}$ is rejected or largest possible interval I_{K} is accepted
3. if $H_{0, k}$ is rejected in \mathfrak{T}_{k}, homogeneity interval is the last accepted $\widehat{I}=I_{k-1}$
4. if largest possible interval I_{K} is accepted $\hat{I}=I_{K}$

Test of homogeneity

Interval $I=\left[t_{0}-m, t_{0}\right], \mathfrak{T} \subset I$

$$
\begin{aligned}
H_{0}: & \forall \tau \in \mathfrak{T}, \theta_{t}=\theta, s_{t}=s, \\
& \forall t \in J=\left[\tau, t_{0}\right], \forall t \in J^{c}=I \backslash J \\
H_{1}: & \exists \tau \in \mathfrak{T}, \theta_{t}=\theta_{1}, s_{t}=s_{1} ; \forall t \in J, \\
& \theta_{t}=\theta_{2} \neq \theta_{1} ; s_{t}=s_{2} \neq s_{1}, \forall J^{c}
\end{aligned}
$$

Time-Varying HAC

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$
\begin{aligned}
T_{l, \tau} & =\max _{\theta_{1}, \theta_{2}}\left\{L_{J}\left(\theta_{1}\right)+L_{J c}\left(\theta_{2}\right)\right\}-\max _{\theta} L_{l}(\theta) \\
& =M L_{J}+M L_{J c}-M L_{l}
\end{aligned}
$$

Test statistic for unknown change point location:

$$
T_{l}=\max _{\tau \in \mathcal{F}_{1}} T_{l, \tau}
$$

Reject H_{0} if for a critical value ζ_{I}

$$
T_{I}>\zeta_{I}
$$

Time-Varying HAC

Selection of I_{k} and ζ_{k}

\square set of numbers m_{k} defining the length of I_{k} and \mathfrak{T}_{k} are in the form of a geometric grid
$\square m_{k}=\left[m_{0} c^{k}\right]$ for $k=1,2, \ldots, K, m_{0}=20$ and $c=1.25$, where $[x]$ means the integer part of x
$\square I_{k}=\left[t_{0}-m_{k}, t_{0}\right]$ and $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$ for $k=1,2, \ldots, K$
\square estimated from the whole data sample structure $\left.s^{*}=\left((1.4)_{1.40} .3\right)_{1.36} \cdot 2\right)_{1.11}$ is set to be true
$\square \zeta_{I}$ is selected by a simulation from the true structure s^{*}

LCP for HAC

Figure 13: Structure of the estimated HAC on the intervals of homogeneity

LCP for HAC

Figure 14: ML for the estimated HAC on the intervals of homogeneity
Time-Varying HAC

围 E．Giacomini，W．Härdle，V．Spokoiny
Inhomogeneous Dependency Modelling with Time Varying
Copulae
J．Bus．Econ．Statist．， 2008
围 H．Joe
Multivariate Models and Dependence Concepts
London：Chapman\＆Hall， 1997.
嗇 D．Mercurio，and V．Spokoiny
Estimation of Time Dependent Volatility via Local Change
Point Analysis
Ann．Statist．，32：577－602， 2004
囯 R．Nelsen
An intoduction to copulas
Springer， 1999
Time－Varying HAC
O. Okhrin, Y. Okhrin, W. Schmid

On the structure and estimation of hierarchical Archimedean copulas
submitted to J. Econometrics
D. Straßburger and D. Pfeifer

Dependence Matters!
C. Bluhm, L. Overbeck and C. Wagner

An Introduction to Credit Risk Modeling
CRC Press, 2002
國 M. Feld
Implied Correlation Smile
MSc Thesis, http://edoc.hu-berlin.de/

