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Motivation 1-1

Dependence Risk

Quantile Regression in Risk Calibration
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Motivation 1-2

Risk Calibration

� Quanti�cation of risk: Value-at-Risk (VaR) and expected
shortfall

� Drawbacks of usual VaR: Does not say much about
dependence risk

� Need for other risk measure

Quantile Regression in Risk Calibration
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Motivation 1-3

Quantile Regression in VaR

� Parametric VaR: Chernozhukov and Umantsev (2001), Engle
and Manganelli (2004)

� Nonparametric VaR: Cai and Wang (2008), Taylor (2008) and
Schaumburg (2010)

� Parametric CoVaR: Adrian and Brunnermeier (2010)(AB)

Quantile Regression in Risk Calibration
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Motivation 1-4

Risk Calibration

� Marginal Expected Shortfall (MES): Acharya et al. (2010)

� Distressed Insurance Premium (DIP): Huang et al. (2010)
Go to details

� AB: Xj and Xi are two asset returns,

P
{
Xj ≤ CoVaRj |i (q)|C (Xi )

}
= q.

where C (Xi ) = {Xi = VaRq(Xi )}.
� Advantages:

1. Cloning property
2. Conservative property
3. Adaptiveness

Go to details

Quantile Regression in Risk Calibration
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Motivation 1-5

CoVaR Construction (AB)

Xj ,t and Xi ,t are two asset returns. Two linear quantile regressions:

Xi ,t = αi + γiMt−1 + εi ,t , (1)

Xj ,t = αj |i + βj |iXi ,t + γj |iMt−1 + εj ,t . (2)

Mt : vector-valued state variables. F−1εi,t
(q|Mt−1) = 0 and

F−1εj,t
(q|Mt−1,Xi ,t) = 0.

V̂aR i ,t = α̂i + γ̂iMt−1,

ĈoVaR j |i ,t = α̂j |i + β̂j |i V̂aR i ,t + γ̂j |iMt−1.

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Motivation 1-6

Nonlinear Dependence in Asset Returns
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Figure 1: Goldman Sachs (GS) and Citigroup (C) weekly returns 0.05 (left)

and 0.1(right) quantile functions. y-axis=GS returns; x-axis=C returns.

LLQR lines. Linear parametric quantile regression line. 95% Con�dence

band. N = 546.
Quantile Regression in Risk Calibration

●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Motivation 1-7

Nonlinear Dependence in Asset Returns
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Figure 2: Lehman Brothers (LB) and AIG weekly returns 0.05 (left) and

0.1(right) quantile functions. y-axis=LB returns; x-axis=AIG returns.

LLQR lines. Linear parametric quantile regression line. 95% Con�dence

band. N = 546.
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Figure 3: LB and C weekly returns 0.05 (left) and 0.1(right) quantile func-

tions. y-axis=LB returns; x-axis=C returns. LLQR lines. Linear parametric

quantile regression line. 95% Con�dence band. N = 546.
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Figure 4: Bank of America (BOA) and GS weekly returns 0.05 (left) and

0.1(right) quantile functions. y-axis=BOA returns; x-axis=GS returns.

LLQR lines. Linear parametric quantile regression line. 95% Con�dence

band. N = 546.
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Motivation 1-10

Nonlinear Dependence in Asset Returns
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Figure 5: BOA and C weekly returns 0.05 (left) and 0.1(right) quantile

functions. y-axis=BOA returns; x-axis=C returns. LLQR lines. Linear

parametric quantile regression line. 95% Con�dence band. N = 546.
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Motivation 1-11

General Speci�cation

� More general, with functions f , g ;

Xi ,t = f (Mt−1) + εi ,t ; (3)

Xj ,t = g(Xi ,t ,Mt−1) + εj ,t . (4)

Mt : vector-valued state variables. F−1εi,t
(q|Mt−1) = 0 and

F−1εj,t
(q|Mt−1,Xi ,t) = 0.

� Challenge:

1. The curse of dimensionality for f , g
2. Numerical Calibration of (3) and (4)
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Motivation 1-12

Goal

� Computing CoVaR (i.e. two step quantile regression) in a
nonparametric (or semiparametric) fashion

� Testing the risk-measuring performance of the estimated
CoVaR

� What can one learn from the semiparametric speci�cation

Quantile Regression in Risk Calibration
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Outline

1. Motivation X

2. Locally Linear Quantile Regression

3. A Semiparametric Model

4. Backtesting

5. Conclusions and Further Work



Locally Linear Quantile Regression 2-1

Locally Linear Quantile Estimation (LLQR)

� Locally Linear Quantile Regression (LLQR):

argmin
{a0,0,a0,1}

N∑
i=1

K

(
xi − x0

h

)
ρq {yi − a0,0 − a0,1(xi − x0)} . (5)

� Choice of Bandwidth: Yu and Jones (1998)

� Asymptotic Uniform Con�dence Band: Härdle and Song
(2010)
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A Semiparametric Model 3-1

Macroeconomic Drives

Component of Mt :

1. VIX

2. Short term liquidity spread

3. The daily change in the three-month treasury bill rate

4. The change in the slope of the yield curve

5. The change in the credit spread between 10 years BAA-rated
bonds and the treasury rate

6. The daily S&P500 index returns

7. The daily Dow Jones U.S. Real Estate index returns
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A Semiparametric Model 3-2
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Figure 6: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. N = 1260. τ = 0.05.
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Figure 7: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. N = 1260. τ = 0.05.
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A Semiparametric Model 3-4

Partial Linear Model

� The aforementioned linearity tests imply

Xi ,t = αi + γiMt−1 + εi ,t ; (6)

Xj ,t = βjMt−1 + l(Xi ,t) + εj ,t . (7)

l : a general function. Mt : state variables. F
−1
εi,t

(q|Mt−1) = 0

and F−1εj,t
(q|Mt−1,Xi ,t) = 0.

� Advantage:

1. Capturing nonlinear asset dependence
2. Avoid curse of dimensionality

Quantile Regression in Risk Calibration
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Figure 8: The nonparametric part of the PLM estimation. y-axis=GS

daily returns. x-axis=C daily returns. The LLQR quantile curve. Linear

parametric quantile line. 95% Con�dence band. Data 20080625-20081223.

N=126. h =0.2003. q = 0.05.
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A Semiparametric Model 3-6

Estimation of Partial Linear Model

� Method: Liang, Härdle and Carroll (1999) and Härdle, Ritov
and Song (2011)

� Estimation of l : LLQR

� j : GS daily returns,
i : C daily returns
Window Size: 126 days (half a year)
Data 20060804-20110804

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



A Semiparametric Model 3-7

●
●
●●

●

●●

●●

●
●
●
●

●●●
●

●

●

●
●

●

●
●

●●

●

●
●
●●●

●

●●
●
●●
●

●

●

●
●

●
●
●●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●●

●

●●
●●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●
●
●

●
●●

●

●●
●
●

●

●●

●

●
●●●
●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●●●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●●

●●
●●●

●●

●
●

●

●

●●●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●

●●●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●●

●●
●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●
●

●

●●

●

●●●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●●

●
●
●
●
●
●

●

●
●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●
●●

●●
●

●

●

●
●
●●

●

●
●

●●
●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●●

●
●

●

●

●●●●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●
●

●

●
●●

●●

●

●
●

●

●●●
●
●
●
●

●

●

●

●●
●●

●

●

●●
●●

●
●

●

●

●

●●●

●●●

●

●

●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●●
●●
●
●●

●

●

●

●
●

●

●

●●

●

●

●

2007 2008 2009 2010 2011

−0
.2

0.
0

0.
2

 

 

Figure 9: CoVaR of Goldman Sachs given the VaR of Citigroup. The x-

axis is time. The y-axis is the GS daily returns. PLM CoVaR . AB (2010)

CoVaR . The linear QR VaR of GS.
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Backtesting 4-1

Backtesting Procedure

� Berkowitz, Christo�ersen and Pelletier (2011): If the VaR
algorithm is correct, violations should be unpredictable

It =

{
1, if Rt < V̂aRt−1(q)
0, otherwise.

� Formally, violations It form a sequence of martingale di�erence
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Backtesting 4-2

Box Tests

� ρ̂k be the estimated autocorrelation of lag k of violation {It}
and N be the length of the time series.

� Ljung-Box test:

LB(m) = N(N + 2)
m∑

k=1

ρ̂2k
N − k

(8)

� Lobato test:

L(m) = N

m∑
k=1

ρ̂2k
v̂kk

(9)
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Backtesting 4-3

CaViaR Test

� Engle and Manganelli (2004)

� Berkowitz, Christo�ersen and Pelletier (2011): CaViaR
performs best overall

� Test procedure:

It = α+ β1It−1 + β2VaRt−1 + ut ,

where VaRt−1 can be replaced by CoVaRt−1 in the case of
conditional VaR. The residual ut follows a Logistic distribution.

� The null hypothesis is β̂1 = β̂2 = 0.
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Backtesting 4-4

Summary of Backtesting Procedure

� LB(1): i.i.d. test

� LB(5): i.i.d. test

� L(1): Testing �rst one lag autocorrelation = 0

� L(5): Testing �rst �ve lags autocorrelation = 0

� CaViaR-overall: all data 20060804-20110804

� CaViaR-crisis: data 20080804-20090804
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Backtesting 4-5

Table 1: Goldman Sachs VaR/CoVaR backtesting p-values.

Measure LB(1) LB(5) L(1) L(5) CaViaR-overall CaViaR-crisis

Panel 1

V̂aRGS,t 0.3449 0.0253* 0.3931 0.1310 1.265 ×10−6*** 0.0024**

Panel 2

ĈoVaR
AB

GS|SP,t 0.0869 0.2059 0.2684 0.6586 8.716×10−7*** 0.0424*

ĈoVaR
PLM

GS|SP,t 0.0518 0.0006*** 0.0999 0.0117* 2.2×10−16*** 0.0019**

Panel 3

ĈoVaR
AB

GS|C,t 0.0489* 0.2143 0.1201 0.4335 3.378 ×10−9*** 0.0001***

ĈoVaR
PLM

GS|C,t 0.8109 0.0251* 0.8162 0.2306 2.946×10−9*** 0.0535

*, ** and *** denote signi�cance at the 5, 1 and 0.1 percent levels.
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Conclusions and Further Work 5-1

Conclusions and Further Work

� Semiparametric model may capture risk better than linear
model during �nancial crisis

� Multivariate nonlinear part in PLM

� Other assets returns
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Appendix 6-1

Macorprudential Risk Measures

� Marginal Expected Shortfall (MES): R =
∑

i yiRi , yi : weights,
Ri : asset return

MESiα =
∂ESα(R)

∂yi
= −E [Ri |R ≤ −VaRα]

� Distressed Insurance Premium (DIP): Huang et al. (2010)
L =

∑N
i=1

Li total loss of a portfolio

DIP = EQ [L|L ≥ Lmin]

Return
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Appendix 6-2

Advantages of CoVaR

� Cloning Property: if dividing Xi into several clones, then the
value of CoVaR conditioning on the individual large �rm does
not di�er from the one conditioning on one of the clones

� Conservative Property: CoVaR conditioning on some bad
event, the value would be more conservative than VaR

� Adaptive to the changing market conditions

Return
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