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Example

Daily returns of the German stock Allianz from 1974-01-02 to
1996-12-30.

daily return of ALLIANZ
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Example

Daily returns of the German stock COBANK from 1974-01-02 to
1996-12-30.

daily return of COBANK
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Example

Daily returns of the German stock DAIMLER from 1974-01-02 to
1996-12-30.

daily return of DAIMLER
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Example

Daily returns of the German stock portfolio (ALLIANZ, COBANK
and DAIMLER) with trading strategy b' = (1,1, 1) from
1974-01-02 to 1996-12-30.

daily return of portfolio
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Outline of the talk

1. Motivation Vv
2. Extreme Values
3. Copulae

4. Tail Dependence
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Extreme Value 1-2

Statistics of Extreme Risks

Stylized facts in financial markets
(] Returns are heavy tailed distributed
(] Volatility changes stochastically

(] GARCH model yields fat tails but often underestimates for
q > 95%.
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Extreme Value 1-3

Example

Model structure of the return series of Allianz from 1974-01-02 to
1996-12-30:

Xt = Ott¢, Et ~~ IICI’(O7 1) (1)
of =w+ X1 + o (2)

Estimated density (nonparametric) Estimated log density (nonparametric)




Extreme Value 1-4

VaR plot-(alpha= 0.0500)
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Extreme Value 1-5

Extreme value distributions

(] yield more precise approximations in the tails

[J probability of extreme events depends on the tail of f(x) - pdf
of &

(] apply methods of extreme value statistics to estimate
“extreme” quantiles

MSR



Extreme Value 1-6

Identifying extreme events

(J Maxima (block maxima) taking in successive periods

[J Peaks over threshold (POT): loss exceeds a given (high)
threshold v.

X, o

il NN
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Extreme Value 1-7

The limits of maxima

Let Xi,..., X, be iid random variables (P & L) with cdf F(x)
M, = max(X, ..., Xs)
One may easily compute the cdf of maxima:

P(M, < x)=P(X1 < x,..., X5 < x) = F"(x). (3)

For unbounded random variables, (i.e. F(x) <1, ¥x < 00):
F"(x) — 0, hence M, RS

The maximum of n unbounded random variables may become
arbitrarily large.

MSR




Extreme Value 1-8

Definition (Maximum Domain of Attraction)

The random variables X; belong to the maximum domain of
attraction (MDA) of the nondegenerated distribution G, if there
exist constants ¢, > 0 and d, such that:

My = dn LG for n— 0,

Cn

i.e. F"(cax + dn) — G(x) for all points of continuity x of the cdf
G(x).
Remark: Extreme value distribution
Distribution G in the above Definition is called an extreme value
(EV) distribution.

MSR



Extreme Value 1-9
Three standard extreme value distributions:

Fréchet: Gio(x) =exp{—x"“}, x>0,a>0, (4)
Gumbel:  Go(x) =-exp{—e ™}, x €R, (5)
Weibull:  Gpo(x) =exp{—|x|7“}, x<0,a<0. (6)

Extreme value densities

5 s

o
x

Figure 1: Fréchet (red), Gumbel (black) and Weibull (blue) probability
density functions.

Q SFEevtl.xp
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Extreme Value 1-10

Jenkinson and von Mises suggested a parametric representation for
the three standard distributions:

Definition (Generalized Extreme Value)

The generalized extreme value distribution (GEV) with the shape
parameter v € R has the following cdf:

Gy (x) = exp{—(1 +yx)"Y7}, 14+ vx >0 for y #0
Go(x) = exp{—e™*}, xR

Gumbel Gy
Fréchet Gv(%l) = Gy,1/4(x) for v >0
Weibull GW(—XTH) = Gp,_1/,(x) for v < 0.

MSR



Extreme Value 1-11
Richard Edler von Mises

born on April 19, 1883 in Lviv, Austria-Hungary

died on July 14, 1953 in Boston, USA

Figure 2:

Richard von Mises was a scientist who worked on fluid mechanics,
aerodynamics, aeronautics, statistics and probability theory. After World War |
in 1919 he was appointed director (with full professorship) of the new Institute
of Applied Mathematics created at the behest of Erhard Schmidt at the
University of Berlin. With the rise of the National Socialist (Nazi) party to
power in 1933, von Mises, who was a Roman Catholic but had Jewish ancestry,
felt his position threatened despite his World War | military service. He moved
to Turkey and to USA.
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Extreme Value 1-12

Theorem (Fisher and Tippett (1928) Theorem)

If there exist constants ¢, > 0, d, € R and some non-degenerated
distribution function G such that
Mn - dn L

— G forn— oo,
Cn

then G is a GEV distribution.

Assume that we have a large enough block of n iid random
variables and set y = ¢,x + d, then P(M, < y) = Gv(iy_d")_

Cn

MSR



Extreme Value

1-13
F["t](c[,,t]x + djpg) — G(x) for [nt] — oo, ie. n— ooc.
FItl(cox + d) = [F™(cox + dn)} 5 — GE(x) for n — oo
In other words this means that
Mg = Ay £ - ’ Mng = dn £~
C[nt] Cnh
for n — oco. According to the next lemma,
dn — 4
o pt)z>0,
Clnt] Clne]
and
G'(x) = G(b(t)x + a(t)), t >0, x € R. (7)
MSR Al



Extreme Value 1-14

This relationship holds for arbitrary values t. We use it in
particular for arbitrary t,s and s - t and obtain

b(st) = b(s) b(t), a(st) = b(t)a(s) + a(t). (8)

The functional equations (7), (8) for G(x), b(t), a(t) have only one
solution, when G is one of the distributions Gg, G1,o or G2, that
is, G must be a GEV distribution.

MSR



Extreme Value 1-15

Lemma (Convergence-Type Theorem)

Let Uy, Uy, ..., V, W be random variables, b,, 3, > 0, a,, o, € R.

If
Un_an L

b,V
in distribution for n — oo, then the following statement holds:
Up—an ¢ . by dn — Qp
— =W iff — —b>0, —a€eR.
Bn Bn - Bn

In this case W follows the same distribution as bV + a.

Notice that for all n > 1 the maximum M, of n iid random
variables Xi, ..., X, has the same distribution as ¢, X1 + d, given
suitable constants ¢, > 0 and d,.

MSR




Extreme Value 1-16

Properties of GEV

[] In general we can change the center and the scale to obtain
other GEV distributions:

with the shape parameter ~, the location parameter i and the
scale parameter o > 0.
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Extreme Value 1-17

Properties of GEV

(] GEV distributions are characterized by their max-stability. A
probability density function F is max-stable if

F™(dn + cnx) = F(x)

for a suitable choice of constants d, and ¢, > 0. For example,
the maximum M, of n iid random variables X; has the same
distribution as ¢, Xi + d,, given suitable constants ¢, > 0 and
d,.

MSR



Extreme Value 1-18

CDFs of random variables

Figure 3: Normal PP plot of the pseudo random variables with Frechét
distribution (4) with a = 2. Q@ SFEevt2.xpl
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Extreme Value 1-19

CDFs of random variables

Figure 4: Normal PP plot of the pseudo random variables with Weibull
distribution (6) with o = —2. Q SFEevt2.xpl
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Extreme Value 1-20

CDFs of random variables

Figure 5: Normal PP plot of the pseudo random variables with Gumbel
distribution (5). Q SFEevt2.xpl
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Extreme Value 1-21

Identifying the type of the limit (GEV)
distributions

The deciding factor is how fast the probability for extremely large
observations decreases beyond a threshold x, when x increases.
It depends obviously on the decrease of the function:

F(x)=P(X >x)=1- F(x)

for large x.

MSR



Extreme Value 1-22

Theorem
a) For 0 < 7 < oo and every sequence of real numbers u,,n > 1, it
holds for n — oo

nF(u,) — 7 iff P(M,<u,)—e .

b) F belongs to the MDA of the GEV distribution G with the
standardized sequences c,, d,, exactly when n — oo

nF(cox + dp) — —log G(x) for all x € R.

MSR



Extreme Value 1-23

The excess probability of Fréchet G; , behaves as:

Gra(x) = Xia{l +0o(1)} for x — oo.

AII_distributions that belong to the MDA of Fréchet Gy o fu_IfiII:
x“F(x) is almost constant for x — oo or more precisely x“F(x) is
a slowly varying function.

MSR



Extreme Value 1-24

Definition (Slowly Varying Functions)

A positive measurable function L in (0,00) is called slowly varying,
if for all t > 0:

Example
L(x) = log(1 + x), x > 0 is slowly varying (L'Hospital’s rule).

MSR



Extreme Value 1-25

Theorem (MDA of Frechét distribution)

F belongs to the MDA of the Frechét distribution Gy, for a > 0,
if and only if x*F(x) = L(x) is a slowly varying function. The
random variables X; with the distribution function F are
unbounded (i.e. F(x) <1 for all x < c0) and

M,
n =, Gl,a
Cn

with ¢, = F7Y(1 — 1) or F(c,) = P(X: > ¢,) = 1/n.

n

MSR



Extreme Value 1-26

Theorem (MDA of Frechét distribution) states a criterion for
obtaining the GEV Fréchet G; , as limit distribution.

The Weibull distribution can be obtained via the relationship
Gga(—x*l) = G1,a(x), x > 0,. However random variables, whose
maxima are asymptotically Weibull distributed, are by all means
bounded. Therefore, in financial applications they are only
interesting in special situations where using a type of hedging
strategy, the loss, which results from an investment, is limited.

MSR



Extreme Value 1-27

Example
The Pareto distributions with cdf

Wia(x)=1-— i,x >1,aa>0,
XOC
and all other cdfs with Pareto tails:
F(x) = —{1+0(1)} for x— oc.
X

belong to the MDA of the Fréchet distribution.
In this case F~1(q) for g ~ 1 behaves as (x/q)Y/“: Set
cn = (kn)t/e:

M
(/{n):/a £, Gio forn— oo

MSR




Extreme Value 1-28
Theorem (MDA of Gumbel distribution)

The cdf F of X; belongs to the MDA of the Gumbel distribution iff
there exist scaling functions c(x), g(x) > 0 and an absolute cts
function e(x) > 0:

c(x)—>c>0 g(x) = 1,€'(x) = 0 for x — o0 s.t. z < oo:

F(x) = c(x) exp{— [ g(;/)dy} z < x < 0o. In this case
M, — d, LG
Cn 0

where d, = F~1(1 — 1) and ¢, = e(d,).
As function e(x) in Theorem (MDA of Gumbel distribution) one
may choose the mean excess function:

1

e(x) = F ) /Xool:_(y)dy, x < 00.

MSR
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Example

The exponential distribution has the form: F(x) =1 - e, x > 0.
Hence F(x) = e ™ fulfills the assumptions of Theorem (MDA of
Gumbel distribution) with

c(x)=1, g(x)=1, z=0and e(x) = 1/A.

Example

The maximum of n iid exponentially distributed random variables
with the parameter A converges to the GEV Gumbel distribution:

1
A(Mp, — X log n) £, G

for n— oo.

MSR
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Example
The maximum of n iid N(0, 1) random variables converges to the
GEV Gumbel distribution:

M, —d
ui>G0 for n— oo
Cn

where

cn = (2 log n)71/2
loglog n + log(4m)
2y/2 log n '

d, = 2 log n

MSR



Extreme Value 1-31

Peaks-over-threshold (POT) approach

Definition (Excess over threshold)

Let K,(u) and N(u) be the index set and the number of
observations over the threshold u. Denote the random variables
Y;, I=1,...,N(u), as the excesses over the threshold value u
with

{Yla"'7YN(u)} = {)<J —u; j€ K,,(U)}
= {(XO gy, x(NV) )

MSR



Extreme Value 1-32

Definition
Let v be a threshold value and F a distribution function of some
unbounded random variable X.

a) Fu(x) =P{X-u<x|X>u}=
{F(u+x)—F(u)}/F(u), 0 < x < oo is called conditional
excess distribution function over the threshold u.

b) e(u) =E{X —u| X >u}, 0<u<ooisthe mean excess
function.

With partial integration one obtains:

_ [ FW)
e(u)—/u I:_(u)dy

A random variable A, with cdf F,(x) has expected value
EA, = e(u).

MSR




Extreme Value 1-33

Theorem (Pickands (1975), Balkema and de Haan (1974))

For a large class of underlying distribution function F, the
conditional excess distribution function F,(x) is well approximated
by:

Fu(x) = W, 3(x) u— oo.

where W, 3(x) is the generalized Pareto distribution.

MSR



Extreme Value 1-34

Definition (Pareto distribution)

The generalized Pareto distribution (GP) with the parameters
B > 0, v has the distribution function:

B X, _1 x>0 if v>0
W%g(x)—l—(l—kﬁ) v for {0§x<ﬁ i~y <0,

and .
Wos(x)=1—e 5%, x> 0.

W, (x) = W, 1(x) are called generalized standard Pareto
distributions or standardized GP distributions.

MSR



Extreme Value 1-35

Submodels of GP distribution
[J Exponential (GP0): Wyp(x)=1—e", x>0
[ Pareto (GP1): Wy s(x)=1—-x"% x>1and 8>0
[ Beta (GP2): Whs=1—(—x)"",-1<x<0,8<0

MSR



Extreme Value 1-36

Generalized Pareto distributions

Figure 6: Standard Pareto distributions (8 = 1) with the parameters v =
—0.5 (Red), 0 (Black) and 0.5 (Blue). Q SFEgpdist.xpl

MSR
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Extreme Value 1-37

Theorem (Mean excess function)

Let X be a positive, unbounded random variable with an absolute
continuous distribution function F.

a) The mean excess function e(u) uniquely determines F:
- e(0) 1
F(x) = exp{—/ ——du}, x>0.
W= )

b) If F belongs to the MDA of the Fréchet distribution Gi o,
then e(u) is for u — oo approximately linear i.e.:

e(u) = =11 u{l+o(1)}.

The generalized standard Pareto distribution is the adequate
parametric distribution function for exceedances.

MSR




Extreme Value 1-38

Theorem (MDA of GEV distribution)
The distribution F is contained in the MDA of the GEV distribution

G, with the form parameter v > 0, exactly when for a measurable
function 3(u) > 0 and the GP distribution W, g it holds that:

sup [Fu(x) — W, gy (x)| — 0 for u— oo.
x>0

A corresponding result also holds for the case when v < 0, in
which case the supremum of x must be taken for those
0< W%ﬂ(u)(x) <1

MSR



Extreme Value 1-39

For the generalized Pareto distribution F = W, 5 it holds for every
finite threshold u > 0

x>0 if v>0

FU(X):W77/6+’YU(X) for {0<x<—ﬁ—u if v<0
—_— ’Y ’

In this case f(u) = 3+ v u.

MSR



Extreme Value 1-40

Estimation in extremes value models

Consider data xi, ..., X, generated under a distribution function
F". Thus each x; is the maximum of n values that are governed by
the distribution function F.
[J Gumbel: Go(x) = exp{—e™*}. One may use the following two
methods to estimate p and o of the Gumbel model:
GO,}L,O’ = exp{—e_(x_u)/g}_
» MLE go’#’o_ = %ef(xfﬂ)/aexp(_ef(xfﬂ')/o')
» Moment estimation: estimators i and ¢ are deduced from the
sample mean x and variance s,. For example, o, = \/65,,/71

MSR
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Extreme Value

[ Fréchet model: Gy o(x) = exp(—x~%) for @ > 0 and x > 0.
MLE can be used. Keep in mind that the left endpoint of

G1,q,0,0 is always equal to 0.
[J Weibull model: G340, for x <0, a <0 and o > 0.

MSR



Extreme Value 1-42

Estimation in Generalized Pareto Models

Let X;,i =1,...,n be the original data which are governed by a
cdf F.

Notation:

X1) £ ... < X(p) (increasing) order statistics
XM > > X" (decreasing) order statistics
e Xy =X, X =X,
We deal with upper extremes which are either
(] the exceedances yi, ..., Ym over a fixed threshold u, or

(] the k upper ordered values yi, ..., ym = X x(m),

MSR




Extreme Value 1-43
Definition (Empirical Mean Excess Function)

Let Ky(u) = {j < n; Xj > u} be the index set of observations over
the threshold value u, set N(u) = #K,(u) and define the empirical
distribution function as:

Fo(x) = 21X<x

straightforwardly, we get F,=1-F,.
The empirical mean excess distribution function is:

alw) = [ Fal)dv/Eofw)
1 1 O
— u j—U :W max J'_U,
o 2 050 = o ma(% .0}
j=1

JjEKn(u) J= .
MSR A




Extreme Value 1-44

For an exploratory data analysis one checks the graphs:

—k+1
K
PP-plot {F(X( )) n+1 }k K
B n —k+1
QQplot  {XW, FI(——)} L,
mean excess-plot {X(k),en(X k))}k:y
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PP plot of daily return of JPY/USD

Figure 7: Normal PP plot of daily returns of JPY/USD from 1978-12-01
to 1991-01-31. Q SFEjpyusd.xpl
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QQ plot of daily return of JPY/USD

X*E2

Figure 8: Normal QQ plot of daily returns of JPY/USD from 1978-12-01
to 1991-01-31. Q SFEjpyusd.xpl
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Empirical mean excess function

Figure 9: Empirical mean excess plot (solid line), GP mean excess plot for
Hill estimator (finely dashed red line) and moment estimator (dashed blue
line) of daily returns of JPY/USD from 1978-12-01 to 1991-01-31. Q

SFEjpyusd.xpl

MSR
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Nonparametric method

Set yi, ..., ym are the exceedances over u which are assumed to be
iid with cdf F,.

Fuy)=P(X—u>y|X>u)=F(y+u)/F(u), ie
F(x) = F(u) - Fy(x — u), u<x < 0. (9)
For large u and using Theorem (MDA of GEV distribution) we can

approximate F, with W, 3 by choosing v and 3 approximately.
F,(u) is replaced by

Fow) = "0 g M,

MSR




Extreme Value 1-49

Definition (POT Estimator)
The POT estimator for F(x), x large is defined by

R ~1/3
P = MW (x—u):'\'(“){ljﬂ(xﬁ_ ”)} i<x<oo,

n A n
where ﬁ,ﬁ are appropriate estimators for v, .

4 and ¢ may be computed via the ML method on the basis of the
excesses Y1,. .., Yn(u)-

MSR
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MLE of 4 and /3

Fix N(u) = m for the moment. Yi,..., Y}, iid Pareto W, 3,7 > 0,
with pdf:
1 _1_
ply)=2(1+ *) Lox>0.
B
Log-likelihood:

£(77ﬂ|yl77ym):_mlog,8 +]. Z|Og

MSR
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Theorem
For all v > —%, it holds for m — oo:

@

Vm(§ =7, Z —1) 5 Ny(0, D7),

14+~
-1
normal distributed. The estimators are also asymptotically efficient.

where D = (1 + ) ( 2_1 ) , i.e. (%, 3) are asymptotically

MSR
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Definition (POT Quantile estimator)

The POT quantile estimator X4 for the g-quantile x4 = F~l(q)is
the solution of F/*(%4) =1— g, i.e.

Tl ")}_Q - 1] |

Q SFEpotquantile.xpl

@

X :U+7
9 q

MSR
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Comparison to the empirical quantile

Choose u such that N(u) = m > n(1 — q), i.e. u= X1,

POT quantile estimator:

/Bm —fm
q X(m+1)+ {7(1_‘7)} -1 7
Empirical quantile: X5 = X([”(l_q)]+1),
Simulation studies show that
mg = argmin,, E(Xg.m — Xq)?

is bigger than [n(1 — q)] + 1. This means that the POT estimator
is better than X3 in MSE terms.

MSR
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Mean Square Error Dilemma

(] u too big: there are not enough exceedances Y and thus the
variance is too high.

(] u too small: the approximation by Pareto is not good enough
and thus a bias occurs.

MSR
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Theorem
Let Z be a W, g distributed random variable with 0 < v < 1, then
the mean excess function of Z is linear:

B+ yu
14+~

e(u) =E{Z —u|Z > u} = , u>0, for 0 <~y <1

Motivation: Choose u of the POT estimator such that the
empirical mean excess function is approximately linear.

MSR
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Copulae 2-2

Applications of Copulae for the Calculation of
Value-at-Risk

Value-at-Risk (VaR) computation: most VaR methods assume a
multivariate normal distribution of the risk factors.

Several pitfalls!

Copulae can be used to describe the dependence between two or
more random variables with arbitrary marginal distributions.
Backtesting often shows that copule produce more accurate results
than “correlation dependence”.

MSR



Copula, ae [latin]

1.

a) Band, Leine, Koppel;
b) Enterhaken

2. Verbindung

R
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Copulae 2.4

What is a copula?

A function that links a multidimensional distribution to its
one-dimensional margins.

The joint cumulative distribution functions (cdf) of d random
variables Xi,..., Xy with cdf F1,..., F4 is:

P(Xl < X1,... ,Xn < Xd) = C{P(Xl < Xl) (Xd < Xd)}
= C {Fl(Xl), ey Fd(Xd)}

MSR



Copulae 2-5
Copulae

Definition
A d-dimensional copula is a function C : [0,1]¢ — [0, 1]:
1. C(u1y .oy 0j—1,0, U041, ..., ug) = 0 (at least one u; is 0);
2. vue|0,1], C(1,...,1,u;,1,...,1) = u; (all coordinates except
u; is ].)
3. For each u < v €[0,1]¢ (u; < v)

Velu,v] = sgn(a)C(a) > 0

where a is taken over all vertices of [u, v]. sgn(a) =1 if
ay = uy for an even number of k’s and sgn(a) = —1 if
ay = uy for an odd number of k’s (d-increasing)

MSR




Copulae 2-6

Example
A 2-dimensional copula is a function C : [0,1]? — [0, 1] with the
following properties:
1. For every u € [0,1], C(0,u) = C(u,0) =0 (grounded)
2. Forevery ue[0,1], C(u,1)=uv and C(l,u)=u
3. For every (u1, u2), (v1, v2) € [0, 1] x [0, 1] with u; < vq and
up < vp: C(vy,va) — C(va, up) — C(ug, v2) + C(ug,u2) >0
(2-increasing)

MSR



Copulae 2.7

Copulae

[Sklar's theorem] For a distribution function F with marginals

Fx, ..., Fx,. There exists a copula C : [0,1]¢ — [0, 1] with

F(Xl,...,Xd): C{FXl(Xl)y--'aFXd(Xd)} (10)
If Fx,,...,Fx, arects, then C is unique. If C is a copula and
Fx,,...,Fx, are cdfs, then the function F defined in (1) is a joint
cdf with marginals Fx,,..., Fx,.
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Examples of Copulae

Product Copula: independence copula C =TT by

|_|(U1, ceey u,,) = H7:1 uj.

Two random variables X; and X5 are independent if and only if the
product of their distributions F; and F, equals their joint
distribution function H, H(x1,x2) = F1(x1) - F2(x2) for all

x1, X2 € R.
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Let X7 and X5 be random variables with continuous distribution
functions F; and F; and joint distribution function H. Then X3
and Xy are independent if and only if Cx,x, = l1. According to
Sklar's Theorem, there exists a unique copula C with

P(X1 <x1,X <x2) = H(x1,x) (11)
C{F(x), F2(x2)}
= Fi(x1) - Fa(x2)
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Gaussian Copula or normal copula:
d-dimensional with correlation matrix X

C(u; Z) = (Dz,d(dD_l(ul), - ,Cb_l(ud))

[J @, univariate standard normal distribution

[J ®5 4, d-dimensional normal distribution with correlation
matrix

u=(u,...,uq)"
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Gaussian Copula or normal copula:
Co(ut . ug) = Py {® (), ..., o (ug)}

® univariate standard normal cdf

®y d-dimensional standard normal cdf with correlation matrix W

(1 Gaussian copula contains the dependence structure

normal marginal distributions + Gaussian copula =
multivariate normal distributions

L] non-normal marginal distributions + Gaussian copula =
meta-Gaussian distributions
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Explicit expression for the Gaussian copula

C&(uy.. . ug) = Syp{®7Hu),..., o (ug)}
&~ H(uy) ! (ug) _
- / ' / Cortw TV gy
where
— T 0= d(x:
r_(rla"'vrd) » Uj = (XJ)
O C&(u1, ..., ug) allows to generate joint symmetric

dependence, but no tail dependence (i.e., there are no joint
extreme events)
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Example:
G qor [O11@ o)
Cp auss(u7 V) s / / fo(Xl,Xz)dXdel ) (12)

f, denotes the bivariate normal density function with correlation p
for n = 2.

1 x2 — 2px1 X0 + X2
fo(x1,x0) = v,(x1,x0) = ———ex {— ! 2 1.
ﬂ( ) p( ) 27Tﬂ 2(1 _ p2)

The functions ®1, ®, refer to the corresponding marginal cdf.
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For p = 0, the Gaussian copula becomes the product copula.

G 1 (v) (D;l(v)
Conss(y,v) = / ¢1(x1)dx1/ Pa(x2)dx

o0 —0o0

= uv= M(u,v) if p=0.

Replace (u, v) in (12) by (®(x1), P(x1)), one obtains:

CpGauSS{q)l(Xl),q)g(Xz)} = / / gop X1,X2 dX2dX1

= X1<X1,X2<X2)

which is the bivariate cdf of Ny [( 8 ) : < ;; f )} .
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Student’s t-copula:
d-dimensional with correlation matrix

C(u;X,v) = TL,,(Ty_l(ul), ce Ty_l(ud))

(] T,, univariate Student's t distribution with v degrees of
freedom and

(] Tsx,, d-dimensional standardized Student’s t distribution with
v degrees of freedom and correlation matrix &
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Frank Copula, 0 < 0 < o0

J -
[ {exp(—6u)) — 13

1 j=1
. = ——| 1
Co(ur, ..., ug) glog |1+ fop(_0) _1}7

(] dependence becomes maximal when § — oo

(] independence is achieved when 8 =0
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Gumbel-Hougaard copula, 1 <0 < o

d
Co(ug,y...,uq) =exp | — z(—loguj-)g

j=1

(] for 8 > 1 allows to generate dependence in the upper tail
(Schmidt, 2005)

(1 For # = 1 reduces to the product copula, i.e.
C@(U]_, ceny Ud) = Hj’le UJ'.
(] for 8 — oo, we obtain the Fréchet-Hoeffding upper bound:

6 .
Co(ut, ..., uq) —= min(uy,, ..., uq).
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Example:
Gumbel-Hougaard Copula:

Co(u,v) < exp [—{(—lnu)M(—lnv)@}lq . (13)

The parameter § may take all values in the interval [1, 00).For

0 =1, Gumbel-Hougaard Copula reduces to the product copula,
ie. Ci(u,v) =M(u,v) =uv. For® — oo, Gumbel-Hougaard

copula changes to Cy(u, v) oy min(u, v) e M(u,v), where M is
also a copula. This copula family is suited for bivariate extreme

value distribution.
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Ali-Mikhail-Haq copula, -1 <6 <1

Cg(ul, ey ud) =

1-60 (1—Uj)

(] independence is achieved when 6 =0

(] the Fréchet-Hoeffding bounds are not achieved
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Emil Julius Gumbel

born on July 18, 1891 in Miinchen, Germany
died on September 10, 1966 in New York, USA

Figure 10:

Born and trained as a statistician in Germany, he was forced to move to France
and then the U.S. because of his pacifist and socialist views. He was a pioneer
in the application of extreme value theory, particularly to climate and
hydrology. The Gumbel distribution is named after him.
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Maurice Fréchet [1878-1973]
born on September 2, 1878 in Maligny, Yonne, Bourgogne, France
died on June 4, 1973 in Paris, France

Figure 11:

French mathematician who made major contributions to pure mathematics as
well as probability and statistics. He also collected empirical examples of
heavy-tailed distributions. The Fréchet type of extreme value distribution is

named after him (this distribution has a heavy tail).
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Wassily Hoeffding

born on June 12, 1914 in Mustamaki, Finland ( U.S.S.R. since 1940)
died on February 28, 1991 in Chapel Hill, USA

Figure 12:

He spend his childhood in Tsarskoye Selo, Ukraine and in Denmark. In
1924 the family settled in Berlin. He entered Berlin University to study
mathematics in 1934. In 1946 he moved to the USA where he was
offered a position of a research associate at the Department of
Mathematical Statistics at the University of North Carolina at Chapel Hill
in 1947. He remained in Chapel Hill for the rest of his life.
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Wassily Hoeffding
Tsarskoe Selo was, of course, Wassily's hometown.

Kyna 6561 Hac Hu Opocuita cyip0uHa,

U cyactre xyna 6 HE TOBEIO,

Bcé Te sxe MbI: HaM LIeJIBIi MUp UY>KOMHA;

OrtedectBo Ham [{apckoe Cerno.

A.C.Ilymkun

For the whole world is a strange country,
Our motherland is Tsarskoe Selo.

A. Pushkin

Figure 13:
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M(u,v) = min(u,v) is a copula.
1. M(0,v) =0= M(u,0) Vu € [0,1], thus it is grounded.
2. M(u,1)=wvand M(1,v)=v
3. 11 < vy, ur < vy
> vy < upr M(vi,va) — M(va, u2) — M(up, va) + M(ur, u2)
=vi—-vi—u+u =0
>y < <vi<wvorvp—tp—u+u >0

yield 2-increasing property.
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Gaussian copula, marginals N~(0,1)

Figure 14: Contour plots of pdf from F(x1,x) = C(®(x1), ®(x2)) with Gaussian

copula.
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Gaussian copula. AMH copula
Frank copula Gumbe copula

e

Figure 15: Contour plots of pdf from F(xi,x) = C(®(x1), P(x2)) with Gaussian,
AMH, Frank and Gumbel-Hougaard copulae.
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Figure 16: Density from Gumbel-Hougaard copula, 6 = 2.
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Figure 17: Density from AMH copula, § = 0.9.
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Figure 18: Density from t-copula, p = 0.2, v = 3.
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Copulae 2-30
Important Properties of Copulae
Important Properties of Copulae
(] Fréchet-Hoeffding upper bound M: for any given copula C
one has C(u,v) < M(u,v) = min(u,v).

(] Fréchet-Hoeffding lower bound W: Two-dimensional
function W(u, v) o max(u+ v —1,0) < C(u, v).

Theorem
Let C be a copula. Then for every uy, up, vi,v» € [0,1]:

|C(U2,V2)—C(U1,V1)|§|UQ—U1|+|V2—V1’. (14)

MSR



Copulae 2-31

Theorem

Let C be a copula. For every u € [0, 1], the partial derivative

0 C/0 v exists for almost every v € [0,1]. For such u and v one
has

OS;VC(U,V)SI. (15)

The analogous statement is true for the partial derivative 0 C/0 u.
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Copulae

Example: partial derivative of the Gumbel-Hougaard copula

Cou(v) = ng(u v) = exp{ [(—In u)? + (—In v)e} 1/9} X

(—Inu)? +(—|nv)ﬂ991 (_'”:)H (16)

Co,u is a strictly increasing function of v for u € (0,1) and for all

0 € R where 6 > 1, . Therefore the inverse function C is well
defined. Numerical algorlthm has to be used for the calculatlon
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Theorem

Let X1 and X5 be random variables with continuous distribution
functions and with copula Cx,x,. If a1 and ao are strictly
increasing functions on Range X; and Range X5, then

Cor(X1) a2(X) = Cxy X, In other words, Cx, x, is invariant under
strictly increasing transformations of X1 and X>.
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Value-at-Risk with Copulae

For a sample {X:}/_,
1. specification of marginal distributions Fx;(x;; ;)
2. specification of copula C(u1, ..., uqs;0)
3. fit of the copula C
4

. generation of Monte Carlo data
XT+1NC{F1(X1), ey Fd(Xd); 0}
generation of a sample of portfolio losses L141(X741)

o

6. estimation of \737?(@), the empirical quantile at level « from
Lr1(X).
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For copulae C(+,0), 6 € ©, the density of X is given by:
f(Xl,. . .,Xd;51,...,(5d,9) =

= C{Fxl(Xl; 51), R FXd(Xd; 5d); 0} H 6(XJI 5j)

where

- 09C(u, ..., ug)
T Ouy...0uy

C(U]_, ey Ud)
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Inference for Margins

In the IFM (inference for margins) method, the log-likelihood
function for each of the marginal distributions

;
G(6) = Infi(xe 7). =1,....d
t=1

is maximized to obtain estimates (91, ...,d4)".
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The function
.
00, 61,..,00) = > [Inc{Fx,(x1e:01), - ., Fx,(xa,z: 6a); 0}]
t=1

is then maximized over # to get the dependence parameter
estimate #. The estimates Ojry = (01,...,04,0) " solve

(001851, ..., 00q/954,00/00) = 0
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Static Approach

DEM/USD and GBP/USD from 01.12.1979 to 01.04.1994

log returns are assumed to be X ;~N(0,0;), j =1,2

o; estimated from the data
- T =3719
copulae belong to the bivariate one-parametric Gumbel family
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log returns DEM/USD, GBP/USD

Y+E-2
9
T

1980 1985 1990
year

Y+E-2
9
T

1980 1985 1990
year

Figure 19: Log returns from DEM/USD (X;) and GBP/USD (X).
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Copulae

GBPIUSD*E-2

FX log returns

DEM/USD*E-2

2-40

Figure 20: Scatterplot from log returns DEM/USD (X;) and GBP/USD (Xz).
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Estimated density (nonparametric)

Figure 21: Kernel density estimator of the log returns from DEM/USD (red) and of
the normal density (black). Quartic kernel, h = 2.785n79-2,
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Estimated density (nonparametric)

Figure 22: Kernel density estimator of the log returns from GBP/USD (red) and of
the normal density (black). Quartic kernel, h = 2.785n79-2,
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Copulae 2-43
Dependence

GBPIUSD

-4 -2 0
DEM/USD

Figure 23: Standardised log returns DEM/USD and GBP/USD, fitted copula (§ =
1.4461) for T = 3719.
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Value-at-Risk

level a(x10?)
5 1 0.5 0.1

VaR(c) | -0.02436 -0.034115 -0.037921 -0.042611

Table 1: Estimated Value-at-Risk at 4 different levels, FX portfolio, w =
(1,1,
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Moving window

- DEM/USD and GBP/USD from 01.12.1979 to 01.04.1994

- sample size S = 3719, time window T = 250, for
s=T+1,...,5

- using {X¢}i o T

- log returns are assumed to be X; :~N(0,0;), j = 1,2

- oj estimated from the data

- copulae belong to the bivariate one-parametric Gumbel family
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Parameter 6; from marginal distribution

parameter* E-2
07 08 09
:

06

05

T T T T
1983 1986 1989 1992
time

Figure 24: Estimated parameter from Normal marginal distribution &; for log returns
from DEM/USD, T = 250.
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Parameter 6> from marginal distribution

parameter* E-2
07 08 09
:

05

1983 1986 1989 1992
time

Figure 25: Estimated parameter from Normal marginal distribution &5 for log returns

from GBP/USD, T = 250.
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A

Copula parameter 6

parameter

n ANPAENY

T T T
1983 1986 1989 1992
time

15

Figure 26: Gumbel dependence parameter § between DEM/USD and GBP/USD (stan-
dardised log returns). Estimated with Normal marginal distributions using IFM method,

T = 250 (constant value for T = 3719).
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min max mean median  std error
61.10% | 499 912 7.09 6.91 1.02
65.10% | 474 1046  6.95 6.69 1.31
0 1.11 225 1.48 1.42 0.24

Table 2: Descriptive statistics for estimated parameters 61, 2 and f.
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Minimal and maximal dependence

copula parameter

4 o’g

theta

15

( ‘\
\
m‘h“ﬂw’\ ‘*\J{ “‘M\i M‘ !
N A4

Figure 27: Minimal (blue), maximal (red) dependence parameter between standard-
ised log returns DEM/USD and GBP/USD.
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Minimal dependence

minimal dependence

GBP/USD

DEM/USD

Figure 28: Standardised log returns DEM/USD and GBP/USD at minimal depen-
dence (blue), fitted copula (f = 1.11).
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Maximal dependence

maximal dependence

GBP/USD

DEM/USD

Figure 29: Standardised log returns DEM/USD and GBP/USD at maximal depen-
dence (red), fitted copula (§ = 2.25).
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MC sample, minimal dependence

YIE2

Figure 30: Monte Carlo sample of random variables X~ C{®1(x1), ®2(x2); 8}, mini-
mal dependence (6 = 1.11).
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Transformed MC sample, minimal dependence

Figure 31: Monte Carlo sample of random variables transformed on the unit square,

minimal dependence (4 = 1.11).
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MC sample, maximal dependence

YE2
9

Figure 32: Monte Carlo sample of random variables X~C{®1(x), ®2(x2); 6}, maxi-
mal dependence (6 = 2.25).
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Transformed MC sample, maximal dependence

Figure 33: Monte Carlo sample of random variables transformed on the unit square,

maximal dependence (§ = 2.25).
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Backtesting

Evaluation:
(] different portfolio compositions are used

] the VaR a = 0.05, o« = 0.01, o« = 0.005 and o« = 0.001 is
calculated

[ exceedance for each P&L value smaller than VaR
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Value-at-Risk

VaR - Gumbel Copula

1983 1986 1989 1992
time

Figure 34: Value-at-Risk at levels a; = 0.05 (yellow), ap = 0.01 (green), az = 0.005
(red), and a4 = 0.001 (blue), P&L (black), w = (2,1) T, estimated at each time from
a Monte Carlo sample of 10.000 P&L values.
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Copulae
Value-at-Risk (0.05) and exceedances

VaR - Gumbel Copula

Figure 35: Value-at-Risk (yellow) at level o = 0.05, P&L (black) and exceedances

(red), & = 0.0573, w = (2,1)T. P&L samples generated with Gumbel-Hougaard

copula.
Al

MSR




2-60

Copulae
Value-at-Risk (0.001) and exceedances

VaR - Gumbel Copula

Figure 36: Value-at-Risk (blue) at level @ = 0.001, P&L (black) and exceedances

(red), & = 0.0069, w = (2,1)T. P&L samples generated with Gumbel-Hougaard

copula.
Al
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Copulae 2-61

level a(x107)
5 1 05 0.1
Portfolio w " empirical level &(x102)

1,1) 6.05 245 175 0.83
(1,2) 6.34 274 175 1.00
(2,1) 573 224 158 0.69
(2,3) 6.22 256 175 0.92
(3,2) 599 230 155 0.74
(-1,2) 1.64 0.37 020 0.11
(1,-2) 201 051 043 011
(-2,1) 444 149 0.95 0.40
(2,-1) 409 135 1.09 0.49

Table 3: Gumbel-Hougaard copula, empirical levels & for different FX port-
folios.
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Negative Log-returns

level a(x107)
5 1 05 0.1
Portfolio w " empirical level &(x102)

(6 525 1.82 1.15 0.63
(1,2) 539 1.64 124 0.60
(2,1) 527 179 127 0.66
(2,3) 530 1.70 121 0.66
(3,2) 527 178 126 0.66
(-1,2) 141 029 023 0.05
(1,-2) 2.74 098 061 0.28
(-2,1) 432 115 079 0.26
(2,-1) 449 167 124 0.69

Table 4: Gumbel-Hougaard copula on negative log-returns, empirical levels

& for different FX portfolios.
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DAX-Dow Jones portfolio

(1 DAX and Dow Jones from 02.01.1997 to 30.12.2004

(] sample size S = 2022, time window T = 250, for
s=T+1,...,S§

O using {Xe}io T

(] log returns are assumed to be Xj ~N(0,0}), j =1,2

[J o; estimated from the data

(] copulae belong to the bivariate one-parametric

Gumbel-Hougaard family
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level a(x107)
5 1 0.5 0.1
Portfolio w T empirical level &(x102)

) 428 120 084 045
(1,2) 380 1290 079 0.50
(2,1) 462 152 090 0.56
(2,3) 406 118 073 050
(3,2) 457 146 090 0.62
(—1,2) 507 152 084 0.39
(1,-2) 479 158 124 045
(—2,1) 496 146 095 0.39
(2,-1) | 496 174 112 062

Table 5: Gumbel-Hougaard copula, empirical levels & for different DAX
Dow Jones portfolios.
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Copulae

DAX - Dow Jones: Value-at-Risk (0.05) and exceedances

VaR - Gumbel Copula

P&L*E2

1998 2001 2004
time

Figure 37: Value-at-Risk (yellow) at level o = 0.05, P&L (black) and exceedances

(red), & = 038939, w = (1,2)T. P&L samples generated with Gumbel-Hougaard

copula.
Al
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Adaptive Copulae

In the local homogeneity modelling the copula parameter is a
piecewise constant function 6;

[J search for largest interval | = [n — m, n[ that does not contain
a change point,
91- = 0[, t e /

C1 within /, 8, can be estimated through

6, = argmax L;()
0

where L;(0) =) £(x;: 0).

i€l
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Determining /

The homogeneity interval / can be determined as follows

[] select a set Z of candidate intervals

(] take the smallest | € Z

[] test homogeneity in | against change-point alternative
[ if rejected at point v € [, | = [v, n]

(] if not rejected, choose larger /
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Change-point Test

(] 7(1) a family of internal points of /

[J each 7 € 7(/) splits the interval / into sub-intervals
J=[n—7,n[and JC=[n—m,n—T]

] likelihood ratio test statistic for change-point at 7
Tir = Ly(0)) + Lye(0) — Li(0r)

L] change-point test
I lv — max | I,
T
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If T;, > A\, reject homogeneity and
L] v is change-point time
[0 7= [v, n[ is the homogeneity interval

[ § = arg max L;(0) the estimated copula parameter.
0
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Critical Value ),

Adaptive procedure, type | error («): multiple testing problem
— for each /, define 8; and «; such that

Zﬁ/za

ez
ar= 3, B
I"eZ(l)

where Z()={I': I' € Z,I' C I}
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[ within /: change-point test at level o
[J n = 5000 Monte Carlo simulations of T;
J Asis (1 — ay)-quantile of computed test statistics T;
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Monte Carlo Simulation

Gumbel-Hougaard copulae simulated with parameter:

1 : 1<t<60
Ore=4¢ 5 : 61<t<120
1 : 121 <t<180

and
15 : 1<t<260

g _ ) 6 1 261<r<320
2= 3 . 321<t<380
1 : 381<t<440
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[J set of candidate intervals
I:{/k : Ik:[t—mk,t[}

my = [mock], k=0,1,2

[ [x] is the integer part of x
[ defining 3, as

o -1
o« 1 _a(l—c)
ﬁ’k_rm(Zm’ ) Tk

I=1
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[ defining oy, as
oy R~ (1 - c_(k+1)>

[J critical values )\, are obtained through Monte Carlo
simulation.

[J values set to mg =30, c =2 and a = 0.05
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<

Figure 38: Real parameter 61, (red) and estimated (blue).
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Copulae 2-76

Figure 39: Real parameter 05 ; (red), estimated (blue) and interval 7 (black).
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Tail Dependence 3-2

Measures of dependence

(] Pearson’s correlation coefficient p
L] Kendall's 7

(] Spearman’s rank correlation coefficient pg

Correlation p(X,Y) = % measures linear dependence
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Tail Dependence 3-3
Pearson’s p
Makes sense only for finite variance (for extreme value distributions

e.g. Fréchet it cannot be applied)
Correlation is not universal w.r.t measure transformation:

p(X,Y) # p(log X, log Y).

1 1
(X, Y) = {Var(X)Var(Y)} /2 /0 /0 (Clu, V)}dF ()G 2(v)

p depends on scale of X and Y.
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Tail Dependence

Risk behavior is determined by tails large losses that can occur
jointly.

Pearson’s correlation can not capture joint large loss events.

Tail dependence describes the limiting proportion that one margin
exceeds a certain threshold given that the other margin has already
exceeded that threshold.
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What is tail dependence?

For X = (X1,X2) " € R define
upper tail dependence as:

def

Ay = ”?fP {X1>F'(v) [ X% >FH(v)) >0, (17)

F,-_1 are the generated inverse cdfs:

x = FY(u) = sup{x: F(x) < u}

Ay = 0, upper tail independent.
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Tail Dependence 3-6

Similarly, define the lower tail dependence coefficient (TDC):
A im P (X1 < F7Yv) | X < FH(v)} (18)

Example
X ~ Np(0,X) or X ~ t(p)

Ay = limAu(v) & im2 P {X > FIHv) | X = FH(v)) . (19)
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lambda_U(v)
05

o

05 06 0.7 08 09 1
v

Figure 40: The function Ay(v) = 2-P{X; > F{}(v) | Xo = F, }(v)}
for a bivariate normal distribution with correlation coefficients p
—0.8, —0.6,...,0.6, 0.8. Note that A\y = 0 for all p € (-1,1).
STFtailOl.xpl

O 1|l
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lambda_U(v)
05

o

Figure 41: The function A\y(v) = 2-P{X; > F{*(v) | Xo = F,Y(v)}
for a bivariate t-distribution (3 df) with correlation coefficients p
-0.8, —0.6,...,0.6, 0.8. Q STFtail02.xpl
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Tail Dependence

The TDC can be expressed in forms of copulae.

F(x1, x2, ..

If X is continuous:

Au

o Xd) = C{F1(x1), ..., Fa(xa)}

1-2v+ C(v,v)
= |im ,
vl 1—v
_ |imM (20)
v|0 v
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TDCs for Archimedean copulae

Archimedean copula:

C(u,v) = Ty () + ()}

for some cts, decreasmg and convex 1, (1) = 0.

PH(t), 0<t<(0),
(t)_{ P(0) < t < 0.

For 1(0) = oc: wl U=yl
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Table 6: Various selected Archimedean copulae. The numbers in the first
column correspond to the numbers of Table 4.1 in Nelsen (1999), p. 94.

Number & Type

Parameters

®

(12)

(14)

(19)

Clayton

Ali-
Mikhail-Haq

Gumbel-
Hougaard

C(u, v)
max{(u79 +v=f — 1)71/9,0}
max [1 - {(1 - u)e +(1 - v)g}l/s,O]

exp [ {(~ log u)
e {o
O

6/ log (ee/“

+(~logv)?}1/9]

10 4+ (v —

S/V_e)

U 1)9}1/9] -1

1)9}1/9} —06

6 € [—1,0)\{0}

0 € [1,00)

6 e[-1,1)

6 € [1, c0)

0 € [1, c0)

6 € [1, 00)

6 € (0, 00)
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Table 7: Tail-dependence coefficients (TDCs) and generators 1y for various

selected Archimedean copulae. The numbers in the first column correspond
to the numbers of Table 4.1 in Nelsen (1999), p. 94.

Number & Type

Parameter 0

Upper-TDC Lower-TDC

(1) Pareto

(2

Ali-
® Mikhail-Haq

Gumbel-
Hougaard

(4)
(12)
(14)

(19)

[=1, 00)\{0}

(1, 00)

[-1,1)

[, o0)

[1, 00)
[L, o0)

(0,00)

0for6 >0 2-1/6
for6 >0
2 21/¢ 0
0 0
2 —2l/0 0
5 _ol/0 2—1/6
1/6 1
2 — 21/ 1
0 1

MSR
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Estimation of the TDC:
{Xi}y € R? j.i.d. the empirical copula is

Colu,v) = Fa(Fg, (), F3, (V)

n

Fin empirical cdfs of Xj;, j =1,...,n.

R (R Pe)

1 < : -
_ EZI(R,%)>n—k,R,(f2)>n—k)
j=1

Here Rr%) and R,(é) is the rank of Xl(j) and XZU) respectively.

MSR
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op2
op2

Log-returns DEM/USD
Simulated log-returns DEM/USD

002
002

-0.02 0 002 004 002 0 0.02 004
Log-returns FFRIUSD Simulated log-returns FFRIUSD

Figure 42: Scatter plot of foreign exchange data (left panel) and simu-
lated normal pseudo-random variables (right panel) of FFR/USD versus

DEM/USD negative daily exchange rate log-returns (5189 data points).
Q STFtail08.xpl
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Log-returns DEM/USD
Log-returns DEM/USD

0 005 o1
Log-returns FFRIUSD

Log-returns FFRIUSD

Figure 43: Lower left corner of the empirical copula density plots of real
data (left panel) and simulated normal pseudo-random variables (right
panel) of FFR/USD versus DEM/USD negative daily exchange rate log-
returns (5189 data points). @ STFtail09.xpl
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Lower TDC estimate:

A =2¢ (n n)— 2 IR <k, RY < k), (21

where k = k(n) — oo and k/n — 0 as m — oo,
From EVT:

i - 2 - al-51-5)

1 n ) .
= 2 R ko R0, (2)
J:

obtains the usual nonparametric bias-variance problem.

MSR
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03

- Log-returns Dt. Bank
o
TDC estimate

05 200
- Log-returns BMW Threshold k

Figure 44: Scatter plot of BMW versus Deutsche Bank negative daily
stock log-returns (2347 data points) and the corresponding TDC esti-
mate A{}) for various thresholds k. Chosen k ~ 90, TDC A = 0.31. @
STFtailO6.xpl
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0p6

op4

- Log-returns JPY/USD
o
TDC estimate
2

g2

001 0.02 0 100 200 300 400 500 600
- Log-returns DM/USD Threshold k

Figure 45: Scatter plot of DEM/USD versus JPY/USD negative daily ex-
change rate log-returns (3126 data points) and the corresponding TDC
estimate 5\8) for various thresholds k. Chosen k ~ 60, TDC 5\8) =0.17.
Q STFtail07.xpl
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VaR simulation study

Data (daily log returns)

D1: BMW-Deutsche Bank (1992-2001)
D2: FX DEM/USD and JPY/USD (1989-2001)
D3: FX FFR/USD and DEM/USD (1984-2002)

MSR
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Quantile  Historical Normal t-distribution t-copula &
VaR distribution t-marginals
Mean (Std) Mean (Std) Mean (Std)

0.01 480.93  397.66 (13.68) 464.66 (39.91) 515.98 (36.54)
0.025 347.42 33528 (9.67) 326.04 (18.27) 357.40 (18.67)
0.05 27041  280.69 (7.20) 242,57 (10.35) 260.27 (11.47)

Table 8: Mean and standard deviation of 100 VaR estimations (multiplied
by 10°) from simulated data following different distributions which are
fitted to the data set D;.
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Quantile  Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 155.15  138.22 (4.47) 155.01 (8.64) 158.25 (8.24)
0.025 126.63 116.30 (2.88) 118.28 (4.83) 120.08 (4.87)
0.05 98.27  97.56 (2.26)  92.35 (2.83)  94.14 (3.12)

Table 9: Mean and standard deviation of 100 VaR estimations (multiplied
by 10°) from simulated data following different distributions which are

fitted to the data set Ds.
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Quantile  Historical Normal t-distribution t-copula &
VaR distribution t-marginals
Mean (Std) Mean (Std) Mean (Std)

0.01 183.95  156.62 (3.65) 179.18 (9.75)
0.025 14122 131.54 (2.41) 124.49 (4.43)
0.05 109.94  110.08 (2.05)  91.74 (2.55)

179.41 (6.17)
135.21 (3.69)
105.67 (2.59)

Table 10: Mean and standard deviation of 100 VaR estimations (multiplied
by 10°) from simulated data following different distributions which are

fitted to the data set Djs.
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