Modeling of salmonella-prevalence in the case of chicken

Alena Myšičková Wolfgang Härdle

Institute for Statistics and Econometrics Humboldt-University at Berlin

Introduction

Data and Materials

Statistical Analysis

Results

Conclusion

Prevalence

"In medical statistics or epidemiology prevalence or basic component describes the frequency of the appearence of a certain disease (or a certain symptom) in a given population."

This work studies:

prevalence of salmonella infection in the population of german chicken

aim: analysis of the prevalence depending on the properties of the farms

Data

Data from the Bundesinstitut für Risikobewertung, Berlin

L. Ellerbroek, H. Wichmann-Schauer, M. Haarmann: Analysis of the prevalence of salmonella in the case of German poultry (02/2001)

Salmonella-Prevalence in the Case of Chicken -

Data and Materials

Time and place of measuring

- ⊡ 5 regions in Germany (A, B, C, D, E)
- Year 1999
- 🖸 66 farms
- ⊡ 189 flocks
- 1 flock = whole population in a barn

Data Collection

Farms (populations of mast-poultry) divided into two groups: large farms: yearly production \geq 20 000 chicken small farms: yearly production < than 20 0000 chicken Are there significant differences between large and small farms?

2-3

Samples have been taken at three different places:

dirt-samples – taken from the employees ´ protection boots after they walked through the barn – whole area of the barn is represented

neck-skin-samples – taken from single chicken during slaughtering cloaca-pad-samples – taken from the cloaca during slaughtering, only in the case of flocks on large farms
Today (a tanin, intermediate results of the applying of the

Today's topic: intermediate results of the analysis of the neck-skin-samples

Pooled Samples

Withdrawn material has been pooled and analysed in five laboratories.

One pooled sample = 5 chicken

Alltogether 976 pooled samples:

	neck-skin-samples
large farms	840
small farms	136
Sum	976

Statistical Analysis

Aim:

- ☑ Modeling of Salmonella-Prevalence
- Dependency from other aspects (properties of the farms, regions, ...)
- \Rightarrow Method: Generalized Linear Models

Properties of the Farms

Possible influencing factors:

- size of the farm
- category of hygiene of the farm
- ⊡ other animals/poultry on the farm
- pest control
- ⊡ distance to other farms
- week of withdrawal

Model

considers a random variable Y_i , $i = 1, \dots 976$:

 $Y_i = \begin{cases} 1, & i - \text{th pooled sample salmonella-positive} \\ 0, & i - \text{th pooled sample salmonella-negative} \end{cases}$

Probability for sample *i* to be salmonella–positive:

$$\pi_i = P(Y_i = 1)$$

 $1 - \pi_i = P(Y_i = 0)$.

Salmonella-Prevalence in the Case of Chicken -

Code conversion of the variables

- period of withdrawal: variable with numerous categories (weeks) → variable with two categories (summer; other seasons)
- \boxdot distance: metric variable \rightarrow variable with two categories (more or less than 1km)
- Category of hygiene: large farms I, II, III; small farms I, II
 → category of hygiene: large farms: category I + II → group
 1, category III → group 2; small farms: same classification

explanatory variables:

- X_1 : region (5 categories)
- X_2 : size of the farm (1 = small farms, 2 = large farms)
- X_3 : other poultry on the farm (1 = yes, 2 = no)
- X_4 : active pest control (1 = yes, 2 = no)
- $X_{5}\,$: distance to the next chicken farm (1 = < 1000m, 2 = \geq 1000 m)
- X_6 : period of withdrawal (1 = spring/fall, 2 = summer (june september))
- X_7 : category of hygiene (2 categories)

Question:

To which extent is salmonella-prevalence influenced by the explanatory variables?

Which of the factors do have significant influence on the prevalence?

Answer by means of the logit-model

Logit-Model

Regression Model of the form:

$$\mathsf{E}\, \mathsf{Y} = \mathsf{P}(\mathsf{Y} = 1) = \pi = \mathsf{G}(\mathsf{X}^\top\beta)$$

- \bigcirc E Y average of the response-variable Y
- distribution of the response-variable Y out of the family of exponential distributions (Bernoulli-distribution)
- \odot X vector of explanatory variables

i β − vector of unknown parameters i G(•) − known **link-funktion**

using the logistic distribution function as link-funtion:

$$G(X_i^{\top}\beta) = rac{e^{X_i^{\top}\beta}}{1+e^{X_i^{\top}\beta}} = \pi_i$$

$$\lim_{\eta \to \infty} G(\eta) = 1$$
$$\lim_{\eta \to -\infty} G(\eta) = 0$$

Salmonella-Prevalence in the Case of Chicken -

The inverse of the link-funktion:

$$X_i^{ op}eta = \log\left(rac{\pi_i}{1-\pi_i}
ight) = g(\pi_i)$$

$$rac{\pi_i}{1-\pi_i} = ext{odds} ext{ (chance) of success} \ \log\left(rac{\pi_i}{1-\pi_i}
ight) = \log ext{ odds}$$

Salmonella-Prevalence in the Case of Chicken -

Interpretation of the Parameters

non-linear correlation between π_i and $X_i^{\top}\beta$

- □ $\hat{\beta}_i$ change in log odds, only in the direction of the change of the probability of success π_i
- exp(β̂_i) − change of the odds-ratio, if X_i increases by one unit given all other X-variables being fixed then they change by a multiplicator exp(β̂_i)

Estimation of the GLM model by ML method

log-likelihood-function:

$$l(\pi, \mathbf{y}) = \log f(\mathbf{y}, \theta) = \sum_{k} \log f_k(y_k, \theta_k) ,$$

 $f(\mathbf{y}, \theta)$ – density function of \mathbf{y} for a fixed parameter θ .

Salmonella-Prevalence in the Case of Chicken -

Use the link function $G(X_i^{\top}\beta)$, which replaces π by β . maximize $I(\beta, y)$:

$$\boxdot \ \frac{\partial I}{\partial \beta_i} \stackrel{!}{=} 0$$

 solve the non-linear equation iterative with the Fisher Scoring Method

in the logit-model:

$$f_k(y_k,\pi_k)=\left(egin{array}{c} n_k\ y_k\end{array}
ight)\pi_k^{y_k}(1-\pi_k)^{n_k-y_k}$$

Salmonella-Prevalence in the Case of Chicken

Results

bivariate analysis of explanatory variables – tables and graphs X_2 = size of farm:

	pooled samples			
	negative	positive	sum	
small farms	126	10	136	
	92.6%	7.4%	100%	
large farms	501	339	840	
	59.6%	40.4%	100%	

Results -

 $X_1 = region$:

pooled samples				
negative	positive	sum		
108	156	264		
40,9%	$59, \mathbf{1\%}$	100,0%		
148	38	186		
79,6%	20 , 4%	100,0%		
48	6	54		
88,9%	$11, \mathbf{1\%}$	100,0%		
202	34	236		
85,6%	$\pmb{14,4\%}$	100,0%		
121	115	236		
51,3%	48 , 7%	100%		
	pooled s negative 108 40,9% 148 79,6% 48 88,9% 202 85,6% 121 51,3%	pooled samplesnegativepositive10815640,9% 59 , 1% 1483879,6% 20 , 4% 48688,9% 11 , 1% 2023485,6% 14 , 4% 12111551,3% 48 , 7%		

 X_6 = period of withdrawal:

pooled samples				
	negative	positive	sum	
spring/fall	265	173	438	
	60,5%	$\boldsymbol{39,5\%}$	100,0%	
summer	362	176	538	
	67,3%	$\boldsymbol{32,7\%}$	100,0%	

Salmonella-Prevalence in the Case of Chicken ------

X_7 = category of hygiene:

	pooled samples			
	negative	positive	sum	
category 1	359	273	632	
	56,8%	43 , 2%	100,0%	
category 2	268	76	344	
_	77,9%	$\boldsymbol{22,1\%}$	100,0%	

Salmonella-Prevalence in the Case of Chicken ------

Results

logit-model with 7 exogeneous variables

variable	\hat{eta}_i	s.e.	p–value	$exp(\hat{eta}_i)$
constant	-2.89	1.05	0.006	0.06
region E (Ref.)			0.000	1
region(A)	-0.40	0.24	0.090	0.67
region(B)	-1.62	0.29	0.000	0.20
region(C)	-2.37	0.50	0.000	0.01
region(D)	-2.21	0.27	0.000	0.11
size of farm	2.44	0.38	0.000	11.46
other poultry	-0.08	0.38	0.823	0.92
pest control	0.29	0.20	0.140	1.34
distance	0.23	0.18	0.201	1.26
period of w.	-0.49	0.17	0.003	0.62
cat. of hyg.	-0.81	0.25	0.001	0.45

4-7

Results ·

logit-model with 4 exogeneous variables (using LR-backwards-selective method)

variable	$\hat{\beta}_i$	s.e.	p–value	$exp(\hat{\beta}_i)$
constant	-2.50	0.80	0.002	1,26
region E (Ref.)			0.000	1
region(A)	-0.37	0.22	0.104	0,67
region(B)	-1.67	0.25	0.000	0,20
region(C)	-2.45	0.48	0.000	0,09
region(D)	-2.09	0.25	0.000	0,11
size of farm	2.36	0.36	0.000	11,46
period of w.	-0.51	0.16	0.002	0,92
cat. of hyg.	-0.66	0.22	0.003	1,34

4-8

Conclusion

4 factors with significant influence on prevalence:

⊡ size of farm, region, category of hygiene, period of withdrawal salmonella prevalence only influenced by some of the factors (about 30% of the variance explained by the model) → salmonella bacteria to a certain extent always appear

Outlook

This work in the context of a bigger project: Dynamic analysis of salmonella prevalence in

- 🖸 barn
- slaughterhouse
- during transport
- ⊡ household (kitchen)
- 🖸 human being

