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Motivation 2

Source extraction and dimension reduction

High dimensional and complex �nancial time series are neither

Gaussian distributed nor stationary.

Statistical analysis of financial time series 
after the financial crisis 

Joint impact of high dimensionality and dramatic changes

Risk diversification -> Portfolio
High-dimensionality vs. relatively 
low effective sample size 
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Motivation 3

Multivariate Data Analysis (MDA)

Let Xt 2 IR
p denote the returns of �nancial assets.

� Principal component analysis: Xt = �� PCt ,

� Factor analysis: Xt = ��1=2Ft + Ut , where � is the

eigenvector corresponding to the nonzero eigenvalues � of the

covariance of X, see Jolli�e (2002), Härdle and Simar (2011)

Under Gaussianity, cross-uncorrelated indicates Independence.

Jacobian transformation for a linear transformation X = AZ :

fZ (z) =

pY
j=1

fZj
(zj); fX (x) = abs(jAj�1) � fZ (A

�1X )

Fact: Financial time series are heavy-tailed distributed.
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Motivation 4

Independent Component Analysis (ICA)

Let Xt 2 IR
p denote the returns of �nancial assets, ICA model:

ICt = BXt = (b1; � � � ; bp)
>Xt0

BBB@

IC1t

...

ICpt

1
CCCA =

0
BBB@

b11 � � � b1p

� � � � �

bp1 � � � bpp

1
CCCA

0
BBB@

x1t
...

xpt

1
CCCA

equivalently Xt = A� ICt

where B is a nonsingular �lter matrix: B�1 = A.
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Motivation 5

How to �nd ICs?

Xt = AICt

Jones and Sibson (1987): projection pursuit

Hyvärinen and Oja (1997): FastICA

Hyvärinen, Karhunen and Oja (2001): MLE and others

The observed series and as well the ICs are assumed to be

stationary. The �lter B is constant over time.

Fact: The ever occurring turbulences in �nancial markets.
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Motivation 6

Demonstration

Log returns of HD, HPQ and IBM.

Xt =

8<
:

A1ICt t 2 [1; 300]

A2ICt t 2 [301; 600]

where ICt are NIG distributed, see Barndor�-Nielson (1997).
The theoretical ICA �lters are:

A1 =

0
BB@

0:0006 0:0130 0:0062

0:0038 0:0027 0:0130

0:0079 0:0059 0:0048

1
CCA ; A2 =

0
BB@

�0:0001 0:0008 0:0053

0:0070 0:0019 0:0016

0:0001 0:0042 0:0011

1
CCA ;

2008=09=03��2009=08=31; 2004=07=30��2006=12=29

(a period with market turbulence) (a relatively quiet period)
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Demonstration (Continued)

The original ICs Di�erences
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Static ICA: average value of RMSEs is 0:886 (1:196 after change)

Time varying ICA: average value of RMSEs is 0:201 (0:160 after

change)
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Motivation 8

Literature review

Matteson and Tsay (2009): allow the mixing matrix B to vary over

time via a smooth function of other transition variables.

� Volatility and co-volatility literature, see e.g. Baillie and

Morana (2009), Scharth and Medeiros (2009),

� Incorporate changes via Markov-Switching or mixture

multiplicative error speci�cations,

� Need a globally given mechanism for this time variation.

Mercurio and Spokoiny (2004) use a local change point (LCP)

approach: completely data driven approach.
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TVICA

Let Xt 2 IR
p denote the returns of �nancial assets, TVICA model:

Xt = At ICt

� Develop a time varying modeling for independent source

extraction,

� For each time point t, LCP approach helps to identify a �trust

interval� It = [t �mt ; t) , over which the �lter At �const.,

� Neither prior information (on say states of the market) nor

distributional assumption is required. Data-driven and

applicable for various kinds of breaks (macroeconomic or

political changes) with di�erent magnitudes and abrupt or

smooth types.
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Outline

1. Motivation X

2. TVICA and estimation

3. Simulation study

4. Real data analysis

5. Conclusion
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TVICA

Let Xt 2 IR
p denote the returns of �nancial assets,

Zt = fz1(t); � � � ; zp(t)g
> are cross independent.

TVICA model: Xt = AtZt ; Zt = B�1
t Xt

Local Homogeneity: for any particular time point t there exists a

past time interval It = [t �mt ; t], over which the linear �lter At is

approximately constant, i.e. As � A, 8 s 2 It .
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Estimation: under homogeneity

Suppose that at time point t, an interval of homogeneity

It = [t �mt ; t) is given with mt indicating the length of the

interval.

The log-likelihood function on the interval It is:

L(It ;Bt) =
t�1X

s=t�mt

rX
j=1

logffj(b
>
jtXs)g+mt log jdet Bt j; (1)

where fj(zj) is pdf of IC zj , j = 1; � � � ; p and MLE is denoted as ~Bt .
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Estimation: under local homogeneity

Local homog.: Bt does not deviate much from a const. �lter B�:

Small modeling bias: divergence of a time varying model (local homogeneity)

to a static model (homogeneity) is small, see Spokoiny (2009).

For r ; � > 0, the �tted log likelihood with Bt = B
� satis�es:

EB� jLI
k
(~Bk ;B

�)jr � �Rr (B
�); t 2 IK (2)

where LI
k
(~Bk ;B

�) = LI
k
(~Bk)� LI

k
(B�) and Rr (B�) = maxk�K EB� jLI

k
(~Bk ;B

�)jr :

Goal: For any time point t, and given a family of nested intervals,

I0 � I1 � � � � � IK�1 � IK , LCP method attempts to �nd the longest interval of

local homogeneity among them.

The longer the length of intervals, the smaller the variance of the estimator

(under homogeneity) but the higher the bias.

The identi�cation of the trust interval is done via a sequential testing algorithm.
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LCP algorithms

H0 : Ik is a local homogeneous interval given that the test was not rejected at k � 1

Initialization: I0 is accepted B̂
(0)
t = ~B

(0)
t .

Next for k = 1; � � � ;K , the procedure is to sequentially screen

Jk = Ik n Ik�1 = [t �mk ; t �mk�1) and check it for any possible change point.

Interval //I  Interval /I  

Interval 1/ −= kkk IIJ  

                 
/t                                                        

//t  

 

   Kmt −          kmt −                                 1−− kmt            2mt −    1mt −   t  

TI ;t = max
B00

;B0

fLI 00(B
00) + LI 0(B

0)g �max
B

LI (B); (3)

Tk = max
t2J

k

TI ;t

� �k H0 is not rejected: B̂
(k)
t = ~B

(k)
t

� �k H0 is rejected, terminate
(4)
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LCP parameters

Set of interval: Ik = [t �mk ; t) with mk = m0a
k .

� The starting value m0 should be su�ciently small to provide a

reasonable local homogeneity.

� The coe�cient a > 1 controls the increasing speed of the

candidate intervals.
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LCP parameters

Critical values f�kg are calculated under the null of homog.

� MC: generate homogeneous series Xt = (B�)�1ICt :

� The �nal estimate B̂ = B̂K depends on the critical values

f�kg
K
k=1.

� Small modeling bias: EB� jLIK (
~BK ; B̂)j

r � �Rr (B
�);

I B
� is the MLE over I0.

I The hyperparameter r speci�es the loss function that measures

the divergence of a time varying model to a static model.

I The hyperparameter � is similar to the test level parameter.

I Given the values of r and �, Rr (B
�) can be computed

straightforwardly.
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Finding ICs

Pre-whitening: the Mahalanobis transformation ~�
�1=2
x Xt , where ~�x

is the sample covariance based on the available data.

Quasi maximum likelihood estimation: for leptokurtic sources

log fj(xj) = �1 � 2 log cosh(xj) = �1 � 2 logf
1

2
(exj + e�xj )g;

where �1 is a normalizing constant to make this function a pdf.

The �rst derivative of log fj :

gj(xj) = �2 tanh(xj) = �
2fexp(2xj)� 1g

exp(2xj) + 1
; 8 j = 1; : : : ; p;

A small misidenti�cation in the density doesn't a�ect the

consistency of the ML estimator, see Hyvärinen et al. (2001).
TVICA

1 (250) 2 (313) 3 (391) 4 (488) 5 (610)
70

80

90

100

110

120

130

Intervals

C
rit

ic
al

 V
al

ue
s

 

 
(r, ρ)=(1.0,1.0)
(r, ρ)=(1.0,0.5)
(r, ρ)=(1.0,0.1)
(r, ρ)=(0.5,1.0)
(r, ρ)=(0.5,0.5)
(r, ρ)=(0.5,0.1)
(r, ρ)=(0.1,1.0)
(r, ρ)=(0.1,0.5)
(r, ρ)=(0.1,0.1)



Simulation study 18

Data

Xt 2 IR
10: log returns of HD, HPQ, IBM, INTC, JNJ, JPM, KO, MCD,

MMM and MRK over a stationary time period: 2010/01/14�2010/10/28.

Do ICA ) ICt . Fit ICt under NIG assumption. Generate 10 independent

univariate series, with 610 sample points for each series and with 1000

replications.

Homogeneity scenario: Xt = At ICt with At = A is an identity matrix,

Change point scenario: Xt = At ICt with a21 changes from 0 to 3 at

t = 251.

Investigate detection power and locate the position of the change point

properly,

Analyze impact of the hyperparameters (r ; �) on the LCP algorithm.
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Critical values

Set of intervals: mk = m0a
k with m0 = 200, a = 1:25 and K = 5

I0 = 200; I1 = 250; I2 = 313; I3 = 391 I4 = 488; I5 = 610;

r and � are assigned to be 1; 0:5 and 0:1
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Result: rejection ratio and location

Parameter Homogeneity Change Point at t = 251

(r ; �) I3=I2 = [219; 298]

(1:0; 1:0) 0.268 @I1 = 0:001 @I2 = 0:008, @I3 = 0:991 sum = 1

(1:0; 0:5) 0.083 @I1 = 0:001 @I2 = 0:002, @I3 = 0:997 sum = 1

(1:0; 0:1) 0.007 @I1 = 0:000 @I2 = 0:000, @I3 = 1:000 sum = 1

(0:5; 1:0) 0.203 @I1 = 0:001 @I2 = 0:005, @I3 = 0:994 sum = 1

(0:5; 0:5) 0.059 @I1 = 0:001 @I2 = 0:001, @I3 = 0:998 sum = 1

(0:5; 0:1) 0.006 @I1 = 0:000 @I2 = 0:000, @I3 = 1:000 sum = 1

(0:1; 1:0) 0.153 @I1 = 0:001 @I2 = 0:004, @I3 = 0:995 sum = 1

(0:1; 0:5) 0.049 @I1 = 0:001 @I2 = 0:001, @I3 = 0:998 sum = 1

(0:1; 1:0) 0.006 @I1 = 0:000 @I2 = 0:000, @I3 = 1:000 sum = 1
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Data and experiments

Xt 2 IR
6: log returns of HD, HPQ, IBM, JNJ and JPM.

The set of intervals: mk = m0a
k with m0 = 200, a = 1:25 and K = 5.

The parameters (r ; �) = (0:5; 0:5) and (r ; �) = (0:1; 0:1) are considered

respectively.

B
�: MLE over I0 or identity matrix.

The �rst experiment considers the time interval 2007/03/30�2009/08/31,

during which the stock market crash occurred in 2008.

The second experiment considers the time interval 2004/07/30�2006/12/29,

during which no in�uential economic or �nancial events occurred.

Does the proposed method detect intervals of local homogeneity?

Can we identify an interval in a post-�nancial crisis world that indicates a

relatively stationary period?
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Results: CVs and test statistics

2007/03/30-2009/08/31 2004/07/30-2006/12/29

CV TI CV TI

(r ; �) (0:5; 0:5) (0:1; 0:1) (0:5; 0:5) (0:1; 0:1)

I1 70.10(69.45) 83.38(85.35) 43.77 59.24(60.03) 71.71(74.22) 20.94

I2 63.55(62.76) 80.00(79.16) 83.86 53.81(54.74) 66.99(70.29) 30.79

I3 59.49(58.73) 75.52(76.73) 76.14 50.93(50.94) 64.95(66.30) 41.60

I4 56.62(56.02) 73.85(74.47) 128.24 48.44(48.48) 63.59(64.48) 34.71

I5 53.35(53.22) 73.17(72.42) 188.71 46.25(46.27) 61.48(62.91) 38.94

For experiment 1: the interval I1 = [2008=09=03; 2009=08=31].
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Conclusion

� Develop a time varying modeling for independent source

extraction, X

� For each time point t, LCP approach helps to identify a �trust

interval� It = [t �mt ; t) , over which the linear �lter At (or

Bt) is approximately const., X

� Simulation study and real data analysis show that the TVICA

method is data driven. It provides a stable performance for

di�erent parameter selection and works well, X

� A universal statistical MDA method that is applicable for

non-Gaussian and non-stationary �nancial time series.
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