
Genetic Algorithm for
Support Vector Machines Optimization
in Probability of Default Prediction

Wolfgang Härdle
Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics
and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Introduction 1-1

Classifier

.

Figure 1: Linear classifier functions (1 and 2) and a non-linear one (3)

Support Vector Machines

Introduction 1-2

Loss

� Nonlinear classifier function f be described by a function class
F fixed a priori, i.e. class of linear classifiers (hyperplanes)

� Loss

L(x , y) =
1
2
|f (x)− y | =

{
0, if classification is correct,
1, if classification is wrong.

Support Vector Machines

Introduction 1-3

Expected and Empirical Risk

� Expected risk – expected value of loss under the true
probability measure

R (f) =

∫
1
2
|f (x)− y | dF (x , y)

� Empirical risk – average value of loss over the training set

R̂ (f) =
1
n

n∑
i=1

1
2
|f (xi)− yi |

Support Vector Machines

Introduction 1-4

VC bound

Vapnik-Chervonenkis (VC) bound – there is a function φ
(monotone increasing in VC dimension h) so that for all f ∈ F with
probability 1− η hold

R (f) ≤ R̂ (f) + φ

(
h
n
,
log(η)

n

)

Support Vector Machines

Outline

1. Introduction X
2. Support Vector Machine (SVM)
3. Feature Selection
4. Application
5. Conclusions

Support Vector Machines

Support Vector Machines 3-1

SVM

� Classification
Data Dn = {(x1, y1) , . . . , (xn, yn)} : Ω→ (X × Y)n

X ⊆ Rd and Y ∈ {−1, 1}

� Goal – to predict Y for new observation, x ∈ X , based on
information in Dn

Support Vector Machines

Support Vector Machines 3-2

Linearly (Non-) Separable Case detail

0

Margin (d)

Figure 2: Hyperplane and its margin in linearly (non-) separable case

Support Vector Machines

Support Vector Machines 3-3

SVM Dual Problem

max
α

LD (α) = max
α


n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

 ,

s.t. 0 ≤ αi ≤ C
n∑

i=1

αiyi = 0

Support Vector Machines

Support Vector Machines 3-4

Data Space Feature Space

Figure 3: Mapping two dimensional data space into a three dimensional fea-
ture space, R2 7→ R3. The transformation Ψ(x1, x2) = (x2

1 ,
√
2x1x2, x2

2)>

corresponds to K (xi , xj) = (x>
i xj)

2

Support Vector Machines

Support Vector Machines 3-5

Non-Linear SVM

max
α

LD (α) = max
α


n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi , xj)


s.t. 0 ≤ αi ≤ C ,

n∑
i=1

αiyi = 0

� Gaussian RBF kernel – K (xi , xj) = exp
(
− 1
σ ‖xi − xj‖2

)
� Polynomial kernel – K (xi , xj) =

(
x>i xj + 1

)p
Support Vector Machines

Feature Selection 4-1

Structural Risk Minimization (SRM)

Search for the model structure Sh,

Sh1 ⊆ Sh2 ⊆ . . . ⊆ Sh∗ ⊆ . . . ⊆ Shk = F

such that f ∈ Sh∗ minimises the expected risk bound, with f ⊆ F
is class of linear function and h is VC dimension
i.e.

SVM(h1) ⊆ . . . ⊆ SVM(h∗) ⊆ . . . ⊆ SVM(hk) = F

with h correspond to the value of SVM (kernel) parameter

Support Vector Machines

Feature Selection 4-2

Evolutionary Feature Selection GA

p���������	��
�����
���

p�����
�	����p��

�

��
�����

�
����� �����������������	��

� Featured selection – SVM parameters optimization
� Evolutionary optimization – Genetic Algorithm (GA)
� GA finds global optimum solution

Support Vector Machines

Feature Selection 4-3

GA - SVM

mating poolpopulation

Generating Evaluation
(fitness)

SVM

SVM

SVM

MODEL

Learning

Learning

Learning

DATA

selectioncrossover

mutation

Figure 4: Iteration (generation) in GA-SVM

Support Vector Machines

Application 5-1

Credit Scoring & Probability of Default

� Score (Sc) from SVM method

Sc(x) =
n∑

i=1

αiyiK (xi , x)

� Probability of Default (PD)

f (y = 1|Sc) =
1

1 + exp (β0 + β1Sc)

β0 and β1 are estimated by minimizing the negative
log-likelihood function (Karatzoglou and Meyer, 2006)

Support Vector Machines

Application 5-2

Validation of Scores

Discriminatory power (of the score)
I Cumulative Accuracy Profile (CAP) curve
I Receiver Operating Characteristic (ROC) curve
I Accuracy, Specificity, Sensitivity

Support Vector Machines

Application 5-3

1

1

Model with zero
predictive power

Perfect model

Random model

Model being
evaluted /
actual

Sample rank based
on its score

0

1

1

Model with zero
predictive power

Perfect model

Random model

ROC
curve

false alarm rate

hi
tr

at
e

0

Figure 5: CAP curve (left) and ROC curve (right)

Support Vector Machines

Application 5-4

Discriminatory power

� Cumulative Accuracy Profile (CAP) curve
I CAP/Power/Lorenz curve → Accuracy Ratio (AR)
I Total sample vs. default sample

� Receiver Operating Characteristic (ROC) curve
I ROC curve → Area Under Curve (AUC)
I Non-default sample vs. default sample

� Relationship: AR = 2 AUC - 1

Support Vector Machines

Application 5-5

Discriminatory power (cont’d)

sample
default non-default
(1) (-1)

predicted
(1) True Positive (TP) False Positive (FP)
(-1) False Negative (FN) True Negative (TN)

total P N

I Accuracy, P(Ŷ = Y) = TP+TN
P+N

I Specificity, P(Ŷ = −1|Y = −1) = TN
N

I Sensitivity, P(Ŷ = 1|Y = 1) = TP
P

Support Vector Machines

Application 5-6

Examples – Small Sample

� 100 solvent and insolvent companies
� X3 – Operating Income / Total Asset
� X24 – Account Payable / Total Asset

Support Vector Machines

Application 5-7

−1.0

−0.5

0.0

0.5

1.0

0.00 0.10 0.20 0.30

−0.2

−0.1

0.0

0.1

0.2

●●

●

●

●

●
●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

SVM classification plot

x24

x3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.00 0.10 0.20 0.30

−0.2

−0.1

0.0

0.1

0.2

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

SVM classification plot

x24

x3

Figure 6: SVM plot, C = 1 and σ = 1/2, training error 0.19 (left) and
GA-SVM, C = 14.86 and σ = 1/121.61, training error 0 (right).

Support Vector Machines

Application 5-8

Credit reform data

type solvent (%) insolvent (%) total (%)
Manufacturing 27.37 (26.06) 25.70 (1.22) 27.29
Construction 13.88 (13.22) 39.70 (1.89) 15.11
Wholesale and retail 24.78 (23.60) 20.10 (0.96) 24.56
Real estate 17.28 (16.46) 9.40 (0.45) 16.90
total 83.31 (79.34) 94.90 (4.52) 83.86
others 16.69 (15.90) 5.10 (0.24) 16.14

20,000 1,000 21,000

Table 1: Credit reform data

Support Vector Machines

Application 5-9

Pre-processing

year solvent insolvent total
(%) # (%) # (%)

1997 872 (9.08) 86 (0.90) 958 (9.98)
1998 928 (9.66) 92 (0.96) 1020 (10.62)
1999 1005 (10.47) 112 (1.17) 1117 (11.63)
2000 1379 (14.36) 102 (1.06) 1481 (15.42)
2001 1989 (20.71) 111 (1.16) 2100 (21.87)
2002 2791 (29.07) 135 (1.41) 2926 (30.47)
total 8964 (93.36) 638 (6.64) 9602 (100)

Table 2: Pre-processed credit reform data

Support Vector Machines

Application 5-10

Scenario

scenario training set testing set
Scenario-1 1997 1998
Scenario-2 1997-1998 1999
Scenario-3 1997-1999 2000
Scenario-4 1997-2000 2001
Scenario-5 1997-2001 2002

Table 3: Training and testing data set

Support Vector Machines

Application 5-11

Full model, X1, . . . ,X28

� Predictors – 28 financial ratio variables
� Population (# solutions) – 20
� Evolutionary iteration (generation) – 100
� Elitism – 0.2 of population
� Crossover rate – 0.5, mutation rate – 0.1
� Optimal SVM parameters – σ = 1/178.75 and C = 63.44

Support Vector Machines

Application 5-12

Quality of classification (1/2)

sample
training testing

Disc. power

AR 1 1
AUC 1 1

Accuracy 1 1
Specificity 1 1
Sensitivity 1 1

Table 4: Discriminatry power of Scenario-1, 2, 3, 4, 5

Support Vector Machines

Application 5-13

Quality of classification (2/2)

training TE (CV) testing TE (CV)
1997 0 (8.98) 1998 0 (9.02)

1997-1998 0 (8.99) 1999 0 (10.03)
1997-1999 0 (9.37) 2000 0 (6.89)
1997-2000 0 (8.57) 2001 0 (5.29)
1997-2001 0 (4.55) 2002 0 (4.61)

Table 5: Percentage of Training Error (TE) and Cross-Validation (CV, with
group=5)

Support Vector Machines

Conclusion 6-1

Conclusion

� Optimal feature selection (via Genetic Algorithm) leads to
perfect classification

� Cross validation – overcome the overfiting in training & testing
error

Support Vector Machines

Genetic Algorithm for
Support Vector Machines Optimization
in Probability of Default Prediction

Wolfgang Härdle
Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics
and Economics
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

�

http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

References 7-1

References

Chen, S., Härdle, W. and Moro, R.
Estimation of Default Probabilities with Support Vector
Machines
Quantitative Finance, 2011, 11, 135 - 154

Holland, J.H.
Adaptation in Natural and Artificial Systems
University of Michigan Press, 1975

Support Vector Machines

References 7-2

References

Karatzoglou, A. and Meyer, D.
Support Vector Machines in R
Journal of Statistical Software, 2006, 15:9, 1-28

Zhang, J. L. and Härdle, W.
The Bayesian Additive Classification Tree Applied to Credit
Risk Modelling
Computational Statistics and Data Analysis, 2010, 54,
1197-1205

Support Vector Machines

Appendix – Linearly Separable Case 9-1

Linearly Separable Case back

0

Margin (d)

Figure 7: Separating hyperplane and its margin in linearly separable case

Support Vector Machines

Appendix – Linearly Separable Case 9-2

� Choose f ∈ F such that margin (d− + d+) is maximal
� No error separation, if all i = 1, 2, ..., n satisfy

x>i w + b ≥ +1 for yi = +1

x>i w + b ≤ −1 for yi = −1

� Both constraints are combined into

yi (x>i w + b)− 1 ≥ 0 i = 1, 2, ..., n

Support Vector Machines

Appendix – Linearly Separable Case 9-3

� Distance between margins and the separating hyperplane is
d+ = d− = 1/‖w‖

� Maximize the margin, d+ + d− = 2/‖w‖, could be attained by
minimizing ‖w‖ or ‖w‖2

� Lagrangian for the primal problem

LP (w , b) =
1
2
‖w‖2 −

n∑
i=1

αi{yi (x>i w + b)− 1}

Support Vector Machines

Appendix – Linearly Separable Case 9-4

Karush-Kuhn-Tucker (KKT) first order optimality conditions

∂LP

∂wk
= 0 : wk −

n∑
i=1

αiyixik = 0 k = 1, ..., d

∂LP

∂b
= 0 :

n∑
i=1

αiyi = 0

yi (x>i w + b)− 1 ≥ 0 i = 1, ..., n
αi ≥ 0

αi{yi (x>i w + b)− 1} = 0

Support Vector Machines

Appendix – Linearly Separable Case 9-5

� Solution w =
∑n

i=1 αiyixi , therefore

1
2
‖w‖2 =

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

−
n∑

i=1

αi{yi (x>i w + b)− 1} = −
n∑

i=1

αiyix>i
n∑

j=1

αjyjxj +
n∑

i=1

αi

= −
n∑

i=1

n∑
j=1

αiαjyiyjx>i xj +
n∑

i=1

αi

� Lagrangian for the dual problem

LD (α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

Support Vector Machines

Appendix – Linearly Separable Case 9-6

� Primal and dual problems

min
w ,b

LP (w , b)

max
α

LD (α) s.t. αi ≥ 0,
n∑

i=1

αiyi = 0

� Optimization problem is convex, therefore the dual and primal
formulations give the same solution

� Support vector, a point i for which yi (x>i w + b) = 1 holds

Support Vector Machines

Appendix – Linearly Non-separable Case 10-1

Linearly Non-separable Case back

0

Figure 8: Hyperplane and its margin in linearly non-separable case

Support Vector Machines

Appendix – Linearly Non-separable Case 10-2

� Slack variables ξi represent the violation from strict separation

x>i w + b ≥ 1− ξi for yi = 1,

x>i w + b ≤ −1 + ξi for yi = −1,
ξi ≥ 0

� constraints are combined into

yi (x>i w + b) ≥ 1− ξi and ξi ≥ 0

� If ξi > 0, the objective function is

1
2
‖w‖2 + C

n∑
i=1

ξi

Support Vector Machines

Appendix – Linearly Non-separable Case 10-3

� Lagrange function for the primal problem

LP (w , b, ξ) =
1
2
‖w‖2 + C

n∑
i=1

ξi−

n∑
i=1

αi{yi

(
x>i w + b

)
− 1 + ξi} −

n∑
i=1

µiξi ,

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers

� Primal problem

min
w ,b,ξ

LP (w , b, ξ)

Support Vector Machines

Appendix – Linearly Non-separable Case 10-4

First order conditions

∂LP

∂wk
= 0 : wk −

n∑
i=1

αiyixik = 0

∂LP

∂b
= 0 :

n∑
i=1

αiyi = 0

∂LP

∂ξi
= 0 : C − αi − µi = 0

s.t. αi ≥ 0, µi ≥ 0, µiξi = 0

αi{yi (x>i w + b)− 1 + ξi} = 0

Support Vector Machines

Appendix – Linearly Non-separable Case 10-5

� Note that
∑n

i=1 αiyib = 0. Translate primal problem into

LD (α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj +
n∑

i=1

ξi (C − αi − µi)

� Last term is 0, therefore the dual problem is

max
α

LD (α) = max
α


n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

 ,

s.t. 0 ≤ αi ≤ C ,
n∑

i=1

αiyi = 0

back

Support Vector Machines

Appendix–Genetic Algorithm 11-1

What is a Genetic Algorithm ?
´��
�p�������
���p�����
�	����p���

�	
	�����
�����������	�

����
 �
����	�����	���

�	��
�:�	�����	���
�

;��0�
6��å��
���
	����

��	����������	���*

��

Genetics algorithm is search
and optimization technique
based on Darwin’s principle
on natural selection
(Holland, 1975)

Support Vector Machines

Appendix–Genetic Algorithm 11-2

GA – Initialization Back

f obj

solution

1 1 1 1 0 1 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1
1 0 0 0 1 0 1
0 1 0 1 1 0 0
1 1 1 0 0 0 1
1 1 0 1 1 1 0
1 0 1 1 0 0 1
0 0 1 0 1 1 1
1 1 0 1 0 0 1

binary encoding
population

decoding

global maximum

global minimum

122
77
54
19
69
44

113
110
89
23

105
real number
(solution)

Figure 9: GA at first generation

Support Vector Machines

Appendix–Genetic Algorithm 11-3

GA – Convergency

f obj

solution

f obj

solution

Figure 10: Solutions at 1st generation (left) and r th generation (right)

Support Vector Machines

Appendix–Genetic Algorithm 11-4

GA – Decoding

Figure 11: Decoding

θ = θlower + (θupper − θlower)

∑l−1
i=0 ai2i

2l

where θ is solution (i.e. parameter C or σ), a is allele

Support Vector Machines

Appendix–Genetic Algorithm 11-5

GA – Fitness evaluation

� Calculate f (θi), i = 1, . . . , popsize
� Evaluate fitness, fdp(θi)

fdp(θi) – AR, AUC, accuracy, specificity, sensitivity

� Relative fitness, pi =
fdp(θ

i)∑popsize
k=i fdp(θi)

20 2 Simple Evolutionary Algorithms

�
��

��

��

�

� ���

��

�

�
������

Fig. 2.5 Roulette wheel selection

been done to minimize the selection bias, and we will introduce some of them in
later chapters.

Another consideration about RWS is that the problem needs to be maximum and
all the objective values need to be greater than zero so that we can use objective
values as fitness values and take RWS as the selection process directly.24

2.2.5 Variation Operators

There are many variation operators to change information in individuals in the mat-
ing pool. If information exchange, i.e., gene exchange, is done between two or more
individuals25, this variation operator is called crossover or recombination. If the
genes of one individual changes on its own, this variation operator is called muta-
tion. We will introduce single-point crossover and bit-flip mutation here.

There are two ways to select two individuals in the mating pool to determine
whether or not to cross over them. One is to shuffle the mating pool randomly
and assign individuals 1 and 2 without replacement to be a crossover pair, 3 and
4 without replacement to be another pair, etc. The other is to generate a random
integer permutation, per, between [1, popsize]. per(i) = j means the ith element in
the permutation is the jth individual in the mating pool. Then we assign indper(1)
and indper(2) without replacement as the first crossover pair, indper(3) and indper(4)
without replacement as the second crossover pair, etc.

24 Why do we need two such requirements for RWS to handle objective values directly?
25 We will give examples of multiparent crossover in Chap. 3.

Figure 12: Proportion to be choosen in the next iteration (generation)

Support Vector Machines

Appendix–Genetic Algorithm 11-6

GA – Roulette wheel

20 2 Simple Evolutionary Algorithms

�
��

��

��

�

� ���

��

�

�
������

Fig. 2.5 Roulette wheel selection

been done to minimize the selection bias, and we will introduce some of them in
later chapters.

Another consideration about RWS is that the problem needs to be maximum and
all the objective values need to be greater than zero so that we can use objective
values as fitness values and take RWS as the selection process directly.24

2.2.5 Variation Operators

There are many variation operators to change information in individuals in the mat-
ing pool. If information exchange, i.e., gene exchange, is done between two or more
individuals25, this variation operator is called crossover or recombination. If the
genes of one individual changes on its own, this variation operator is called muta-
tion. We will introduce single-point crossover and bit-flip mutation here.

There are two ways to select two individuals in the mating pool to determine
whether or not to cross over them. One is to shuffle the mating pool randomly
and assign individuals 1 and 2 without replacement to be a crossover pair, 3 and
4 without replacement to be another pair, etc. The other is to generate a random
integer permutation, per, between [1, popsize]. per(i) = j means the ith element in
the permutation is the jth individual in the mating pool. Then we assign indper(1)
and indper(2) without replacement as the first crossover pair, indper(3) and indper(4)
without replacement as the second crossover pair, etc.

24 Why do we need two such requirements for RWS to handle objective values directly?
25 We will give examples of multiparent crossover in Chap. 3.

� rand ∼ U(0, 1)

� Select i th chromosome if
∑k

i=1 pi < rand <
∑k+1

i=1 pi

� Repeat popsize times to get popsize new chromosomes

Support Vector Machines

Appendix–Genetic Algorithm 11-7

GA – Crossover

1

1

1

12

2

2

2

Figure 13: Crossover in nature

Reproduction Operators comparison

• Single point crossover

Cross point

Æ

Æ

• Two point crossover (Multi point crossover)

Reproduction Operators comparison

• Single point crossover

Cross point

Æ

Æ

• Two point crossover (Multi point crossover)

Figure 14: Randomly choosen
one-point crossover (top) and
two-points crossover (bottom)

Support Vector Machines

Appendix–Genetic Algorithm 11-8

GA – Reproductive operator

2.2 Simple Genetic Algorithm 21

Generally, we will assign the probability of crossover pc, called the crossover
rate, to control the possibility of performing a crossover.26

For two individuals selected to cross over, we assign a point between 1 and l −1
randomly, where l is the length of the chromosome. This means generating a random
integer in the range [1, l−1]. The genes after the point are changed between parents
and the resulting chromosomes are offspring. We call this operator a single-point
crossover. Figure 2.6 illustrates this.

)�)�)� ��)� �)) �)) �

��)���)�)� � �) �) � �
�� �� �C�

))) �) �

)) �))� ���) �)) �

�) �) �� ��

.�
��	� /''��
��%
Fig. 2.6 Single-point crossover

As can be seen from Fig. 2.6, two new individuals are generated by crossover,
which is generally seen as the major exploration mechanism of SGA.

If two parents do not perform a crossover according to probability pc, their off-
spring are themselves.

Now we discuss mutation. There are also two ways to implement mutation. One
way is to open another memory with size popsize to store the results of crossover,
and mutation is carried out in that memory. The other way is to mutate the offspring
of crossover directly. We use the latter way.

For every gene in an individual, we mutate it with probability pm, called the
mutation rate.27 Provided gene j needs to be mutated, we make a bit-flip change
for gene j, i.e., 1 to 0 or 0 to 1. We call this operator a bit-flip mutation. Figure 2.7
illustrates the bit-flip mutation. The individual after mutation is called the mutant.

��) ��)�)� �� ��)���) � �
�� � �C�

�) �))) �) �) � �
�

/''��
��%��'��
������
 �
	��	

��

Fig. 2.7 Bit-flip mutation for gene j of the offspring

26 How do we implement the statement “Individual i and individual j cross over with probability
pc”?
27 How do we implement the statement “Gene j mutates with probability pm”?

2.2 Simple Genetic Algorithm 21

Generally, we will assign the probability of crossover pc, called the crossover
rate, to control the possibility of performing a crossover.26

For two individuals selected to cross over, we assign a point between 1 and l −1
randomly, where l is the length of the chromosome. This means generating a random
integer in the range [1, l−1]. The genes after the point are changed between parents
and the resulting chromosomes are offspring. We call this operator a single-point
crossover. Figure 2.6 illustrates this.

)�)�)� ��)� �)) �)) �

��)���)�)� � �) �) � �
�� �� �C�

))) �) �

)) �))� ���) �)) �

�) �) �� ��

.�
��	� /''��
��%
Fig. 2.6 Single-point crossover

As can be seen from Fig. 2.6, two new individuals are generated by crossover,
which is generally seen as the major exploration mechanism of SGA.

If two parents do not perform a crossover according to probability pc, their off-
spring are themselves.

Now we discuss mutation. There are also two ways to implement mutation. One
way is to open another memory with size popsize to store the results of crossover,
and mutation is carried out in that memory. The other way is to mutate the offspring
of crossover directly. We use the latter way.

For every gene in an individual, we mutate it with probability pm, called the
mutation rate.27 Provided gene j needs to be mutated, we make a bit-flip change
for gene j, i.e., 1 to 0 or 0 to 1. We call this operator a bit-flip mutation. Figure 2.7
illustrates the bit-flip mutation. The individual after mutation is called the mutant.

��) ��)�)� �� ��)���) � �
�� � �C�

�) �))) �) �) � �
�

/''��
��%��'��
������
 �
	��	

��

Fig. 2.7 Bit-flip mutation for gene j of the offspring

26 How do we implement the statement “Individual i and individual j cross over with probability
pc”?
27 How do we implement the statement “Gene j mutates with probability pm”?

Figure 15: One-point crossover (top) and bit-flip mutation (bottom)

Support Vector Machines

Appendix–Genetic Algorithm 11-9

GA – Elitism

� Best solution in each iteration is maintained in another
memory place

� New population replaces the old one, check whether best
solution is in the population
If not, replace any one in the population with best solution

Support Vector Machines

Appendix–Genetic Algorithm 11-10

Nature to Computer Mapping Back

Nature GA-SVM
Population Set of parameter
Individual (phenotype) Parameters
Fitness Discriminatory power
Chromosome (genotype) Encoding of parameter
Gene Binary encoding
Reproduction Crossover
Generation Iteration

Table 6: Nature to GA-SVM mapping

Support Vector Machines

	Introduction
	
	Validation of Scores
	Support Vector Machines
	Feature Selection
	Application
	Conclusion
	References
	Appendix – SVM
	Appendix – Linearly Separable Case
	Appendix – Linearly Non-separable Case
	Appendix–Genetic Algorithm

