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Motivation 1-1

Empirical data oriented perspective relates long memory to a high
degree of persistence of the observed autocorrelations.

They show significant autocorrelation up to very long lags, often
defined as "hyperbolic decay" .

Many economic and financial time series show evidence of neither
1(0) nor /(1).

This difficulty of distinguishing between stationarity and
non-stationarity is exacerbated by " nearly non-stationarity”.
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Motivation

Second loading series: Z2

Third loading series: Z3

Figure 1: Time series plots in levels of three loading series from a

DSFM fit for the DAX-Option analyzed from 1999/4/1-2003i2/25
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Motivation 1-3

A Dynamic Semiparametric Factor Model (DSFM):

L

Yej =D zami(Xej) + er, (1)
1=0

where zzo =1, j=1,...,Jt (t=1,..., T) is the number of IV
observations on day t, L is the number of basis functions.

Xtj is a two-dimensional variable containing moneyness and
maturity.

zy are time dependent factors or weights of the smooth basis
function my, for (/ =0,...,L). [Borak, Hardle and Fengler (2005)]
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Motivation 1-4
ACF-21 ACF22 ACF-23
Spectrumz1 Spectrum 22 Spectrum 23

Figure 2: Plots of the

sample autocorrelation functions with length 300 and

spectrum of the loadings series in levels.
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Motivation 1-5

Fractional differencing

(1- L)d)/t =&t (2)
] d =0, is a white noise process.
[0 d =1, is a random walk.
In random shock form,

ve = (1—L)"%,

1
= <1+dL+2ld(d+1)L2+...)et

1
= €f+d5t71+Ed(d+1)6t72+--'-

(2) allows for stong persistence in a time series.
[Granger and Joyeux (1980)]
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Motivation 1-6

Fractional integration

{yt}ieo is 1(d) if differenced d times to induce stationarity.

(1- L)d)/t = —dy: 1+ o d(d )yt +. (3)

(-1)1 :
+ H dd—1)...(d—j+ 1)y +
For 0 < d < 1, current values of y; are influenced not only by the
immediate past values but values from previous time periods.
Such series is said to have Long Memory.
Equation 3 is highly nonlinear in d = estimation of d is
problematic.
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Motivation

Long Range Dependence (LRD)

1-7

Series Memory Mean Variance ACF
reversion
—-05<d<0 fractional antipersistent v finite hyperbolic
integrated
d=0 stationary short finite exponential
0<d<0.5 fractional long finite hyperbolic
integrated
05<d<1 fractional long v infinite hyperbolic
integrated
d=1 integrated infinite X infinite linear

Ta ble 1: Time series long memory characteristics.
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Motivation 1-8

Long Range Dependence (LRD)

A stationary process X, t € N exhibit long-memory if the
correlation function p, behaves for kK — o as:

. plk)
kll—>moo cpk2d—1 ! @

k=1,2,...,c,>0and d € (0,0.5) is the memory
parameter.[Beran (1994)]

The correlations decay slowly with a hyperbolic rate and
consequently are not summable, lim7_ Z'Tsz lp(j)| = oo
T is number observations. [McLeod and Hipel (1978)]
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Motivation 1-9

Long Range Dependence (LRD)

A stationary process X; with covariances

Yk = cov(Xe, Xe4k), t € N exhibit LRD if the spectral
density F(\) = £ 3722 ety (k)

behaves for A — 0 as

lim N

A—0 ¢f ‘)\‘20’ a

(5)

= as k — 00, 7 are proportional to k291

summable. [Mandelbrot (1983)]

Long range dependence m

and hence they are not




Motivation 1-10

Research evidence

[Bollerslev and Mikkelsen (1996)]: Daily squared returns r? for
S&P500

[Lobeto and Savin (1998)]: Daily squared and absolute returns for
S&P500

[Liu 2000]: Daily squared returns for S&P500
2

[Giraitis, Kokoszka, Leipus (2001)]: Daily squared returns rf in
Pounds per US dollar exchange rate.

[Sibbertsen (2001)]: Daily absolute returns |r¢| for DAX.
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Motivation 1-11

Why fractional integrated processes?

They allow for substantially more flexibility than the extreme
assumption of unit root.

Their implication of the complete persistence of a shock.

The slow decay of shocks implied by the /(d) process and the
eventual adjustment to equilibrium.

Empirical success on modelling volatility of asset prices and power
transformation of returns.
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Overview

Motivation v
Detection LRD and Estimation
Data and Empirical Analysis

Models specifications and Estimation

AREE I o

Conclusion
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Detection of LRD and Estimation 2-1

Rescale Variance method: V/S
By centering of the KPSS statistic based on the partial sum of the
deviations from the mean.
2
1 1 (¢ -
V/S(q) = T25 2(Cl) |:Z (Z(Y YT)) T (ZZ(YJYT)> :|
k=1 j=1
o (6)
Sk = ZJk:l(YJ — Y1) are the partial sums of the observations and
63(a) =0 +250y (1= 15 ) 45> a < Tis the
[Newey and West (1994)] Heteroscedastic and autocorrelation

consistent estimator of the variance at truncation lag gq.
We reject /(0) e.g at 5% significance level if V' /S(q) > 0.1869

Giraitis, Kokoszka and Leipus (1998)
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Detection of LRD and Estimation 2-2

Lobato and Robinson (1998)

Based on limy, g+ f(\;) = CA;2?
:
tir = V/(m)= (7)
Co

with G = 2527, ¢KI(\) and ¢ = log(j) — L 357 log(i),
where

2
= 5i- ‘Zt 1 Zte’t’\’ is the periodogram estimated for

degenergte band of Fourier frequencies
A= 2%, j=1,...,m<<[T/2] with bandwidth parameter m.
Under null hypothesis of 1(0), t;g is asymptotically normally
distributed.
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Detection of LRD and Estimation 2-3

Log-periodogram Regression (GPH)

F(A) = C {4sin?();/2)} °
Estimate d with the spectral regression:
log {I(\;)} = logC — dlog {4sin®(\;/2} + loge; (8)
at harmonic frequencies.

A= 2% is the j Fourier frequency, with j € (I; m], I is a

trimming parameter discarding the lowest frequencies and m is a
bandwidth parameter. [Geweke and Porter-Hudax]
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Detection of LRD and Estimation 2-4

Semiparametric Gaussian estimator

Based on

lim f(\) = CA;%
A—0t

d is obtained by solving the minimization

Ccal — ; _ 1 - —2d 1(A))
{C,d}—argggmL(C,d)—mZ{log(C)\j )+ —=

2d
= CA
~ (9)
the estimator d is equal to:
5 . 1N 1(\) 2d
d= arg;nln log p. JZI C)\J-_2d — mjzl log ()

[Robinson (1995)]
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Data and Empirical Analysis 3-1

Unit root test statistics

Series | ADF-AIC p ADF-HQ p ERS-AIC b ERS-HQ b

Z -1.98 6 -224 2 3.78" 6 295" 6
[0.29] [0.19]

Z —3.36™" 8 —4.21"* 4 529 8 3.34" 4
[0.01] [0.01]

Zs3 —2.87*" 7 —2.87" 7 1.45%** 7  1.45%** 7
[0.05] [0.05]

Ta ble 2: ADF-AIC and ADF-HQ refer to ADF tests using AIC and HQ criteria respectively to estimate lag
length p. ERS-AIC and ERS-SC criteria used, refer to the lag length b chosen for the estimation regression of the
autoregressive spectral density estimator. Critical values for ADF test are —2.57 (10%), —2.86 (5%), and —3.44
(1%) (see, [MacKinnon (1991)]). The p-values for the ADF tests are given in brackets. Critical values for ERS test
(see, [Elliot, Rothenberg and Stock (1996)]) are 4.48 (10%), 3.26 (5%) and 1.99 (1%). *** , ** and * denote
significance at 1%, 5%, and 10% level respectively.
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Data and Empirical Analysis 3-2

Model independent tests for /(0) against /(d)

Z1 level
q 5 7 10 20 50
V/S | 222 168 124 0.68 0.32
LoRob | -0.80 -0.86 -1.11 -3.57 -10.62

Z2 level
V/S 1.99 154 115 0.65 0.31
LoRob | -1.11 -1.40 -2.04 -4.07 -11.05

Z3 level
V/S 1.82 138 1.02 0.57 0.27
LoRob | 0.13 -0.46 -1.34 -3.48 -9.87

Ta ble 3: Model independent tests for I(0) against I(d) for levels with the rescaled variance V' /S and semipara-
metric LoRob tests. For the V /S test, short-memory process is rejected at the 5% significance level if the statistic
is greater than the critical value, 0.1869. For the LoRob test, if the value of the test is in the lower tail of the
standard normal distribution, the null hypothesis of 1(0) is rejected against the alternative that the series displays
long-memory. If the value of the test is in the upper tail of the standard normal distribution, the null hypothesis 1(0)
is rejected against the alternative that the series is antipersistent.
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Data and Empirical Analysis 3-3

z1 re
q 5 7 10 20 50
V/S | 002 0.03 0.04 0.05 0.06
LoRob | -0.79 0.29 138 126 0.96

Z2 r
v/S | 0.01 0.01 0.01 0.02 0.03
LoRob | 056 1.07 176 241 1.48

Z3 re
Vv/S | 0.02 0.02 0.03 0.03 0.04
LoRob | 0.82 045 0.13 138 1.62

Ta ble 4: Model independent tests for 1(0) against I(d) for returns ry with the rescaled variance V' /S and
semiparametric LoRob tests. For the V/ /S test, short-memory process is rejected at the 5% significance level if the
statistic is greater than the critical value, 0.1869.
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Data and Empirical Analysis 3-4

Z1 [re|
q 5 7 10 20 50
v/s| 019 015 013 009 0.07
LoRob | 093 070 0.71 0.38 -1.89

Z2 | re|
V/S | 005 0.04 0.05 0.04 0.04
LoRob | 0.29 049 0.57 91 0.38

Z3 [re|
V/S| 072 064 056 044 0.28
LoRob | -0.93 -1.27 -2.10 -4.06 -6.82

Ta ble 5: Model independent tests for 1(0) against I(d) for loading absolute returns |r¢|, using the rescaled
variance V' /S and the semiparametric LoRob tests. For the V /S test, short-memory process is rejected at the 5%
significance level if the statistic is greater than the critical value, 0.1869.
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Data and Empirical Analysis

Fractional parameter Estimation

GPHA(d) | 1
bandwidth (b) [ Tlevel re [re]
33 0.92 -0.23 0.25
66 0.95 -0.16 0.17
132 0.91 -0.16 0.30
261* 0.97 -0.10 0.27
263 0.96 -0.10 0.28
GPH(d) 2
33 0.69 -0.57 0.01
66 0.87 -0.33 -0.06
132 0.75 -0.38 -0.05
261* 0.70 -0.39 -0.01
263 0.70 -0.39 -0.01
GPH(d) 3
33 0.90 -0.28 0.34
66 0.89 -0.24 0.34
132 0.84 -0.24 0.19
261* 0.85 -0.22 0.17
263 0.85 -0.22 0.17

3-5

Ta ble 6: Log periodogam estimates of d based on [Geweke and Porter-Hudax] GPH for levels, returns and

absolute returns. bopt = T5 = 261* represent the optimal number of frequencies (bandwidth) used for the

estimation [Hurvich et al.,(1998)].

Long range dependence
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Data and Empirical Analysis 3-6

RobWhittle(d) | z1
bandwidth (b) [ level re |re
33 0.82 -0.23 0.18
66 095 -0.11 0.28
132 090 -0.17 0.32
261* 0.93 -0.12 0.27
263 093 -0.12 0.27
RobWhittle(d) 2
33 0.96 -0.58 -0.066
66 0.76 -0.33 -0.03
132 0.67 -0.40 -0.02
261 0.67 -0.38 0.04
263 0.66 -0.37 0.03
RobWhittle(d) z3
33 078  -0.35 0.39
66 0.83  -0.24 0.34
132 0.83  -0.21 0.20
261 0.85 -0.17 0.17
263 0.85 -0.17 0.17

Ta ble 7: Semiparametric estimates of d for levels, returns and absolute returns based on [Robinson (1995)]

RobWhittle. Bandwidth b is chosen such that b = %, %, %, % where T is the sample size.

Buinsee
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Models specifications and Estimation 4-1

ARFIMA(p,d,q) model

O(L)(1 - L)%z = O(L)e: (10)
where £, ~ WN(0, 02).

O(L) =1— 1l — ¢pol® — ... p1LP

O(L) =1—61L—6,1% — ... 6,19
are AR and MA lag polynomials respectively with roots outside the
unit circle.
We consider all possible model up to an order ARFIMA(5,d,5) and
report the best fitted model for each series z;, z» and z3 in levels
and absolute returns using the AIC criterion.

[Doornik and Ooms (1999)]
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Models specifications and Estimation 4-2

Parameter Estimation

z1 z2 z3
ARFIMA ‘ (5,d,4) (2,d,1) (5, d,3)
d(ML) 0.13 ( 1.00) 0.45 ( 6.94) 0.01 ( 0.05)
b1 0.56 ( 0.99) 0.87 (10.60) 0.47 ( 1.78)
b2 -0.05 (-0.07) 0.05 ( 1.02) 0.26 ( 4.31)
®3 0.83 (11.84) 0.92 ( 4.39)
on 0.05 ( 0.06) -0.52 (-2.12)
b5 -0.44 (-1.08) -0.14 (-2.48)
61 0.34 ( 0.62) -0.85 (-10.9 ) 0.23 ( 2.25)
6> 0.29 ( 1.59) 0.13 ( 1.02)
03 -0.54 (-2.05) -0.80 (-6.54)
64 -0.53 (-1.15)
const. -0.1
loglL 1888.48 2761.45 3628.33
AIC -3752.97 -5510.90 -7234.66

Table 8 Maximum likelihood estimation of ARFIMA model for loading levels zy, zp and z3 from 04.01.199 to
25.02.2003. t-value of the estimated parameters in brackets, logl is the log-likelihood and (AIC) Akaike Information

Criterion.
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Models specifications and Estimation

4-3

z1 z2 z3
ARFIMA (5,d,4) (2,d,1) (5,d,3)
d(NLS) 0.29 (1.77) 0.57 ( 6.40) -0.15 (-1.98)
b1 0.59 (1 3.13) 0.81 ( 10.70) 0.07 ( 0.27)
b2 0.07 ( 0.31) 0.12 ( 1.89) 0.11 ( 2.04)
®3 0.29 ( 1.84) 0.91 (20.00)
o 0.50 ( 2.71) -0.04 (-0.16)
b5 -0.47 (-3.92) -0.07 (-1.38)
01 0.19 ( 0.94) -0.91 (-13.3) 0.83 ( 3.28)
(22 0.04 ( 0.29) 0.78 ( 3.15)
03 -0.17 (-1.37) -0.16 (-0.69)
04 -0.58 (-4.78)
constant -0.1
logl 1892.33 2765.53 3628.18
AlC -3760.67 -5519.07 -7234.37

Ta ble 9: Non-linear least squares estimation of ARFIMA model for loading levels zy1, z;1 and zy1 from
04.01.1999 to 25.02.2003. t-value of the estimated parameters in brackets, logl is the log-likelihood and (AIC)

Akaike Information Criterion.

Long range dependence
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Models specifications and Estimation 4-4

2 2 B
1] 3 1) H 1 @ 3 b
Spectum 1] ) ) _Seniz ) ) Spectrum 23

0 [} [ [ [] [ 1} [ [ ) [ [

Fi ure 3: A time plot of the Absolute return values of the loading series and spectrum from a DSFM for
DAX from 04.01.1999-25.02.2003.

Buinsee
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Models specifications and Estimation

Zt1 Zt2 Zt3
ARFIMA (2,d,2) (1,d,5) (1,d,2)
d(ML) 0.29 (1 4.96) -0.32 (-0.77) 0.24 (2.51)
b1 -0.81 (-4.57) 0.92 (10.80) 0.56 ( 2.51)
b2 -0.02 (-0.09)
61 0.64 ( 3.01) 0.02 ( 0.07) -0.36 (-1.83)
65 -0.19 (-0.93) -0.46 (-2.99) -0.27 (-7.15)
63 -0.09 (-0.96)
A -0.05 (-0.67)
05 -0.01 (-0.15)
const.
loglL 2381.19 2914.40 3926.66
AIC -4.57 -5.59 -7.54

45

Ta ble 10 Maximum likelihood estimation of ARFIMA model for absolute returns of the factor loadings z1,
z;1 and zy1 from 04.01.199 to 25.02.2003. t-value of the estimated parameters in brackets, logl is the log-likelihood

and (AIC) Akaike Information Criterion.

Long range dependence
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Models specifications and Estimation 4-6

Zt1 Zt2 Zt3
ARFIMA (2,d,2) (1,d,5) (1,d,2)
d(NLS) 0.31 (4.73) -0.21 (-0.71) 0.27 (2.34)
b1 -0.79 (-4.65) 0.89 ( 5.89) 0.57 (14.28)
b2 0.01 ( 0.02)
01 0.61 ( 2.90) 0.06 (-0.31) -0.40 (-2.11)
6, -0.22 (-1.09) -0.48 (-5.59) -0.28 (-8.40)
03 -0.06 (-0.61)
04 -0.03 (-0.40)
05 -0.00 (-0.07)
const. 0.3
logL 2381.53 2913.99 3927.21
AIC -4.57 -5.59 -7.54

Ta ble 1 1: Non-linear least squares estimation of ARFIMA model for absolute returns of the factor loadings z;1,
z;1 and zp1 from 04.01.1999 to 25.02.2003. t-value of the estimated parameters in brackets, logl is the log-likelihood
and (AIC) Akaike Information Criterion.

Buinsee
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Models specifications and Estimation 4-7

ARFIMA model forecasting

085 |

080

075

070

050

1999 2000 2000 2002 2003 2003

F|gU re 4: Let panel: actual series (red) and in-sample prediction (blue) of the ARFIMA(5, 0.13, 4), for levels

of z1 and a one-step ahead forecast (right panel)
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0251
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002

000

1999 2000 2001 2002

2003

2003

F|gU re 5: Left panel: actual series (red) and in-sample prediction (blue) of the ARFIMA(2, 0.45, 1) for levels

of z2 with a one-step ahead forecast (right panel)
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o075

l0.050
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0.005,

0,010

0,015

F|gU re 0: Left panel: actual series (red) and in-sample prediction (blue) of the ARFIMA(5,0.01, 3) for levels

of z3 and a one-step ahead forecast (right panel

Long range dependence
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Models specifications and Estimation 4-10
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Flgu re 7: Absolute returns forecast from ARFIMA(2,0.29, 2) for z1. Actual series (red) and in-sample
prediction (blue). Sample period from 04.01.1999 - 25.02.2003.

Buinsee
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Models specifications and Estimation 4-11

1999 2000 2001 2002 2003

Flgu re 8: Absolute returns forecast from ARFIMA(1, —0.32, 5) for z2. Actual series (red) and in-sample
prediction (blue). Sample period from 04.01.1999 - 25.02.2003.

Buinsee
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Models specifications and Estimation 4-12

Flgu re 9: Absolute returns forecast from ARFIMA(1,0.24,2) for z3. Actual series (red) and in-sample
prediction (blue). Sample period from 04.01.1999 - 25.02.2003.

Buinsee
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Conclusion 5-1

Conclusion

(] Factors of Implied volatility dynamics exhibit long range
dependence in levels and absolute returns.

(1 The class of fractional integrated model can better describe
the long-run behavior of the loading series in a flexible way.

(] For the factors of DSFM, long memory present an information
source for long range volatility forecast that should be useful
to regulators, derivative market participants and practitioners
whose success depend on the ability to reasonably forecast
stock market movements.
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Appendix 6-1

Unit root tests

The Augmented Dickey-Fuller (ADF) test refers to the regression
equation

p
Az = ¢z 1k + Z Az + Et ks (11)
i=1
where p is the number of lags of Az, by which the regression
equation (11) is augmented in order to get residuals free of
autocorrelation. The size of the test is better when p is large but
causes the test to lose power.
Under Hp, the unit root the parameter ¢ should be zero. Hence,
the t-statistic of the OLS estimator of ¢ is used as the ADF test
statistic.
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Appendix 6-2

The limiting distribution of the test statistic is nonstandard.
Critical or p-values have to be derived by the help of simulation
methods.

The critical values (Mackinnon, J.G 1991) are —2.57 (10%),
—2.86 (5%), and —3.44 (1%). Lag order p is determined by the
AIC, HQ, and SC information criteria.

(] ADF test suffers from low power, therefore may fail to detect
a stationary time series
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Appendix 6-3

Point-optimal unit root test: (ERS) Elliot, Rothenberg and Stock
(1996).

Superior to ADF in case of processes affected by conditional
heteroscedasticity.

Test is based on quasi-differences of z; , which are defined by

1 ift=1
Zy k — aZt—1 k ift > 1,

d(ztk|a) = {
a is the point alternative against which the null of a unit root is
tested. Following the suggestion of Elliot et al. (1996), we use
a=3a=1-—7/T since only a constant term is considered.
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Appendix 6-4

Let & be the residuals from a regression of the time series on a
quasi-differenced constant and let S(3) and S(1) be the sums of
squared residuals for the cases a = 3 and a = 1 respectively. Then
the test is defined by

ERS = (5(a) — aS(1)) /s, (12)

where @y, is the spectral density estimator of &; at frequency zero.
We apply the autoregressive spectral density estimator as proposed
by Elliot et al. (1996).

Critical values are 4.48 (10%), 3.26 (5%) and 1.99 (1%).
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