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Introduction 1-1

Classifier

Figure 1: Linear classifier functions (1 and 2) and a non-linear one (3)
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Introduction 1-2

Loss

(1 Nonlinear classifier function f be described by a function class
F fixed a priori, i.e. class of linear classifiers (hyperplanes)

[J Loss

0, if classification is correct,

L y) = 5 F() ~ y] :{

1, if classification is wrong.
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Introduction 1-3

Expected and Empirical Risk

[ Expected risk — expected value of loss under the true
probability measure

1
R(A) = [ 510 | dF(x.y)
(] Empirical risk — average value of loss over the training set

~ 1.1
R(f) = ;Zg [f(xi) — il
i=1
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Introduction 1-4

VC bound

Vapnik-Chervonenkis (VC) bound — there is a function ¢
(monotone increasing in VC dimension h) so that for all f € F with
probability 1 — n hold

R(f) < ﬁ(f)+¢<h,|°g(”)>

n n

N aiad
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Support Vector Machines 3-1

SVM

[J Classification

Data D, = {(x1,)1) -+, (X, yn)} : @ = (X x V)"
XCRYand Y € {-1,1}

[J Goal — to predict Y for new observation, x € X, based on
information in D,
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Linearly (Non-) Separable Case @z=D
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Figure 2: Hyperplane and its margin in linearly (non-) separable case
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Support Vector Machines 3-3

SVM Dual Problem

n n n
1 T
max Lp (o) = max g i~ g g QiaGyiyixi Xi ¢,
« (6%
i—1 i=1 j=1

s.t. 0<;<C

n
> aiyi=0
i—1

€
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Support Vector Machines 3-4

Data Space Feature Space

v
A

Figure 3: Mapping two dimensional data space into a three dimensional fea-
ture space, R?  R3. The transformation W(x1,x2) = (X2, v2x1x2, x3) "

corresponds to K(x;, x;) = (x;" x;)?
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Support Vector Machines 3-5

Non-Linear SVM

mo?xLD( Za, Zza a;yiyi K (xi, ;)

/1]1

s.t. 0<a; <C, Za;y;:O
i=1
] Gaussian RBF kernel — K (x;, xj) = exp (—% ||xi — xJ||2>

[ Polynomial kernel — K (x;, xj) = (X-TXj + 1)p

1
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Feature Selection 4-1

Structural Risk Minimization (SRM)

Search for the model structure Sy,
Spy Sy C...C8pC...C 8y =F

such that f € Sy, minimises the expected risk bound, with f C F
is class of linear function and h is VC dimension
i.e.

SVM(h1) C ... C SVM(hx) C ... C SVM(hy) = F
with h correspond to the value of SVM (kernel) parameter

g\f&w
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Feature Selection 4-2

Evolutionary Feature Selection @

[] Featured selection — SVM parameters optimization
[ Evolutionary optimization — Genetic Algorithm (GA)
[] GA finds global optimum solution

Nt
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Feature Selection 4-3

GA - SVM

selection

] e crossover

-
population mating pool
GA
A 4
@@ GvgluatioD
(fitness)

I LX)

s e (Leanng ) SVM
T —
—— s > (Leamng)

*
‘ MODEL ‘ ‘ DATA ‘

Figure 4: Iteration (generation) in GA-SVM
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Application 5-1

Credit Scoring & Probability of Default

[ Score (Sc) from SVM method
Sc(x) = Za;y,-K(x,-,x)
i=1

[ Probability of Default (PD)

1
fly =115¢) = 1+ exp (5o + 51Sc)

Bo and (1 are estimated by minimizing the negative
log-likelihood function (Karatzoglou and Meyer, 2006)

i
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Application 5-2

Validation of Scores

Discriminatory power (of the score)

» Cumulative Accuracy Profile (CAP) curve
» Receiver Operating Characteristic (ROC) curve
» Accuracy, Specificity, Sensitivity

i
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Application 5-3

\ Perfect model Perfect model

Model being
evaluted /
actual

ROC
curve

Model with zero
predictive power

Model with zero
predictive power

(CDp)
hit rate

(CDp)
o [ cumulatif defaultrate ————|

Random model Random model
1
Sample rank based 0
on its score [~ false alarm rate 1
(CDr) (€Dnp)

Figure 5: CAP curve (left) and ROC curve (right)
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Application 5-4

Discriminatory power

[J Cumulative Accuracy Profile (CAP) curve

» CAP/Power/Lorenz curve — Accuracy Ratio (AR)
» Total sample vs. default sample

[ Receiver Operating Characteristic (ROC) curve

» ROC curve — Area Under Curve (AUC)
» Non-default sample vs. default sample

[] Relationship: AR =2 AUC - 1
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Application 5-5

Discriminatory power (cont’d)

sample
default non-default
(1) (-1)
. (1)  True Positive (TP)  False Positive (FP)
predicted (-1) False Negative (FN) True Negative (TN)
total P N

» Accuracy, P(Y =Y) = T'PDLCN
» Specificity, P( =-1y=-1)= %

> Sensitivity, P( =1Y=1)=

¢
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Application 5-6

Examples — Small Sample

(] 100 solvent and insolvent companies
[ X3 — Operating Income / Total Asset
[] X24 — Account Payable / Total Asset
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Application 5-7

SVM classification plot SVM classification plot
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Figure 6: SVM plot, C = 1 and o = 1/2, training error 0.19 (left) and
GA-SVM, C = 14.86 and o = 1/121.61, training error 0 (right).
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Application 5-8

Credit reform data

type solvent (%) insolvent (%) total (%)
Manufacturing 27.37 (26.06) 25.70 (1.22)  27.29
Construction 13.88 (13.22)  39.70 (1.89)  15.11
Wholesale and retail 24.78 (23.60) 20.10 (0.96)  24.56
Real estate 17.28 (16.46) 9.40 (0.45) 16.90
total 83.31 (79.34) 94.90 (452)  83.86
others 16.69 (15.90) 5.10 (0.24)  16.14

# 20,000 1,000 21,000

Table 1: Credit reform data
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Application

Pre-processing

year solvent insolvent total

# (%) # (%) # (%)
1997 872 (9.08) 86 (0.90) 958 (1 9.98)
1998 928 (9.66) 92 (0.96) 1020 (10.62)
1999 1005 (10.47) 112 (1.17) 1117 (11.63)
2000 1379 (14.36) 102 (1.06) 1481 (15.42)
2001 1989 (20.71) 111 (1.16) 2100 (21.87)
2002 2791 (29.07) 135(1.41) 2926 (30.47)
total 8964 (93.36) 638 (6.64) 9602 (100)

Table 2: Pre-processed credit reform data
QF
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Application

Scenario

scenario  training set testing set
Scenario-1 1997 1998
Scenario-2  1997-1998 1999
Scenario-3  1997-1999 2000
Scenario-4  1997-2000 2001
Scenario-5  1997-2001 2002

Table 3: Training and testing data set
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Application 5-11

Full model, Xl, ce ,XQS

[J Predictors — 28 financial ratio variables

[ Population (# solutions) — 20

[ Evolutionary iteration (generation) — 100

(] Elitism — 0.2 of population

[J Crossover rate — 0.5, mutation rate — 0.1

[ Optimal SVM parameters — o = 1/178.75 and C = 63.44

<,
[
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Application 5-12

Quality of classification (1/2)

sample
training  testing
AR 1 1
AUC 1 1
Disc. power Accuracy 1 1
Specificity 1 1
Sensitivity 1 1

Table 4: Discriminatry power of Scenario-1, 2, 3, 4, 5
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Application 5-13

Quality of classification (2/2)

training TE (CV) testing E (CV)
1997 0 (8.98) 1998 ( 9.02)
1097-1998 0 (8.99) 1999 0 (10.03)
1097-1999 0 (9.37) 2000 0 ( 6.89)
1997-2000 0 (8.57) 2001 0 ( 5.29)
1997-2001 0 (4.55) 2002 0 ( 4.61)

Table 5: Percentage of Training Error (TE) and Cross-Validation (CV, with
group=>5)
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Conclusion 6-1

Conclusion

[] Optimal feature selection (via Genetic Algorithm) leads to
perfect classification

-] Cross validation — overcome the overfiting in training & testing
error
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Appendix — Linearly Separable Case

9-1
Linearly Separable Case @™

X
2 rjw+b=1
] N o
L ‘\‘ °
rw+b < -1 \\ > 41
] m|®
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Figure 7: Separating hyperplane and its margin in linearly separable case

Qe
Support Vector Machines A‘»




Appendix — Linearly Separable Case 9-2

[ Choose f € F such that margin (d_ + d,) is maximal

(1 No error separation, if all i = 1,2, ..., n satisfy

xiTw+b2+1 for y;=+1
x'w+b< —1 for yi=-1

[ Both constraints are combined into

vilx'w+b)—1>0 i=12,..,n
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Appendix — Linearly Separable Case 9-3

(] Distance between margins and the separating hyperplane is
di = d_ = 1/|wl

[J Maximize the margin, d; + d— = 2/||w||, could be attained by
minimizing ||w|| or ||w||?

[] Lagrangian for the primal problem

1 n
Lp(w,b) = §||W||2 =) aifyi(x'w+ b) — 1}
i=1
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Appendix — Linearly Separable Case 9-4

Karush-Kuhn-Tucker (KKT) first order optimality conditions

op .
8Tvk:0' Wk—’z;ai)/ixikzo k=1,..d
olp ~
W—O iZ:;aI.yI_O
y,(XITW+b)*1ZO i:]-v---vn
a; >0

aiyi(x' w+b) —1} =0
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Appendix — Linearly Separable Case 9-5
[J Solution w = Y7, ajyix;, therefore

1 1 n n
§HWH2=: EZZ:EE:QKHYUG&T&

i=1 j=1

n n . .
=Y iy w b)) =1} = =Y ey’ Yyt Y a;
i—1 i=1 =t -

= —ZZQO‘JYIYJX XJ""Za’

i=1 j=1

[] Lagrangian for the dual problem

n 1 n n
)= 0= 5> D aiagyiyx' X
i=1

i=1 j=1
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Appendix — Linearly Separable Case 9-6

[J Primal and dual problems

min  Lp (w, b)
w,
n
L > v o—
max Lp () st. «; >0, Za,y,

] Optimization problem is convex, therefore the dual and primal
formulations give the same solution

[J Support vector, a point i for which y;(x;' w + b) = 1 holds
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Appendix — Linearly Non-separable Case 10-1

Linearly Non-separable Case
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Figure 8: Hyperplane and its margin in linearly non-separable case
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Appendix — Linearly Non-separable Case 10-2

[ Slack variables &; represent the violation from strict separation

x'w+b>1-¢ for yi=1,
x,-—rw—i—bg—l—i—{; for yi = —1,
£ >0

(] constraints are combined into

vilx'w+b)>1—-¢ and & >0

(1 If & > 0, the objective function is

1 ) n
5 lwl]|* + C;@-
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Appendix — Linearly Non-separable Case 10-3

[ Lagrange function for the primal problem

1 n
Lp(w,b,€) = 7 Wl + €&
i=1

> aiyi (XiTW + b) —1+&) =) i,
i—1 i—1

where «; > 0 and p; > 0 are Lagrange multipliers

[ Primal problem

min Lp (w, b, &)

w

My
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Appendix — Linearly Non-separable Case 10-4
First order conditions

oLp u

—=0: — Vixie = 0

Bwg Wi ;alylxlk

oL ‘

P . v —

W - 0 . ;a,y, — 0

oL

8;:0: C—aj—u;i=0

s.t. o > 07 i > 07 Mié-i =0
a,-{y,-(x,-TW +b)—1+¢}=0
INE
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10-5

Appendix — Linearly Non-separable Case
[] Note that Y7, ajy;b = 0. Translate primal problem into

Lp(a) = Za,—fzzaoqy,ij XJ+ZS, C—aj— )

i=1 j=1

[ Last term is 0, therefore the dual problem is

m(iaxLD(a): max Za,—fZZany,nyxj ,

i=1 j=1

s.t. 0<a; <C, Za;y,'zo
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Appendix—Genetic Algorithm 11-1

What is a Genetic Algorithm ?

Genetics algorithm is search
and optimization technique
based on Darwin's principle
on natural selection
(Holland, 1975)
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Appendix—Genetic Algorithm 11-2

GA — Initialization

decoding

b fobj global maximum 122 1111010
77 0110110
54 0010011
19 1000101
" 0101100
113 1110001
G 1101110
= 1011001
23 0010111
105 1101001
global minimum solution  real number  binary encoding
»> ( solution ) population

Figure 9: GA at first generation
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Appendix—Genetic Algorithm 11-3

GA — Convergency

f obj f obj

solution solution

Figure 10: Solutions at 1%t generation (left) and rt" generation (right)
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Appendix—Genetic Algorithm 11-4
GA — Decoding
gene
11109 8 76 543210
1/10(1{0|0[1{1]|0|1|O0|1|1{ Lallele
Figure 11: Decoding
/-1 i
> i ai2
0 = elower + (eupper - elower)#
where 0 is solution (i.e. parameter C or o), a is allele
Nt
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Appendix—Genetic Algorithm 11-5
GA - Fitness evaluation

[ Calculate f(6;), i=1,...,popsize
[] Evaluate fitness, fg,(6;)
fap(0i) — AR, AUC, accuracy, specificity, sensitivity

[ Relative fitness, p; = )

B
NE

Figure 12: Proportion to be choosen in the next iteration (generation)
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Appendix—Genetic Algorithm 11-6

GA — Roulette wheel

oz
b
[ rand ~ U(0,1)

[ Select ith chromosome if 325 | p; < rand < K11 p;
[] Repeat popsize times to get popsize new chromosomes

€
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Appendix—Genetic Algorithm

GA — Crossover

® © @ O

Figure 13: Crossover in nature

NN
9
R | (] [ (W] =En
Cross point
(e
9
[ [ | | W -

Figure 14: Randomly choosen
one-point crossover (top) and
two-points crossover (bottom)
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Appendix—Genetic Algorithm

GA — Reproductive operator

12 ¢ -1
1|o[1{o[o[1{1|o[1|o[1]1 1/0[1/o|o[1]o|o|1{00|1
[foffofoffrfo[tfefa]s] __, [t/o[sfoloft[ololJolo]]

[ofo[o[fot[oo[[olo]1]  [e[ofo[t]o]t]t]o[t]o[t1}
Parents Offspring

12 J 11

[ [o[t]ofof]t]of tfof]]=> [t]o[t]o]ofo[t]o] o[

Offspring of crossover Mutant

11-8

Figure 15: One-point crossover (top) and bit-flip mutation (bottom)
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Appendix—Genetic Algorithm 11-9

GA — Elitism

(] Best solution in each iteration is maintained in another
memory place

(] New population replaces the old one, check whether best
solution is in the population

If not, replace any one in the population with best solution
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Appendix—Genetic Algorithm

Nature to Computer Mapping

Nature GA-SVM

Population Set of parameter
Individual (phenotype) Parameters

Fitness Discriminatory power
Chromosome (genotype) | Encoding of parameter
Gene Binary encoding
Reproduction Crossover

Generation Iteration

Table 6: Nature to GA-SVM mapping
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