Time Varying Hierarchical Archimedean Copulae

Wolfgang Härdle Ostap Okhrin Yarema Okhrin

Institut für Statistik and Ökonometrie CASE – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Universität Bern

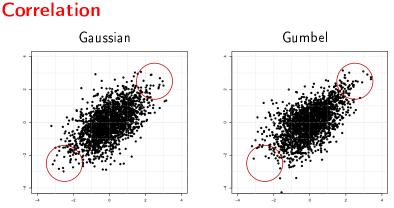


Figure 1: Scatterplots for two distributions with ho= 0.4

- same marginal distributions
- same linear correlation coefficient

Time-Varying HAC

Simple AC over time

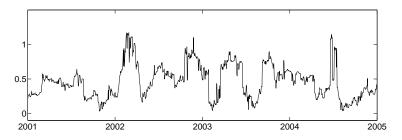


Figure 2: Estimated copula dependence parameter $\hat{\theta}_t$ with the Local Change Point method for 6-dimensional data: DC, VW, Bayer, BASF, Allianz and Münchener Rückversicherung. Clayton Copula. Giacomini et. al (2008)

Grid-type Copula

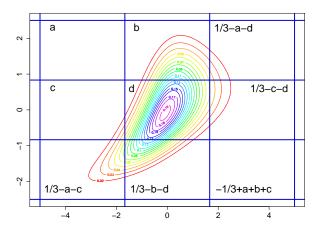


Figure 3: Grid-Type Copula approximation with $a_{i_1,...,i_d}(n)$ -matrix

Time-Varying HAC

Grid-type Copula

Grid-type copula with 9 subsquares: dim = 2 and n = 3.

$$\begin{bmatrix} a & b & 1/3 - a - b \\ c & d & 1/3 - c - d \\ 1/3 - a - c & 1/3 - b - d & -1/3 + a + b + c \end{bmatrix}$$

with suitable real numbers $a,b,c\in [0,1/3]$ and

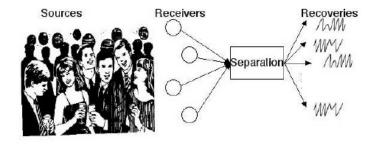
$$d=1-4a-2b-2c.$$

For this choice $corr(X_1, X_2) = 0!$

Time-Varying HAC -

COPICA

⊡ Coctail-party problem



Blind Source Separation (BSS)

- Recover the original sources from their mixtures without knowing the mixing process
- $\ \, \bullet \ \, \mathsf{Model}: \ \, \mathsf{X}(t) = A\mathsf{S}(t).$
 - $\mathbf{X}(t) = \{x_1(t), \dots, x_m(t)\}_{\perp}^{\top}$: observation at time t
 - ► $\mathbf{S}(t) = \{s_1(t), \dots, s_M(t)\}^\top$: independent unknown sources, $s_1(t), \dots, s_M(t)$, at time t
 - A: unknown mixing matrix
- Goal of BSS: Given $X(1), \ldots, X(T)$
 - Recover the original "independent" sources,
 - $s_i(t), i = 1, \dots, M, t = 1, \dots, T.$
 - Infer the unknown mixing matrix A.

Time-Varying HAC

CDO Dynamics

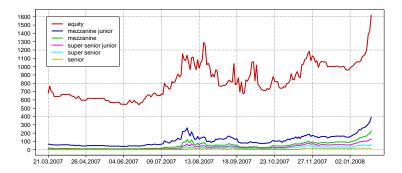


Figure 4: Time series of iTraxx spreads, Series 7, Maturity: 5 years, 21.03.2007-22.01.2008

Dependence Matters

The normal world is not enough.

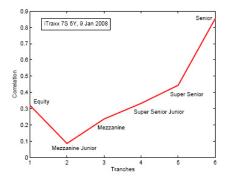
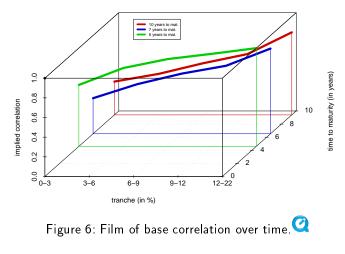


Figure 5: Gaussian one factor model with constant correlation.

Time-Varying HAC

Base Correlation Over Time



Why are copulae important?

- ⊡ interpretability
- 🖸 margins
- ☑ flexible range of dependence
- ☑ closed-form representation of cdf and pdf
- 🖸 fat tails
- dimension reduction

Main Idea

- combine interpretability with flexibility without loosing statistical precision
- determine the optimal structure of HAC for a given data set
- ☑ find the intervals of the homogeneity of the dependency

Outline

- 1. Motivation \checkmark
- 2. Archimedean copulae
- 3. Quality of the Fit
- 4. Copulae in Tempore Varintes
- 5. LCP for the HAC
- 6. References

Archimedean Copulae

Multivariate Archimedean copula $C : [0,1]^d \rightarrow [0,1]$ defined as

$$C(u_1,\ldots,u_d) = \phi\{\phi^{-1}(u_1) + \cdots + \phi^{-1}(u_d)\},$$
 (1)

where $\phi: [0,\infty) \to [0,1]$ is continuous and strictly decreasing with $\phi(0) = 1$, $\phi(\infty) = 0$ and ϕ^{-1} its pseudo-inverse.

Example

 $\begin{array}{lll} \phi_{\textit{Gumbel}}(u,\theta) &=& \exp\{-u^{1/\theta}\}, \text{ where } 1 \leq \theta < \infty \\ \phi_{\textit{Clayton}}(u,\theta) &=& (\theta u + 1)^{-1/\theta}, \text{ where } \theta \in [-1,\infty) \backslash \{0\} \end{array}$

Disadvantages: too restrictive, single parameter, exchangeable

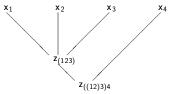
Time-Varying HAC

- 2-1

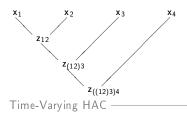
Archimedean Copulae

Hierarchical Archimedean Copulae

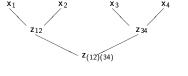
Simple AC with s=(1234) $C(u_1, u_2, u_3, u_4) = C_1(u_1, u_2, u_3, u_4)$ x₁ x₂ x₃ x₄ x₄ AC with s = ((123)4) $C(u_1, u_2, u_3, u_4) = C_1 \{ C_2(u_1, u_2, u_3), u_4 \}$



Fully nested AC with s=(((12)3)4) $C(u_1, u_2, u_3, u_4) = C_1[C_2\{C_3(u_1, u_2), u_3\}, u_4]$



Partially Nested AC with s=((12)(34)) $C(u_1, u_2, u_3, u_4) = C_1\{C_2(u_1, u_2), C_3(u_3, u_4)\}$



Hierarchical Archimedean Copulae

Advantages of HAC:

: flexibility and wide range of dependencies: for d = 10 more than $2.8 \cdot 10^8$ structures

dimension reduction:

d-1 parameters to be estimated

■ subcopulae are also HAC

Hierarchical Archimedean Copulae

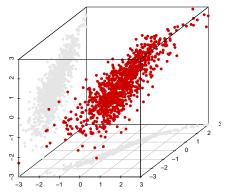


Figure 7: Scatterplot of the $C_{Gumbel}[C_{Gumbel} \{ \Phi(x_1), t_2(x_2); \theta_1 = 2 \}, \Phi(x_3); \theta_2 = 10]$

Time-Varying HAC

Hierarchical Archimedean Copulae

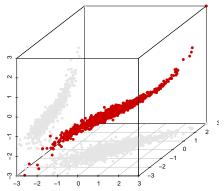
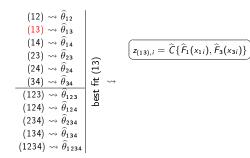


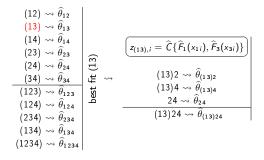
Figure 8: Scatterplot of the $C_{Gumbel}[\Phi(x_2), C_{Gumbel}\{t_2(x_1), \Phi(x_3); \theta_1 = 2\}; \theta_2 = 10]$

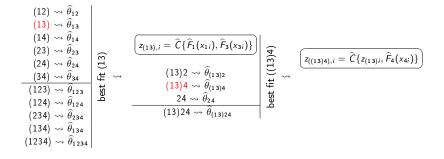
Time-Varying HAC

(12)	$\sim \rightarrow$	$\widehat{\theta}_{12}$
(13)	$\sim \rightarrow$	$\hat{\theta}_{13}$
(14)	$\sim \rightarrow$	$\hat{\theta}_{14}$
(23)	$\sim \rightarrow$	$\hat{\theta}_{23}$
(24)		~ .
(34)	$\sim \rightarrow$	θ_{34}
(123)	$\sim \rightarrow$	$\hat{\theta}_{123}$
(124)	$\sim \rightarrow$	$\hat{\theta}_{124}$
(234)	$\sim \rightarrow$	$\hat{\theta}_{234}$
(134)		~
(1234)	$\sim \rightarrow$	θ_{1234}

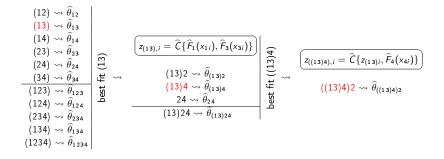
Time-Varying HAC —



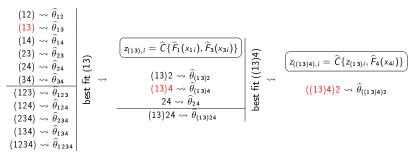




2-9







Criteria for grouping: goodness-of-fit tests, parameter-based method, etc. **Estimation**: multistage MLE with nonparametric and parametric margins

Data and Copula

daily returns of four companies listed in DAX index company: Commerzbank (CBK), Merck (MRK)

timespan =
$$[13.11.1998 - 18.10.2007]$$
 (n = 2400)

 $\mathcal{M} = \{\phi = \exp(-u^{1/ heta})\}$ - Gumbel generator

Data and Copula

GARCH-residuals are conditionally distributed with estimated copula

$$\varepsilon \sim C\{F_1(x_1),\ldots,F_d(x_d);\theta_t\}$$

where F_1, \ldots, F_d are marginal distributions and θ_t are the copula parameters.

 \square margins are $t_{3.163}$, $t_{3.420}$, $t_{3.023}$ and $t_{2.879}$ distributed

$$ML = \sum_{i=1}^{n} \log\{f(u_{i1}, \ldots, u_{id}, \widehat{\theta})\},\$$

where f denotes the joint multivariate density function.

AIC = -2ML + 2m, $BIC = -2ML + 2\log(m)$,

where m is the number of parameters to be estimated.

Time-Varying HAC -

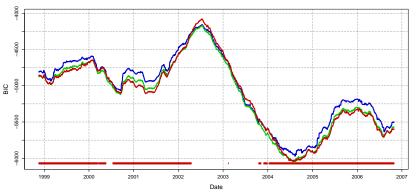


Figure 9: Time-varying HAC: BIC for the multivariate *t* distribution, multivariate *I*V distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms *N* Time-Varying HAC

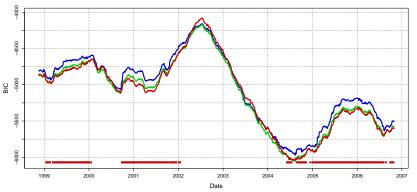


Figure 10: Time-varying HAC: BIC for the multivariate t distribution, multivariate $I\!N$ distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms tTime-Varying HAC

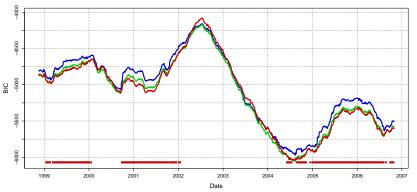


Figure 11: Time-varying HAC: BIC for the multivariate t distribution, multivariate N distribution and estimated HAC. Horizontal red line represents intervals where HAC-based distribution outperforms t and NTime-Varying HAC

Copulae in tempore variantes

window for 250 days

 $oldsymbol{\Theta}_t(d imes d)$ - matrix of the pairwise heta based on the 250 days before t

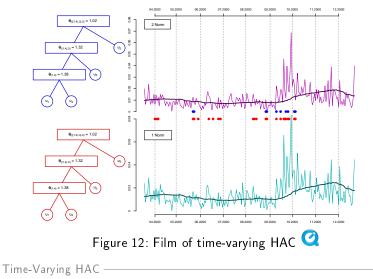
$$\begin{split} ||\widehat{\boldsymbol{\Theta}}_{t} - \widehat{\boldsymbol{\Theta}}_{t-1}||_{1} &= \max_{1 \leq i \leq d} \sum_{j=1}^{d} |\widehat{\theta}_{ij,t} - \widehat{\theta}_{ij,t-1}|, \\ ||\widehat{\boldsymbol{\Theta}}_{t} - \widehat{\boldsymbol{\Theta}}_{t-1}||_{2} &= \sqrt{\lambda_{\max}\{(\widehat{\boldsymbol{\Theta}}_{t} - \widehat{\boldsymbol{\Theta}}_{t-1})(\widehat{\boldsymbol{\Theta}}_{t} - \widehat{\boldsymbol{\Theta}}_{t-1})^{\top}\}} \end{split}$$

Å

Time-Varying HAC -

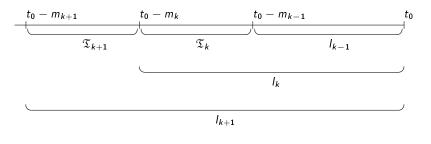
4-1

Copulae in tempore variantes



Local Change Point Detection

1. define family of nested intervals $I_0 \subset I_1 \subset I_2 \subset \ldots \subset I_K = I_{K+1}$ with length m_k as $I_k = [t_0 - m_k, t_0]$ 2. define $\mathfrak{T}_k = [t_0 - m_k, t_0 - m_{k-1}]$



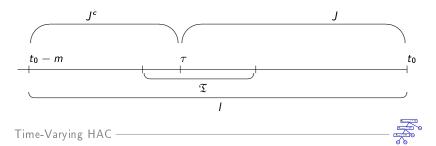
Time-Varying HAC —

Local Change Point Detection

- 1. test homogeneity $H_{0,k}$ against the change point alternative in \mathfrak{T}_k using I_{k+1}
- 2. if no change points in \mathfrak{T}_k , accept I_k . Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0,k}$ is rejected or largest possible interval I_K is accepted
- 3. if $H_{0,k}$ is rejected in \mathfrak{T}_k , homogeneity interval is the last accepted $\hat{l} = l_{k-1}$
- 4. if largest possible interval I_K is accepted $\hat{I} = I_K$

Test of homogeneity

Interval $I = [t_0 - m, t_0], \mathfrak{T} \subset I$ $H_0 : \forall \tau \in \mathfrak{T}, \ \theta_t = \theta, \ s_t = s,$ $\forall t \in J = [\tau, t_0], \forall t \in J^c = I \setminus J$ $H_1 : \exists \tau \in \mathfrak{T}, \ \theta_t = \theta_1, \ s_t = s_1; \ \forall t \in J,$ $\theta_t = \theta_2 \neq \theta_1; \ s_t = s_2 \neq s_1, \forall J^c$



Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$T_{I,\tau} = \max_{\theta_1,\theta_2} \{ L_J(\theta_1) + L_{J^c}(\theta_2) \} - \max_{\theta} L_I(\theta)$$

= $ML_J + ML_{J^c} - ML_I$

Test statistic for unknown change point location:

$$T_I = \max_{ au \in \mathfrak{T}_I} T_{I, au}$$

Reject H_0 if for a critical value ζ_I

 $T_I > \zeta_I$

Time-Varying HAC -

Selection of I_k and ζ_k

- : set of numbers m_k defining the length of I_k and \mathfrak{T}_k are in the form of a geometric grid
- $m_k = [m_0 c^k] \text{ for } k = 1, 2, \dots, K, \ m_0 = 20 \text{ and } c = 1.25, \\ \text{where } [x] \text{ means the integer part of } x$
- $\begin{array}{c} \boxdot \ \ I_k = [t_0 m_k, t_0] \text{ and } \mathfrak{T}_k = [t_0 m_k, t_0 m_{k-1}] \text{ for } \\ k = 1, 2, \ldots, K \end{array}$
- estimated from the whole data sample structure $s^* = ((1.4)_{1.40}.3)_{1.36}.2)_{1.11}$ is set to be true
- \boxdot ζ_I is selected by a simulation from the true structure s^*

6-1

LCP for HAC

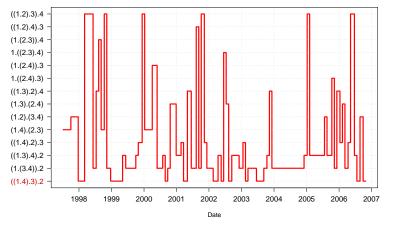


Figure 13: Structure of the estimated HAC on the intervals of homogeneity
Time-Varying HAC

LCP for HAC

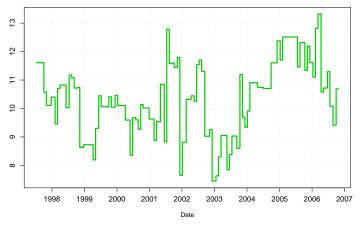


Figure 14: ML for the estimated HAC on the intervals of homogeneity

Time-Varying HAC

E. Giacomini, W. Härdle, V. Spokoiny Inhomogeneous Dependency Modelling with Time Varying Copulae J. Bus. Econ. Statist., 2008

📔 H. Joe

Multivariate Models and Dependence Concepts London: Chapman&Hall, 1997.

D. Mercurio, and V. Spokoiny

Estimation of Time Dependent Volatility via Local Change Point Analysis

Ann. Statist., 32: 577-602, 2004

R. Nelsen

An intoduction to copulas Springer, 1999

Time-Varying HAC

O. Okhrin, Y. Okhrin, W. Schmid On the structure and estimation of hierarchical Archimedean copulas submitted to J. Econometrics D. Straßburger and D. Pfeifer Dependence Matters! 🔋 C. Bluhm, L. Overbeck and C. Wagner An Introduction to Credit Risk Modeling CRC Press, 2002 M. Feld Implied Correlation Smile

MSc Thesis, http://edoc.hu-berlin.de/