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Motivation 1-1

Source extraction and dimension reduction

High dimensional and complex �nancial time series are neither

Gaussian distributed nor stationary.

Statistical analysis of financial time series 
after the financial crisis 

Joint impact of high dimensionality and dramatic changes

Risk diversification -> Portfolio
High-dimensionality vs. relatively 
low effective sample size 
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Motivation 1-2

Multivariate Data Analysis (MDA)

Let Xt 2 IR
p denote the returns of �nancial assets.

� Principal component analysis: Xt = �� PCt ,

� Factor analysis: Xt = ��1=2Ft + Ut ,

Jolli�e (2002), Härdle and Simar (2012)

Under Gaussianity, cross-uncorrelatedness indicates independence.

Jacobian transformation for a linear transformation X = AZ :

fZ (z) =

pY
j=1

fZj
(zj); fX (x) = abs(jAj�1) � fZ (A

�1X )

Fact: Financial time series are heavy-tailed distributed.
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Motivation 1-3

Independent Component Analysis (ICA)

Let Xt 2 IR
p denote the returns of �nancial assets:

ICt = BXt = (b1; � � � ; bp)
>Xt0

BBB@

IC1t
...

ICpt

1
CCCA =

0
BBB@

b11 � � � b1p

� � � � �

bp1 � � � bpp

1
CCCA

0
BBB@

x1t
...

xpt

1
CCCA

equivalently Xt = A� ICt

where B is a nonsingular �lter matrix: B�1 = A.
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Motivation 1-4

How to �nd ICs?

Xt = A� ICt

Jones and Sibson (1987): projection pursuit

Hyvärinen and Oja (1997): FastICA

Hyvärinen, Karhunen and Oja (2001): MLE and others

Chen, Guo, Härdle and Huang (2011): COPICA

The observed series as well the ICs are assumed to be stationary.

The �lter A (or B) is constant over time.

Fact: Turbulences in �nancial markets indicate nonstationary.
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Motivation 1-5

Demonstration

Log returns of HD, HPQ and IBM.

Xt =

8<
:

A1ICt t 2 [1; 300]

A2ICt t 2 [301; 600]

where ICt are NIG distributed, see Barndor�-Nielson (1997).

Two ICA �lters are:

A1 = 10�3

0
BB@

0:6 13:0 6:2

3:8 2:7 13:0

7:9 5:9 4:8

1
CCA; A2 = 10�3

0
BB@

�0:1 0:8 5:3

7:0 1:9 1:6

0:1 4:2 1:1

1
CCA :

2008=09=03��2009=08=31; 2004=07=30��2006=12=29

(a period with market turbulence) (a relatively quiet period)
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Motivation 1-6

Demonstration (Continued)

Static ICA: average value of RMSEs is 0:886 (1:196 after change)

Time varying ICA: average value of RMSEs is 0:201 (0:160 after change)
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Motivation 1-7

Literature review

Matteson and Tsay (2009): allow the mixing matrix B to vary over

time via a smooth function of other transition variables.

� Volatility and co-volatility literature, see e.g. Baillie and

Morana (2009), Scharth and Medeiros (2009),

� Incorporate changes via Markov-Switching or mixture of

multiplicative error speci�cations,

� Need a globally given mechanism for this time variation.

Mercurio and Spokoiny (2004) use a local change point (LCP)

approach: completely data driven approach.
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Motivation 1-8

TVICA

Let Xt 2 IR
p denote the returns of �nancial assets, TVICA model:

Xt = At ICt

� Time varying independent source extraction,

� For each time point t, LCP identi�es a �trust interval�

It = [t �mt ; t] , over which the �lter At �const.,

� Neither prior information (on say states of the market) nor

distributional assumption is required. Data-driven and

applicable for various kinds of breaks (macroeconomic or

political changes).
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TVICA 2-1

TVICA

Let Xt 2 IR
p denote the returns of �nancial assets,

Zt = fz1(t); � � � ; zp(t)g
> are cross independent.

TVICA model: Xt = AtZt ; Zt = B�1
t Xt

Local Homogeneity: for any particular time point t there exists a

past time interval It = [t �mt ; t], over which the linear �lter At is

approximately constant, i.e. As � A, 8 s 2 It .
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TVICA 2-2

Estimation: under homogeneity

Suppose that at time point t, an interval of homogeneity

It = [t �mt ; t) is given with mt indicating the length of the

interval.

The log-likelihood function on the interval It is:

L(It ;Bt) =
tX

s=t�mt

rX
j=1

logffj(b
>
jtXs)g+ (mt + 1) log jdet Bt j; (1)

where fj(zj) is the pdf of IC zj , j = 1; � � � ; p. MLE is ~Bt .
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TVICA 2-3

Estimation: under local homogeneity

Small modeling bias: divergence of a time varying model (local homogeneity)

to a static model (homogeneity) is small, Spokoiny (2011).

For r ; � > 0, the �tted log likelihood with Bt = B
� satis�es:

EB� jL(Ik ; ~B
(k)
t ;B�)jr = EB� jL(Ik ; ~B

(k)
t )� L(Ik ;B

�)jr � Rr (B
�); (2)

where Rr (B�) = maxk�K EB� jLI
k
(~Bk ;B

�)jr :

Goal: For any time point t and nested intervals, I0 � I1 � � � � � IK�1 � IK ,

LCP method �nds the longest interval of local homogeneity.

The identi�cation of the trust interval is done via a sequential testing algorithm.
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TVICA 2-4

LCP algorithms

H0 : Ik is a local homogeneous interval given that Ik�1 was not rejected.

Initialization: I0 is accepted B̂
(0)
t = ~B

(0)
t .

Next for k = 1; � � � ;K , screen Jk = Ik n Ik�1 = [t �mk ; t �mk�1) and check

for a change point.

Interval //I  Interval /I  

Interval 1/ −= kkk IIJ  

                 
/t                                                        

//t  

 

   Kmt −          kmt −                                 1−− kmt            2mt −    1mt −   t  

TI ;t = max
B00;B0

fLI 00(B
00) + LI 0(B

0)g �max
B

LI (B); (3)

Tk = max
t2J

k

TI ;t

� �k H0 is not rejected: B̂
(k)
t = ~B

(k)
t

> �k H0 is rejected, terminate
(4)
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TVICA 2-5

LCP parameters

Set of intervals: Ik = [t �mk ; t] with mk = m0a
k .

� The starting value m0 should be su�ciently small to provide a

reasonable local homogeneity.

� The coe�cient a > 1 controls the increasing speed of the

candidate intervals.
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TVICA 2-6

LCP parameters

Critical values f�kg are calculated under H0.

� MC: generate homogeneous series Xt = (B�)�1ICt :

� The �nal estimate B̂ = B̂K depends on the critical values

f�kg
K
k=1.

� Small modeling bias: EB� jL(Ik ; ~B
(k)
t ; B̂)jr � �Rr (B

�);
I B

� is the MLE over I0.

I The hyperparameter r speci�es the loss function that measures

the divergence of a time varying model to a static model.

I The hyperparameter � is similar to the test level parameter.

I Given the values of r and �, Rr (B
�) can be computed

straightforwardly.
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TVICA 2-7

Find ICs

Pre-whitening: use the Mahalanobis transformation ~�
�1=2
x Xt .

Quasi maximum likelihood estimation: for leptokurtic sources

log fj(xj) = �1 � 2 log cosh(xj) = �1 � 2 logf
1

2
(exj + e�xj )g:

The �rst derivative of log fj :

gj(xj) = �2 tanh(xj) = �
2fexp(2xj)� 1g

exp(2xj) + 1
; 8 j = 1; : : : ; p;

A small misidenti�cation in the density doesn't a�ect the

consistency of the QMLE, Hyvärinen and Oja (1999).
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Simulation study 3-1

Data

Xt 2 IR
10: log returns of HD, HPQ, IBM, INTC, JNJ, JPM, KFT, KO,

MCD and MMM over a stationary time period: 2010/01/14�2010/10/28.

Fit ICt under NIG assumption. Generate 10 independent univariate series,

with 610 sample points for each series and with 1000 replications.

Homogeneity scenario (HOMO): Xt = At ICt with At = I10,

Jump scenario (JPLM and JPEM): a sudden change after t = 250.

Smooth change scenario (SLEM): interval with changes: [220; 380]

Investigate detection power and location of the change point.

Analyze impact of the hyperparameters (r ; �) on the LCP algorithm.
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Simulation study 3-2

Critical values

Set of intervals: mk = m0a
k with m0 = 200, a = 1:25 and K = 5

I0 = 200; I1 = 250; I2 = 313; I3 = 391 I4 = 488; I5 = 610;

r and � are assigned to be 1; 0:5 and 0:1
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Simulation study 3-3

Result: rejection ratio and location

r = 0:1 r = 0:5 r = 1:0

� @ I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

0:1

HOMO � 0.6 � � 0.6 � � 0.7 �

JPLF � � 100 � � � 100 � � � 100 �

JPEM � � 99.2 0.8 � � 99.4 0.6 � � 99.4 0.6

SLEM � 5.9 93.1 1.0 � 6.8 92.4 0.8 � 7.9 91.3 0.8

0:5

HOMO � 4.9 � � 5.9 � � 8.3 �

JPLF 0.1 � 99.9 � 0.1 0.1 99.8 � 0.1 0.1 99.8 �

JPEM � 0.1 99.5 0.4 � 0.2 99.5 0.3 � 0.2 99.6 0.2

SLEM 0.2 32.4 67.4 � 0.2 34.4 65.4 � 0.2 36.1 63.7 �

1:0

HOMO � 15.3 � � 20.3 � � 26.8 �

JPLF 0.2 0.4 99.4 � 0.2 0.4 99.4 � 0.2 0.7 99.1 �

JPEM � 0.4 99.5 0.1 � 0.6 99.4 � � 0.8 99.2 �

SLEM 0.2 49.5 50.3 � 0.2 52.6 47.2 � 0.4 56.4 43.2 �
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Real data analysis 4-1

Data and experiments

Xt 2 IR
10: log returns of HD, HPQ, IBM, INTC, JNJ, JPM, KFT,

KO, MCD and MMM.

The set of intervals: mk = m0a
k with m0 = 200, a = 1:25 and

K = 5.

The parameters (r ; �) = (0:5; 0:5) and (r ; �) = (0:1; 0:1) are

considered respectively.

B�: MLE over I0 or identity matrix.
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Real data analysis 4-2

Data and experiments

The �rst experiment considers the time interval

2005/03/01�2007/08/01, during which no in�uential economic or

�nancial events occurred.

The second experiment considers the time interval

2008/05/30�2010/10/28, during which the stock market crash

occurred in 2008.

Does the proposed method detect intervals of local homogeneity?

Can we identify an interval in a post-�nancial crisis world that

indicates a relatively stationary period?
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Empirical evidence

Realized volatility recursively computed for the 1st August 2007 and the 28th

October 2010. The set of intervals with m0 = 200, a = 1:25 and K = 5 is

marked in the plot to highlight the underlying pattern across the intervals.
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Results: CVs and test statistics

2005/03/01-2007/08/01 2008/05/30-2010/10/28
CV TI CV TI

(r; �) (0:5; 0:5) (0:1; 0:1) (0:5; 0:5) (0:1; 0:1)
B� MLE Identity MLE Identity MLE Identity MLE Identity
I1 107.23 102.84 122.37 120.89 74.36 108.87 105.85 126.51 123.74 69.81
I2 98.40 98.45 117.43 113.21 76.62 101.71 98.67 116.86 113.95 81.97
I3 93.15 92.35 112.30 108.44 66.86 96.32 94.92 113.91 110.05 265.35

I4 89.64 88.81 109.53 105.57 77.52 92.59 91.57 111.18 107.80 469.99

I5 86.28 85.74 106.82 103.01 72.79 88.72 88.21 108.99 105.85 205.60

Table 2: The critical values and the test statistic for two experiments. The set of
intervals for testing is de�ned as m0 = 200, a = 1:25 and K = 5. The CVs are
computed with respect to B� equals the MLE in the shortest interval or an identity
matrix. The hyperparameters are set to be (r; �) = (0:5; 0:5) and (r; �) = (0:1; 0:1).
The critical value computations are based on the generate 10 independent series, with
610 sample points for each series and with 5000 replications.

Moreover, we use higher-order (4th order) cross-cumulants as a measure of statis-

tical independence:

cum(zi; zj; zk; zl) = E(zizjzkzl)� E(zizj)E(zkzl)� E(zizk)E(zjzl)� E(zizl)E(zjzk);

where z� denotes the obtained (independent) signal process. If the signals are inde-

pendent, the cross-cumulants are zero when i; j; k; l are not equal simultaneously. As

a comparison, we also implement a static ICA over the longest interval (610 observa-

tions) and a dynamic PCA over the interval of local homogeneity that is identi�ed in

the TVICA method for the two points. The cross-cumulants are computed. Figure 5

displays the boxplots of all the cross-cumulants of the signals by using the TVICA,

the static ICA and the dynamic PCA. For both the stationary and nonstationary

cases, all the cross-cumulants balance around zero, with means closing to 0. But

the dynamic PCs and the static ICs have wider spreads and more outliers, which

attributes to either the gaussianity assumption or the stationarity assumption.
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Results: Independence under homogeneity

Fourth order cross-cumulant is used as a measure of statistical independence:

cum(zi ; zj ; zk ; zl ) = E(zizjzkzl )�E(zizj )E(zkzl )�E(zizk)E(zjzl )�E(zizl )E(zjzk);
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Results: Independence under inhomogeneity

Fourth order cross-cumulant is used as a measure of statistical independence:

cum(zi ; zj ; zk ; zl ) = E(zizjzkzl )�E(zizj )E(zkzl )�E(zizk)E(zjzl )�E(zizl )E(zjzk);

Time Varying ICs Dynamic PCs Static ICs
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Nonstationary Case: 2010/10/28
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Conclusion

� Develop a time varying modeling for independent source

extraction, X

� For each time point t, LCP approach helps to identify a �trust

interval� It = [t �mt ; t) , over which the linear �lter At (or

Bt) is approximately const., X

� Simulation study and real data analysis show that the TVICA

method is data driven. It provides a stable performance for

di�erent parameter selection and works well, X

� A universal statistical MDA method that is applicable for

non-Gaussian and non-stationary �nancial time series.



Appendix

HD: The Home Depot

HPQ: Hewlett-Packard

IBM: International Business Machines

INTC: Intel

JNJ: Johnson & Johnson

JPM: JPMorgan Chase

KFT: Kraft Foods

KO: Coca-Cola

MCD: McDonald's

MMM: 3M
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