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e Model and estimate implied volatility surface (IVS) for trading,
hedging of derivatives positions and risk management, cooperation
with Michal Benko and Matthias Fengler.

e Calibrate IVS and price option using fast Fourier transform (FFT),
cooperation with Szymon Borak and Kai Detlefsen.

e Estimate value at risk (VaR) based on local homogeneous volatility
and generalized hyperbolic (GH) distribution, cooperation with Ying

Chen (1) and Seok-Oh Jeong

e Skewness and kurtosis trading strategies, cooperation with Oliver
Blaskowitz.
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Implied Volatility String Dynamics

Implied Volatility String Dynamics

Black and Scholes (1973) (BS) formula prices European options under
the assumption that the asset price S; follows a geometric Brownian
motion with constant drift and constant volatility coefficient o

CB5 = 8,®(dy) — Ke "™ ®(dy) ,
In(S:/K)+(r+i0?)r

where d; o = —~ ®(u) is the CDF of the standard
normal distribution, r a constant interest rate, 7 =17 — ¢ time to

maturity, /K the strike price.
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Implied Volatility String Dynamics

Implied volatilities

Volatility & as implied by observed market prices Cy:

&: C,—CP5(S,,K,7,7,6)=0.

Unlike assumed in the BS model, 6,(K, 7) exhibits distinct,
time-dependent functional patterns across K (smile or smirk), and a
term-structure 7' — t: Thus 64(K, 7) is interpreted as a random

surface: the implied volatility surfaces (IVS) .
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Implied Volatility String Dynamics
Why implied volatilities as a state variable?

1. easily observable,

2. shocks are highly correlated through K, 7, the underlying asset, and
across markets

3. practitioners quote options in ‘terms of implied volatilities’,

4. trading rules and strategies can be defined through implied
volatilities,

5. tradable through volatility contracts, e.g. VDAX, VIX.

6. option markets behave increasingly self-governed, Bakshi et al.
(2000); Cont and da Fonseca (2002).
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Implied Volatility String Dynamics

Purpose

A modeling strategy in terms of a semiparametric factor model
(SFM) for the IVS Y; ; (i = day, j = intraday):

L
Yij =mo(Xij) + Y Bumi(Xij) (1)
=1

Here m;(X; ;) are smooth factor functions and (3;; a multivariate

loading time-series.

Key features:
e modeling and estimation in one approach

e suitable for IV data measured on a degenerated design.

Statistics in finance and computing



Implied Volatility String Dynamics

Degenerated Design of IV Data
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Figure 1. Left panel: call and put implied volatilities observed on
20000502. Right panel: data design on 2000502; ODAX, difference-
dividend correction according to Hafner and Wallmeier (2001) applied.
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Implied Volatility String Dynamics

Model fit 20000502 Semiparametric factor model fit 20000502

Figure 2: Traditional model (Nadaraya-Watson estimator) and semi-
parametric factor model fit for 20000502. Bandwidths for both estimates
hi1 = 0.03 for the moneyness and hy = 0.08 for the time to maturity

dimension.
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Implied Volatility String Dynamics

The semiparametric factor model

Consider the generalized, additive model for the IVS:
L
Yii =mo(X;, )+ Zﬁi,lml(Xi,j) 7 (2)
=1

Y; ; is log —implied volatility,
i denotes the trading day (i = 1,...,1),
7 =1,...,J; is an index of the traded options on day <.

my(-) for { =0,..., L are basis functions in covariables X ;,

and [3; are time-dependent weights.
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Implied Volatility String Dynamics

For my(-) for [ =0,..., L consider two different set-ups in X ;:

(A) X, ; is a two-dimensional vector containing time to maturity 7;

and forward moneyness, k; ; = % I.e. strike K divided by
1,7

futures price F'(¢; ;)
(B) asin (A) but with one-dimensional X ; that only contains &, ;.

Here, we focus on (A).
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Implied Volatility String Dynamics

Nadaraya-Watson smoothing

[} . AN - [ - d f [ [ .
We define the estimates of m; and (3;; with ;¢ = 1, as minimizers of:

I J L 2
ZZ/ {Y;J - Zﬁi,zﬁll(u)} Kn(u — X; ;) du, (3)
[=0

i=1 j=1
where K, denotes a two dimensional product kernel,

Kp(u) = kp, (u1) X kp,(u2), h = (hy,hs) with a one-dimensional
kernel k& (v) = h=tk(h~1v).
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Implied Volatility String Dynamics

Other representations

Replacing in (3) m; by m; + dg with arbitrary functions g and @;,l by
Bi,l + 0 and taking derivatives with respect to 0, the minimizer can be
writtenas 1 <! < L,1 << I

I L
> JiBivdi(u) = Z Bi.vr B i (w) i (w), (4)

1=0
where
1 &
@(U) — 7 Kh(’u Xz,y)>
’szl
1 &
gi(u) = A Kh(U_X,J) J
’szl
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Implied Volatility String Dynamics

Algorithm

The algorithm exploits equations (4) and (5) iteratively:

1. for an appropriate initialization of
O i=1,....I, 1=1,....L

l,2 7

get an initial estimate of M%) = (Mg, ...,mr)"
2. update ﬁi(l), v =1,...,1,
3. estimate m(1).
4. go to step 2.

until minor changes occur during the cycle.

Optimization implemented in XploRe, @, Hirdle et al. (2000).
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Implied Volatility String Dynamics

Data Overview

Min. Max. Mean Median Stdd. Skewn. Kurt.

T.tomat. | 0.028 2.014 0.131 0.083 0.148 3.723 23.373
Moneyness. | 0.325 1.856 0.985 0.993 0.098 -0.256  5.884
1V 0.041 0.799 0.279 0.256 0.090 1.542  6.000

Table 1: Summary statistics on the data base from 199801 to 200105.
Source: EUREX, ODAX, stored in the CASE financial database MD *base.

Total number of observations:
4.48 million contracts,

J; = 5200 observations per day
total time series has I ~ 860 days.
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Implied Volatility String Dynamics

Estimation Results

We fit the model for L = 4, i.e. there is

- one invariant basis function mg and

AN

- 4 ‘dynamic’ basis functions mq, ..., My

- 4 time series of {f;;}/_; withl=1,...,4

Data: German DAX Index option implied volatility

for 1998 - 05/2001 (EUREX).

Yi; € In{6(k,7)}

CASE financial database MD*base

Statistics in finance and computing
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Implied Volatility String Dynamics
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Figure 3: Invariant basis function mq
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Implied Volatility String Dynamics
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Figure 4: Invariant basis function mo
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Implied Volatility String Dynamics
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Figure 5: Invariant basis function ms
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Implied Volatility String Dynamics
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Implied Volatility String Dynamics

Unit Root Tests

Coefficient | Test Stat. # of lags
B, 2,67 3
By 2.97 .
Bs -6.30 .

Table 2: ADF tests on Bl to 33 for the full IVS model, intercept included
in each case. Third column gives the number of lags included in the ADF
regression. MacKinnon critical values for rejection of the hypothesis of a

unit root are -2.87 at 5% significance level, and -3.44 at 1% significance
level.

Statistics in finance and computing

-18



Calibration of IVS and Option Pricing via FFT

Calibration of IVS and Option Pricing via Fast
Fourier Transform (FFT)

Derivatives are financial products whose value depends on some
underlying instrument, e.g. a stock.

Which models for the underlying instruments can replicate well
derivative prices observed on real markets?

Statistics in finance and computing
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Calibration of IVS and Option Pricing via FFT 3-2

Calibration

Given a model for the underlying price process (S;) we estimate
parameters that minimize the distance between the IVS of the model
and an IVS observed on the market.

e numerical minimization algorithms
e many evaluations of the function to be minimized

e fast algorithm for computing the option prices of the whole IVS
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Calibration of IVS and Option Pricing via FFT

FFT versus Monte Carlo (MC)

FFT time: 0.015 sec.
MC time: 36.531 sec. (5000 simulations, 500 time steps)

FFT versus MC

15

10

prices*E2

T T T T T T
5 10 15 20 25 30 35
1000+strikes* E2
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Calibration of IVS and Option Pricing via FFT

Option pricing with FFT

Carr and Madan (1999) proposed a method to price option based on the
fast Fourier transform (FFT).

Motivations for the use of FFT:
e considerable power of the FFT

e Fourier transform of the (log) price process is known for many
models

e FFT allows to calculate prices for a whole range of strikes

Statistics in finance and computing




Calibration of IVS and Option Pricing via FFT

The value Cp(k) of a T-maturity call with strike K = exp(k) is given by

Cr(k) = /koo e (e — eM)qr(s)ds

where g7 is the risk-neutral density of the log price St.

However C'r is not square-integrable we cannot apply the Fourier
inversion directly. Thus we consider the modified function

cr(k) = exp(ak)Cr(k)

which is square-integrable given a suitable a > 0.
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Calibration of IVS and Option Pricing via FFT

The Fourier transform of ¢ is defined by
Wy (v) = / e er(k)dk.

As cr is square-integrable we can get back the call price by applying the
inverse Fourier transform

Cr(k) = exp(27—Toz/<z)/O e Wrpr(v)dv.

The Fourier transform 1 can be expressed as

e " ¢(v— (a+ 1)i)
a? 4+ a—v24+i(2a+ 1)v

Yr(v) =

where ¢ is the Fourier transform of gr.
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Calibration of IVS and Option Pricing via FFT

Pricing calls with different strikes

Consider now N calls with maturity 1" and strikes

1
ku:—§N)\+)\u, u=20,...,N—1

where XA > 0 is the regular spacing size between each two log strikes.

The numerical approximation of the call price is

exp(—aky,) ~—

Cr(ky) ~ Z e_i’\”j“ei%N)‘“ij(vj)n, u=20,...,N —1.

s 3
7=0

Statistics in finance and computing



Calibration of IVS and Option Pricing via FFT 3-8

This representation allows a direct application of the FFT which is an
efficient algorithm for computing the sum

N-1
_j2m
Wi = g e ’N”kxj, k=0,...,N —1.
7=0

The parameters A\, n, N only need to satisfy the constraint

21
AN = N
If we choose a small 7 in order to obtain a fine grid for the numerical
integration, then we get call prices at relatively large strike spacings, i.e.
with few strikes lying in the desired region near the stock price.
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Calibration of IVS and Option Pricing via FFT 3-9

Disadvantages of FFT:
e instable for fixed FFT parameter a,n, N
e applicable only to European options
Modifications:

e Numerical integration with the Simpson rule instead of the trapezoid

rule.
e Centralizing of the grid of log strikes around the spot price.

e Use of different modifications of the call price function C'r.
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Calibration of IVS and Option Pricing via FFT 3-10

Calibrate Bates model

Bates model

d
% —  pdt + /V,dWE + dZ,
t
AV, = &(n—Vy)dt + 0/ VidW)
E(dWYdw?) = pdt

where S; underlying, 1 drift of underlying, V; stochastic volatility, ¢ rate
of mean reversion, 1 average level of volatility, # volatility of volatility, p
correlation of Wiener process W,V for volatility and Wiener process W,°
for underlying. Z; is compound Poisson process with log-normal
distribution of jumps:

In(1+ k) ~ N(In(1 + k) — 62, 6%)
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Calibration of IVS and Option Pricing via FFT

3-11

The log-price X; = In S} follows the dynamics:

_ 1 N
dX; = (r— Ak — SVi)dt + VVidWP + dZ,

where Z; is compound Poisson process with intensity A and normal
distribution of jump size.

Characteristic function of this process is given and FFT method could be
applied.
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Calibration of IVS and Option Pricing via FFT 3-12

Parameters to estimate:
e ) intensity of jumps
e k part of the mean of jumps
e 0 deviation of jumps
e ¢ rate of mean reversion
e 1) average level of volatility
e ( volatility of volatility
e p correlation of Wiener processes

e V4 initial volatility

Statistics in finance and computing



Calibration of IVS and Option Pricing via FFT

Minimizing function

CcM prM

2 (4 1

f(p) _ Z (CZJW - CiB(p))QISSK 4+ Z (PZM — PiB(p))2IS>K

where p is the set of parameters, C, PM call/put option prices from
the market, CZ(p), PP (p) option prices calculated with Bates model
with parameters p and I is the indicator function.
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Calibration of IVS and Option Pricing via FFT 3-14

Estimated parameters of the Bates model:

e )\ =0.008
o k= —0.08
e 5 =1.6012
o {=28.1262
e 7 =0.037
e =—0.5T79
e /=152
e Vp =0.016

Statistics in finance and computing



Calibration of IVS and Option Pricing via FFT 3-15

Time to maturity T=0.3288

|

0.1

2000 2500 3000 3500
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VaR based on GH distribution and adaptive volatility

VaR based on GH distribution and adaptive
volatility

Figure 6: Graphical comparison of densities (left) and log-densities (right) of daily
DEM/USD FX rate from 1979/12/01 to 1994 /04 /01 (3720 observations). The kernel
density estimate of the standardized residuals (line) and the normal density (dots) with

h = 0.57 (rule of thumb).

~
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VaR based on GH distribution and adaptive volatility

Risk Management Models

Heteroscedastic model
Rt — O¢&¢, t = 1,2,"'

R: (log) return, o; volatility, €; identically and independently distributed
(i.i.d.) stochastic term.
Typical assumptions

1 The stochastic term is normally distributed, €; ~ N(0, 1).

2 A time homogeneous structure of volatility:

— ARCH model, Engle(1995)

— GARCH model, Bollerslev(1995)
— Stochastic volatility model, Harvey, Ruiz and Shephard(1995)
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VaR based on GH distribution and adaptive volatility 4-3-1

Improvements

The generalized hyperbolic (GH) distribution family can well replicate
the empirical distribution observed in financial markets:

e Hyperbolic (HYP) distribution in finance, Eberlein and Keller(1995),

e GH distribution + (parametric) stochastic volatility model, Eberlein,
Kallsen and Kristen(2003).

A time inhomogeneous model gives an appropriate volatility estimation.

e Adaptive volatility model 4+ normal distribution, Mercurio and
Spokoiny(2003).

Combine A & B!
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VaR based on GH distribution and adaptive volatility

Generalized Hyperbolic (GH) Distribution
X ~ GH with density:

(v/0)} By {‘W‘SQ i (x_“)Q} . eBla—p)

fau(z; N\, o, 8,0, 1) = \/%K)\ (57) {\/52 M)Q/a}l/Q—A

Where 72 = o — 32, K(-) is the modified Bessel function of the third
kind with index A:

1

Ki(z) = 5 /OOO y/\_le:cp{—g(y—ky_l)} dy

Furthermore, the following conditions must be fulfilled:
e 0>0,18<a ifA>0
e 0>0,|fl<a iftA=0
e 0>0,18/<a ifA<O

Statistics in finance and computing



VaR based on GH distribution and adaptive volatility

Subclass of GH distribution

Motivation: the four parameters 11,0, 3, can be interpreted as trend,
riskiness, asymmetry and the likeliness of extreme events.

Hyperbolic (HYP) distributions: \ =1,

. _ g {—a\/82+(z—p)2+B(z—p)}
) —
fHYP(ZE7CV767 7:“) 2045[{1(57)6 ) (6)

where z,u € IR, 0 < 4 and |f] < «a.

Normal-inverse Gaussian (NIG) distributions: A\ = —1/2,

as B {04\/52 +(z — u)2}
T VOR (- p)?

Fia(e; o, 5,6, 1) = (vt (1)
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VaR based on GH distribution and adaptive volatility

Example: ML estimators of HYP distribution
&~ 1.744, 3 ~ —0.017, § ~ 0.782 and i &~ 0.012.

04
i

03
I
T

0.2
i
T

0.1
i

Figure 7: The estimated density of the standardize return of FX rates (blue) with

nonparametric kernel (h = 0.57) and a simulated HYP density (red) with the maximum
likelihood estimators & & 1.744, 3 ~ —0.017, § ~ 0.782 and [ ~ 0, 012.
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VaR based on GH distribution and adaptive volatility 4-6

Adaptive Volatility Estimation

Assumption:
For a fixed point 7, volatility is locally time homogeneous in a short time
interval [T — m, 7), thus we can estimate o, = 07 = ﬁ > _ic1 0ir Where

1] is the number of observations in I = [T —m, T).

{43  tm

\]I__l
S
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VaR based on GH distribution and adaptive volatility

Volatility estimation — Specify the interval I:

Split interval [ into J C I and I\J C I.

[ | ]
L ! J

T —m nJ J T—1
long —og| < T (8)

Once (5) holds, we increase the interval by increasing m until time
homogeneity is violated. I* = max {I : I fulfills (5)}

a a ]
T—m' I\J 7T—m J T=1
Specify the interval I — Estimate o\ ; and o; by o\ ; and 0,

Specify the test statistic 77

Statistics in finance and computing



VaR based on GH distribution and adaptive volatility

Volatility estimation
Rt = Ot&¢ — E(Rﬂft_l) = O'tz

e Power transformation: for every v > 0, we have

E(|R:|"|Fi—1) = o E(le|"|Fiz1) = Chof  (9)

E[(|R|" — Cyo))?|Fict] = o E[(Je]” — C,)?|Fi—1] (10)
— a§7D3 (11)

R = Cyo! + Do/ ¢, (12)

where C., is the conditional mean and D,2Y the conditional variance
of |e|” and (; = (|e|” — C)/D, is i.i.d. with mean 0.
We choose v = 1.
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VaR based on GH distribution and adaptive volatility

Set 6, = C.,0, which is the conditional mean of |R;|?, then in a
time homogeneous interval I, the constant §; = C.,0] can be

~ 1
O = Wi D IR

tel

estimated by 51:

Replace |R:|7, we get:

~

1 S

Or = = Ot D 0
I g

2

Varldy] = —LEY 62

112
tel

where s, = D, /C.,.
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VaR based on GH distribution and adaptive volatility

2 ~
S .. .
Here we denote vf = 715 >, 67 as the conditional variance of ;.
. ~ S Py
The estimator vy = mﬁ@;.

The GH distribution has a moment generating function ¢ ¢(2):

A
_ ouz K\ (072)
pr(z) =€ 3 Ea) 8+ z| < a, (13)

where 72 = o? — (B + 2)2.

— ¢ is infinitely many times differentiable near 0, hence its every
moment exists.

— there exists a, > 0 to fulfill

2
AU

log Ee%sr < for every v <1

since GH distribution exponentially decay fast enough.
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VaR based on GH distribution and adaptive volatility 4 -

Theorem (Mercurio and Spokoiny 2003): Let Ry, ..., R, obey the
heteroscedastic model and the volatility coefficient o; satisfies the
condition b < atz < bB with some positive constant b, B. Then it
holds for the estimate 51 of 6 :

P(|0; — 0] > Ar(1+ As,|I)|7Y2) + o))
)\2

< 4v/e\(1 + logB) eXp(—Qa 1 s I 12) ).
Y Y

— Test statistics: Under homogeneity \51 — 0| is bounded by Av;
provided that A is sufficiently large.

|§[ — (97-| < A\Up

Statistics in finance and computing




VaR based on GH distribution and adaptive volatility

From the triangle inequality, we get: §I\J — é:] is bounded by
A(@/I\J ‘|‘75J) for J C I, l.e.

g — 051 < A@p g +70) = N (B + 482 10\,

where M = As,,.

— Cross-validation (CV) method:

n _ 2
= argmin{z (\Rtp — H(t,X)) |2

t=to

Statistics in finance and computing
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VaR based on GH distribution and adaptive volatility 4-13

Iteration

For any time point t5 <t < n, where ty5 > m is the starting point, use
the following iteration:

1. Given a starting value of m = mg, which indicates a local
homogeneous interval [t — m, ],

2. Given different critical values )\, we can estimate the corresponding

0-.» and get simultaneously the forecast error

n

> (\Rm — g(t,x))2 ,

t=to

Statistics in finance and computing



VaR based on GH distribution and adaptive volatility 4-14

3. Pick up the optimal lambda, which returns the minimal forecast

error, as the critical value.

4. Multiple test the time homogeneity in (5). If (5) is not rejected,
enlarge m to k x mg, k € N, otherwise the loop stops.

0.020

0.015 T

0.010 T

0.005 T

12/1982 04/1985 04/1988 04/1991 04/1994

Figure 8: The adaptive volatility estimates of DEM/USD exchange rates.
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VaR based on GH distribution and adaptive volatility

Value at Risk (VaR)

qp is the p-th quantile of the distribution of ¢4, i.e. P(e; < qp) = p.
P(R; < oqp|Fi-1) =p

Va Rp,t = O0t{p

o; are estimated by adaptive model
qp 1s given be the quantile of HYP or NIG distribution

Statistics in finance and computing
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VaR based on GH distribution and adaptive volatility 4-16

ML estimator of GH distributions

Parameters estimation is based on the previous 500 observations
(standardized returns), which varies little.

Figure 9: Quantiles varying over time. From the top the evolving HYP quantiles for
p = 0.995, p =0.99, p =0.975, p = 0.95, p = 0.90, p = 0.10, p = 0.05, p = 0.025,
p = 0.01, p = 0.005.

"

~
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VaR based on GH distribution and adaptive volatility

GHADA model and normal model

-0.02 0.02

-0.06

-0.02 0.02

-0.06

Figure 10: Value at Risk forecast plots for DEM/USD data. The dots are the returns,
the solid line is the VaR forecast based on HYP underlying distribution, the gray line the
VaR forecast based on normal distribution, and the crosses indicate the VaR excesses

(&) p=0.005

it [ =

+

1000 1500 2000 2500 3000 3500

(b) p = 0.01

A A

+ o H o+ 4 + O

1000 1500 2000 2500 3000 3500

of HYP model. (a) p = 0.005. (b) p = 0.01.
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VaR based on GH distribution and adaptive volatility

Backtesting VaR

Testing VaR levels:
Hy:EI=p vs. Hj:not Hy (14)
where I is the proportion of exceptions. Likelihood ratio statistic:
LR1 = —2log {(1 —p)" Np"} +2log {(1 — N/T)" N (N/T)V},

where NN is the number of exceptions, T is the number of observations
and LR1 is asymptotically x?(1) distributed

Statistics in finance and computing
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VaR based on GH distribution and adaptive volatility 4-19

Testing Independence:

Hy:mpo=mo=m,mop1 =m1=1—7m vs. Hy: not Hy
Likelihood ratio statistic:

LR2 = —2log {#"(1 — 7)™ } + 2log { 75  Tor w16 711" |,

where 7AT7;j = nz-j/(nz-j -+ nz-,l_j), n; = Noj + 4, and ™ = no/(no -+ nl).
Under Hy, LR2 is asymptotically x?(1) distributed as well.

Statistics in finance and computing



VaR based on GH distribution and adaptive volatility

Model D N/T LR1 p-value LR2 p-value
Normal | 0.005 | 0.01471 33.78275 0.0000* | 1.19500 0.2743
0.01 | 0.02243 31.38546 0.0000* | 0.11446 0.7352
0.025 | 0.03356 7.24351 0.0079* | 0.29236 0.5887
0.05 | 0.05590 1.92431 0.1654 | 0.03239 0.8572
HYP 0.005 | 0.00405 0.53274  0.4655 | 0.08940 0.7649
0.01 | 0.00956 0.05338 0.8173 | 0.50224 0.4785
0.025 | 0.02464 0.01441 0.9044 | 0.07259 0.7876
0.05 | 0.05112 0.07152  0.7891 | 0.11980 0.7293

Table 3: Backtesting results for DEM/USD example. * indicates the rejection of the

model which is used.
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Skewness and Kurtosis Trading

Skewness and Kurtosis Trading

Recall the option pricing theory
European put: P = e‘”/ max(Ky — S7,0)q(ST)dST
0

European call: ¢ = e‘”/ max(St — Ks,0)q(ST)dST,
0

with time to maturity 7 = 1" — ¢, strike price K and risk—free interest
rate r.

q(ST)? — A state price density (SPD) of the underlying!

In Black-Scholes world: ¢(S7) is lognormal and unique.
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Skewness and Kurtosis Trading 5-2

General Comment

In an arbitrage free and complete market model exists exactly one
risk-neutral density. If markets are not complete there are in general

many risk-neutral measures.

Comparing two SPD's, as we do, amounts rather to compare two
different models, and trades are initiated depending on the model in

which one believes more.
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Suppose there are two SPDs f*, g* with f* more negatively skewed
than ¢g* and a European OTM put respectively call.

Skewness Trade 1

Payoff Call Option
K_1 Underlying K 2

Figure 11: Skewness Trade 1.
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This tail situation implies for a European call option with strike K5

C(f*) < C(g")

price computed with f* <  price computed with ¢*

If the call is priced using f* but one regards g* as a better
approximation of the underylings’ SPD, one would buy the call.

Analogously: Short a European OTM put with strike K.
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Skewness and Kurtosis Trading

This motivates a skewness trade 1: Portfolio of a short OTM put and
a long OTM call, which is also called a Risk Reversal, Will02.

Payoff Skewness Trade 1

K 1

Underlying K'_2

Figure 12: Payoff Skewness Trade 1
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Comparing f* and ¢g* leads also to kurtosis trades: Buy and sell calls
and puts of different strikes.

Kurtosis Trade 1

Sell Put Buy Put  Sell Call/Put Buy Call Sell Call

K_1 K_2 K_3 K_4
Underlying

Figure 13: Kurtosis Trade 1.
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The payoff profile at maturity is given in Figure 14, which is basically a
modified butterfly.

Payoff Kurtosis Trade 1
Underlying

Figure 14: Payoff Kurtosis Trade 1
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In this work, f* is an option implied SPD and ¢* is a (historical) time
series SPD.

To compare implied to (historical) time series SPD's, we use Barle and
Cakici's Implied Binomial Tree algorithm to estimate f* whereas ¢* is
inferred from a combination of a non-parametric estimation from a
historical time series of the DAX and a forward Monte Carlo simulation.

Later on we will specify in terms of moneyness K/S;e"” where to buy or
sell options.

Within such a framework, is it profitable to trade skewness and kurtosis?

Does a SPD comparison contain information about the stock market
bubble that burst in March 20007
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Estimation of the Option-lmplied SPD
Implied Binomial Tree (IBT)
Numerical method to compute SPD adapted to volatility smile

Several approaches: Rubinstein (1994), Dupire (1994), Derman and
Kani (1994) and Barle and Cakici (1998)

XploRe compute Derman and Kani's IBTdk and Barle and Cakici's
IBTbc IBT

Barle and Cakici's version proved to be more robust

Statistics in finance and computing
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Skewness and Kurtosis Trading

IV S Ticks of 20000410
1

Figure 15: Implied volatility smile on 04/10/2000. Dimension 1: Time to
Maturity, 2: Moneyness, 3: Implied Volatility.
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(Implied) Binomial Tree

Each (implied) binomial tree consists of 3 trees (level n, node 7):
e Tree of underlyings’ values s,, ;

e Tree of transition probabilities p,, ;

e Tree of Arrow-Debreu (AD) prices A\, ;
Arrow-Debreu security: A financial instrument that pays off 1 at
node ¢ at level n, and otherwise 0.
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Example

T =1 year, At =1/4 year
smile structure: o, (K,t) = 0.15 — 0.0005K

stock prices s, ;

Statistics in finance and computing

100.00

105.13

95.12

119.91
115.07

110.05 110.06
105.14

100.00 100.00
95.11

89.93 39.93
85.21

30.02
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Example (2)

T =1 year, At =1/4 year

smile structure: o, (K,t) = 0.15 — 0.0005K

transition probabilities p,, ;

0.563

0.589

0.587

0.578

0.563

0.545

0.596

0.590

0.536

0.589

Statistics in finance and computing

-13



Skewness and Kurtosis Trading

Example (3)

T =1 year, At =1/4 year
smile structure: o, (K,t) = 0.15 — 0.0005K

0.187
0.327
0.559 0.405
AD prices A, ; 1.000 0.480
0.434 0.305
0.178
0.080

0.111

0.312

0.342

0.172

0.033

Statistics in finance and computing
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Binomial Tree vs IBT

e BT: Discrete version of a diffusion process with constant volatility
parameter:

d—St — ,utdt + O'dZt
St

Constant transition probabilities: p,, ; = e VAL (with At fixed)

e IBT: Discrete version of diffusion process with a generalized
volatility parameter:

dSt

— = ,utdt + O'(St,t)dZt
St

Non constant transition probabilities p,, ; (with At fixed)

Statistics in finance and computing



Skewness and Kurtosis Trading 5-16

IBT

Recombining tree divided into NV equally spaced time steps of length
At =T1/N

IBT constructed on basis of observed option prices, i.e. takes the smile

as an input

IBT-implied SPD: at final nodes assign
[ (sn+1,i) = €T ANF1, 1=1,...,.N+1

where Ay 1 ; denote the Arrow-Debreu prices

Statistics in finance and computing



Skewness and Kurtosis Trading

Application to EUREX DAX-Options

20 non overlapping periods from June 1997 to June 2002 (7 ~ 65/250
fixed)

period from Monday following 3rd Friday to 3rd Friday 3 months later

Example: on Monday, 23/06/97, we estimate f* of Friday, 19/09/97

e volsurf estimates implied volatility surface using:

— Option data of preceeding 2 weeks (Monday, 09/06/97, to
Friday, 20/06/97)

e IBTbc computes IBT with input parameters:

— DAX on Monday June 23, 1997, Sq = 3748.79
— time to maturity 7 = 65/250 and interest rate r = 3.12

Statistics in finance and computing
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Skewness and Kurtosis Trading

DAX Density Estimation Illustration

4750

4500

4250
f*

4000

3750

3500

OptionDgta IBT
3250 2 weeks 3 months

Time
24/03/97 09/06/97 23/06/97 19/09/97

Figure 16: Procedure to estimate implied SPD of Friday, 19/09/97, esti-
mated on Monday, 23/06/97, by means of 2 weeks of option data.
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Option Implied SPD for September 97

w0 L N
N
(]
SE ® -
wn_l -
(\|I —
L
A
o o
== ) =
LO— —
o
o
® °
o @ [ J=
T T
2 1 0 1

LogReturn

Figure 17: Implied SPD of Friday, 19/09/97, estimated on Monday,
23/06/97, by an IBT with N = 10 time steps, Sy = 3748.79, r = 3.12
and 7 = 65/250.
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Estimation of the Time Series SPD

The estimation of the (historical) time series SPD is based on AitO1.

S follows a diffusion process

dSt — ,LL(St)dt -+ O'(St)th.

Further assume a flat yield curve and the existence of a risk-free asset B
which evolves according to

Bt — Boert.

Statistics in finance and computing
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Estimation of the Time Series SPD (2)

Then the risk-neutral process follows from [t6's formula and Girsanov's

theorem (giving a SPD ¢* which will later be compared to the SPD f*):

dS; = rSrdt+o(SH)dW;

Drift adjusted but diffusion function is identical in both cases !

Statistics in finance and computing
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Estimation of the Diffusion Function

Florens-Zmirou (1993), WHTsy1997 estimator for o

N*—1 S,L N*_S *
>oim1 Ko (F5—")N*"{S(it1)/n+ — Siyn+}°

N* Sz x —S
> i1 Ko(F5—)

62(S) =

K, kernel (in our simulation: Gaussian), h, bandwidth, N* number of

observed index values (IN* = 65) in the time interval |0, 1]
o consistent estimator of 0 as N* — oo

o estimated using a 3 month time series of DAX prices
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Est. Diffusion for 03-06/97 Est. Diffusion for 03-06/01 Est. Diffusion for 06-09/01

0.35
0.35
035

0.3
0.3
1
0.3

ko] k] k]
LL L L
c
(=}
‘D
2 2 2
a a a
[Te) Te} [Tel
Al N4 Al
o o o
o Tl ~ ~
s T e (=) (=)
T T T T T T T T T T T T T T T T
3200 3400 3600 3800 5400 5600 5800 6000 6200 3900 4200 4500 4800 5100 5400 5700 6000
DAX DAX DAX

Figure 18: Estimated diffusion functions ("standardized” by 6/Sy) for
the periods 24/03/97-20/06/97 (h, = 469.00), 19/03/01-15/06/01
(460.00), 18/06/01-21/09/01 (1597.00) respectively.
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Simulation of the Time Series SPD

e Use Milstein scheme given by

i/N+ = SN TGy N-AL+(SG_1) N ) AW N +
1 00

" 2
(S(z 1)/N*>(95* (SGi- 1)/N*){(AW(7;—1)/N*> —At},

oo

where AW* N ™ N(O, At) with At = N*, drift set equal to 7,

o0S*
approximated by -2 <o, t=1,...,N”
e Simulate M = 10000 paths for time to maturity 7 = 2]%0
e Compute annualized log-returns for simulated paths:
U%,T:lz{log( :n,T 1) — log( }T ,m=1,...,M

Statistics in finance and computing
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Simulation of the Time Series SPD (2)

e SPD ¢* obtained by means of nonparametric kernel density
estimation (t = 0):

. s ;1 log(S™* /S

1 M w o, —u
~k [ % . m,t
pi(u’) = Mhp*mZ:le*( e )

where K- is a kernel (here: Gaussian) and h,~ is a bandwidth.
e Note: S% ~ ¢g*, then with u* = In(S7./S}) p; is related to g* by

log(S*/S})

Py (S5 < 8) = Py (u” < log(5"/57)) = [ pi ()

— 00

Statistics in finance and computing
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Application to DAX
20 periods from June 1997 to June 2002 (7 =~ 65/250 fixed)

period from Monday following 3rd Friday to 3rd Friday 3 months later

Example: on Monday, 23/06/97, we estimate g* of Friday, 19/09/97
e Friday, September 19, 1997, is the 3rd Friday

e o estimated using DAX prices from Monday, March 23, 1997, to
Friday, June 20, 1997

e Monte-Carlo simulation with parameters

— DAX on Monday June 23, 1997, Sy = 3748.79
— time to maturity 7 = 65/250 and interest rate r = 3.12

Statistics in finance and computing
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Density Estimation Illustration

DAX
4750 _ _
IndexData MC-Simulation
4500 3 months 3 months
*
4250 g
f*
4000
3750
3500
OptionDgta IBT
3250 2 weeks 3 months
| Time
24/03/97 09/06/97 23/06/97 19/09/97

Figure 19: Comparison of procedures to estimate time series and implied
SPD of Friday, 19/09/97. SPD’s estimated on Monday, 23/06/97, by
means of 3 months of index data respectively 2 weeks of option data.
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Historical Density for September 1997

0.6

04

SPD

0.2

Figure 20: Estimated time series SPD of Friday, 19/09/97, estimated on
Monday, 23/06/97. Simulated with M = 10000 paths, Sy = 3748.79,
r =3.12 and 7 = 65/250.
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Comparison of Implied and Time Series SPD

Comparison of 20 non-overlapping 3 months periods from June 1997 to
June 2002.

SPDs estimated only for most liquidly traded option contracts maturing
in March, June, September and December.

SPDs compared by looking at standard deviation, skewness and kurtosis.

Statistics in finance and computing
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Comparison of Standard Deviation

StandardDeviation: Comparison

1.0

0.8

0.6

0.4

09/97 06/98 0399 12/99 09/00 06/01 0302

Figure 21: f* denoted by a trian-
gle and g* denoted by a circle.

e standard deviation time series
of f* and g™ cross each other
frequently

e it appears that standard devi-
ations increase from 2000 on
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Comparison of Skewness

Skewness: Comparison
09/97 06/98 03/99 12/99 09/00 06/01 03/02

-0.5

-1.0

-1.5

-2.0

Figure 22: f* denoted by a trian-
gle and g* denoted by a circle.

e f* and g" negatively skewed
for all periods

e f* more negatively skewed
than ¢*
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Comparison of Kurtosis

Kurtosis Comparison
13

10

w S [é)] (o))

O6/9g 03/9 '12/99 09/00 06/01 03102

099

Figure 23: f* denoted by a trian-
gle and g* denoted by a circle.

e f* and ¢* leptokurtic
o Kurt(f*) < Kurt(g*)
e outlier of g* in 09/01
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Trading Strategies

General interest:

e |s it possible to exploit the SPD comparison by means of a skewness
and/or kurtosis trade?

e |s the strategy’s performance consistent with the SPD comparison?

Strategy features:

65

»t5 (3 months) considered

e Only European calls & puts with 7 =
e All options are kept until expiration

e Buy/sell ONE option at each moneyness (strike) under consideration
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What option to buy or to sell at the

estimation day of f* and ¢g* 7

Skewness Trade 1
skew(f*) < skew(g")

Position
short puts

long calls

Moneyness
< 0.95

> 1.05

Kurtosis Trade 1
kurt(f*) > kurt(g™)

Position
short puts
long puts
short puts
long calls
short calls
long calls

Moneyness
< 0.90
0.90 — 0.95
0.95 — 1.00
1.00 — 1.05
1.05 —1.10
> 1.10

Table 4: Definitions of moneyness (K /S:e"™) regions.

Statistics in finance and computing

5-

34



Skewness and Kurtosis Trading

Performance Measurement

Return for each the 20 three month periods measured by:

. net cash flow at t =T
portfolio return = —1
net cash flow at ¢t =0

Net EURO cash flow in ¢t = 0 comprises:
e net cash flow from buying and selling puts and calls,

e for each short call sold buy one share of the underlying,

e for each put sold put the value of the puts’ strike on a bank account.

Net EURO cash flow in t = T results from:
e sum of options inner values,
e selling the underlying,

e receiving cash from the puts strikes.

Statistics in finance and computing
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One DAX index point = 1 EURO. (As in a DAX option contract
consisting of 5 options one index point has a value of 5 EURO.)

No interest rate between t = 0 and ¢t = I’ considered.

Remark: Buy/sell all options available in the moneyness region in
question.

Note: This approach amounts to a careful performance measurement.
Applying EUREX margin deposit requirements would decrease the cash
outflow for each short option.
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Performance S1 Trade

Skewness Trade 1

Period 06/97-03/00 06/00-03/02 Overall
Number of Subperiods 8 20

Total Return -8.53 -2.05
Return Volatility 9.79 6.78
Minimum Return -3.66 -25.78 -25.78
Maximum Return 7.36 7.65
Sharpe Ratio (Strategy) -0.46 -0.24
Sharpe Ratio (DAX) -0.35 0.02

Table 5: Skewness Trade 1 Performance.

Returns are given in percentages.

Only Total Return is annualized.
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Performance S1 Trade (2)

Month CashFlow int = 0 CashFlow in t =T NetCashFlow
Jun97 541.80 37.88 579.68
Sep97 344.80 0.00 344.80
Dec97 516.90 3781.62 4298.52
Mar98 1042.00 042.68 1984.68
Jun98 1690.80 -6896.90 -5206.10
Sep98 -1559.50 0.00 -1559.50
Dec98 714.30 13.27 727.57
Mar99 923.90 286.41 1210.31
Jun99 964.60 0.00 964.60
Sep99 1019.40 3979.47 4998.87
Dec99 2259.60 2206.92 4466.52
Mar00 3537.40 -864.48 2672.92

Table 6: Net option cash flows of S1 trade for 06/97-03/00 (no underlying,

strikes considered). Cash flows are measured in EUROs.
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Performance S1 Trade (3)

Month CashFlow int = 0 CashFlow in t =T NetCashFlow
Jun00 197.80 0.00 197.80
Sep00 -283.20 -307.17 -590.37
Dec00 -321.90 -645.92 -967.82
Mar01 -420.10 0.00 -420.10
Jun01 293.60 -21616.16 -21322.56
Sep01 -5.80 4384.25 4378.45
DecO1 1003.30 0.00 1003.30
Mar02 813.50 -9499.20 -8685.70

Table 7: Net option cash flows of S1 trade for 06/00-03/02 (no underlying,

strikes considered). Cash flows are measured in EUROs.
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DAX evolution from 01/97 to 01/03

DAX DAX 1997-2003

8000
7000
6000
5000
4000

3000
1/97 1/98 1/99 1/00 1/01 1/02 1/03

Figure 24: Evolution of DAX from 01/97 to 01/03

Time
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Performance K1 Trade

Kurtosis Trade 1

Period 06/97-03/00 06/00-03/02 Overall
Number of Subperiods 8 20

Total Return -7.48 2.01
Return Volatility 13.63 9.33
Minimum Return -28.65 -28.65
Maximum Return 18.14 18.14
Sharpe Ratio (Strategy) -0.32 -0.05
Sharpe Ratio (DAX) -0.35 0.02

Table 8: Kurtosis Trade 1 Performance. Only Total Return is annualized.

Returns are given in percentages.
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Performance K1 Trade (2)

Month CashFlow int = 0 CashFlow in t =T NetCashFlow
Jun97 1257.10 -989.40 267.70
Sep97 2047.20 -58.22 1988.98
Dec97 1345.70 -2451.94 -1106.24
Mar98 1793.90 -1744 .51 49.39
Jun98 2690.30 -4612.70 -1922.40
Sep98 4758.10 -541.60 4216.50
Dec98 3913.40 -803.08 3110.32
Mar99 2233.50 -1190.94 1042.56
Jun99 1593.80 -338.32 1255.48
Sep99 1818.70 -3194.15 -1375.45
Dec99 2745.50 -3706.92 -961.42
Mar00 4940.50 -2419.08 2521.42

Table 9: Net option cash flows of K1 trade for 06/97-03/00 (no underly-

ing, strikes considered). Cash flows are measured in EURO:s.
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Performance K1 Trade (3)

Month CashFlow int = 0 CashFlow in t =T NetCashFlow
Jun00 2178.20 -5655.30 1622.90
Sep00 2039.90 -2257.17 -217.27
Dec00 2477.90 -2957.40 -479.50
Mar01 1853.70 -502.50 1351.20
Jun01 1674.10 -12235.10 -10561.00
Sep01 2315.00 -2935.25 -620.25
DecO1 2190.80 -454.24 1736.56
Mar02 1464.90 -4976.00 -3511.10

Table 10: Net option cash flows of K1 trade for 06/00-03/02 (no under-
lying, strikes considered). Cash flows are measured in EUROs.
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Conclusion & QOutlook

Trading performance positive in subperiods 06/97 - 03/00 and negative
06/00 - 03/02 for S1 as well as K1 trade. However, a SPD comparison
does not produce any signal ex ante.

SPD estimation methodology need to be fine tuned. For example, extent
historical SPD estimation: In Monte Carlo simulation draw random
numbers from the distribution of the residuals resulting from the
estimation of ¢ (WHYat2003).

Strategy design (hedging) and performance measurement to be
improved.
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