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Motivation 1-2

Pricing Kernels & Risk Aversion

1. S; - asset value at time t in a complete market
2. u - risk averse utility function from representative investor
3. marginal rate of substitution or pricing kernel, 7=T -t

U'(ST)
U'(St)

M(S7) =

under risk aversion u concave: M decreasing
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Figure 1: Theoretical (blue) and empirical (red) pricing kernels, estimated from DAX on

19990502 for 7 = 10 days, expressed in moneyness k = St/Ste'™
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Figure 2: Estimated PK across moneyness « and maturity 7, DAX on 20010710
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Figure 3: Empirical PK across « and 7, estimated form DAX on 20010710, 20010904 and
20011130
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Empirical pricing kernels
1. do not reflect risk aversion across all strikes
2. vary across time to maturity T and time ¢

M(x) = M;-(x)

How to explain pricing kernel and risk aversion dynamics ?
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Pricing Kernels

Asset price follows diffusion process
dSt
S
where 0 <t < s < T and B; is standard Brownian motion under measure
P. The risk neutral measure Q is obtained by §|¢[ = (;. For a payoff
V(S;) with maturity v = s — t,

= ,u(St, t)dt + O'(St, t)dBt

e "E|V(S,)| | = EF [\IJ(SS)e”% 7—}]
t
The pricing kernel is defined as

Mt - e_rTé
" i
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Merton Optimization Problem

Market completness, representative investor with concave utility
function u
1. wealth {W;} and consumption processes {Cs}, Cs = 0
2. all wealth consumed at T, Ct = Wt
3. amount {£s} invested in Sg chosen by
max E[u(WT)lﬁ]

{€s,t<8<T

subjected to

\%

W 0
dWs = {rWs + &s(u —r)}ds + £s0dBs
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Merton Equilibrium

In Merton equilibrium the pricing kernel (PK) is path independent
and equals the marginal rate of substitution

q:(St) _u(S7)
p(St) Mir(S7) =

e T

where

1. g; is conditional density of St under the risk neutral measure
Q - state price density (SPD)

2. p; is conditional density of St under the objective measure P -
objective density
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Merton Equilibrium

ut(St)

p(ST) :(S7)

Figure 4: Utility function, risk neutral (SPD) and objective densities
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Pricing Kernel Estimation

Ait-Sahalia and Lo (2000) estimate PK as the ratio between
estimated SPD and estimated objective density

qi(Sr)
P:(Sr)

q is estimated from option and p from underlying prices

mt’T(ST) = e "
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SPD Estimation

1. Breeden and Litzenberger (1978) obtain SPD from option
prices

2. Ait-Sahalia and Lo (1998) used the estimate

. 02CiBsiSt, K, 7, 11, t(k, 7)}

qt(ST) =e 6K2

(1)

K=St

3. Cips is the Black-Scholes price at time t

4. ot(k,7) is a nonparametric estimator for the implied volatility
(Implied Volatility Surface - IVS)

‘ I
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Implied Volatility

1. at day i there are J; options traded

2. eachtradej=1,...,Jjatdayi=1,..., I corresponds to an
implied volatility o;j and a pair of moneyness and maturity
X,-,,- = (K,-,-,T,-,-)T

3. Kij is moneyness

F(t )
4. K strike

5. F(tij) = Sy, exp(rr,7i;) futures prices
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IV - Degenerated Design

IVS Ticks 20000502 Data Design
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Figure 5: Left panel: call and put implied volatilities observed on 20000502. Right

panel: data design on 20000502; ODAX, difference-dividend correction according

to Hafner and Wallmeier (2001) applied. '
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Dynamic Semiparametric Factor Models
(DSFM)

regress log implied volatilities Yj; = log o; on Xi;

L
Yij =D zumi(Xij) + &i;
1=0

1. my(-) are smooth basis functions, | =0,...,L
2. z;) are time dependent factors
3. gjjis noise




DSFM and PK Estimation 3-17
The basis functions expanded using a series estimator, Borak et
al. (2007)

XI] ZWK'J’I( le)

for functions yx : R - R, k = 1,..., K and coefficients y;x € R.
Defining Z = (ziy), I = (y1k) the least square estimators are

I
T,Z) = Y Try(X;
(I,Z) =arg reglznez;; i =z Ty( U)}
where

1. z = (Z,',O,...,Z,',L)T, U= ($1,...,¢K)T
2. G=M(L+1,K), Z={ZeM(I,L+1):zo=1}, M(a,b)
is the set of (a x b) matrices

‘ I
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IVS and DSFM

The implied volatility surface at day i is estimated as

Fi(k,7) = exp{Z m(k, 7))

where
1. m= (Mo,....m)"
2. ﬁ, :/’)77¢

3. vi=Wits-vik)"
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Implied SPD and DSFM

Using (1) the implied SPD may be approximated by

1 2dy g5y KArdida (@)

— — 825
- ==t K
Gi(x, 7,21, M) o(da) {Ka«ﬁ + 5, 9K + =, oK) T Vi—sr }

K2

K=Sr

2t 7)1
where ¢(x) is the standard normal pdf, d; = Iog("%ﬂ# and

db = di — T \VT
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PK and DSFM

As in Ait-Sahalia and Lo (2000) we define an estimate M;(x, 7) of
the PK as the ratio between the estimated SPD and the estimated
p:

—rtrat(K’ T9Z, m)

Mi(k. 7.2, M) = e —
t( t,m) B 7)

Here p; is estimated by a GARCH(1,1) model.

It is our interest to examine the dynamic structure of Mt

‘ I
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Empirical Results

Intraday DAX index and option data
1. from 20010101 to 20020101
2. 253 trading days
3.L=3
4. q; estimated with DSFM
5. p; estimated from last 240 days with GARCH(1,1)
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Figure 6: Loading factors Zy, I = 1,2, 3 from the top
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Figure 7: Basis functions m;, I = 0,...,3
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Empirical Results

Zn Zte 7
min 0.36 -0.37 -0.07
max 0.75 0.49 0.05
median | 0.66 0.01 0.00
mean 0.63 0.00 0.00
std.dev. | 0.09 0.05 0.02
u 1.13 0.73 0.07
d 0.18 -0.57 -0.10

Table 1: Descriptive statistics of loading factors.
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Figure 8: Estimated SPD across « and 7 at t = 20010710
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Figure 9: Estimated PK across « and 7 at t = 20010710
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IV, SPD and PK dynamics
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Figure 10: IV (left), SPD (middle) and PK (right), 7 = 20 days. Red: t = 20010824,

Z11 = 0.68, blue: t = 20010921, zyy = 0.36
\!
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Figure 11: Mean of SPD, r = 18,...,55 days, Z; (below)
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Zq V) Z3

Mean | 0.66 -0.32 -0.52
Var -0.53 -0.42 0.11
Skew | -0.86 0.19 0.40

Table 2: Correlation between SPD mean, variance and skewness and
loading factors, T = 20 days
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Figure 12: Correlation between Z; and SPD mean (left), variance (middle) and skewness
(right), I = 1 (blue), 2 (green) and 3 (red). Horizontal axis: 7
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Scenario loadings W/

1. linear increase in N steps on loading of factor | from levels
di = minZz; — 0.5/minz; | to u; = maxz;, + 0.5/ max z |

2. remaining loading factors constant at median of estimated
values

3. scenario loadings to factor / in matrices W' = (wl’”.),
I,j=0,...,3,andn=1,...,Nwith

n—1 , ;
Wy = {d+ - bG= 0+ meaGg+

‘ I
-
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Scenario /

1. IV, SPD and PK estimated with loadings W': influence of
variations in factor [ with remaining factors constant at median

2. observed changes in mean, variance and skewness: typical
effect of variation in factor /
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Figure 13: IV (above), SPD (below), for variation in loading factor 1 (left) and 3 (right),
7 = 20 days
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Scenario W': SPD
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Figure 14: Mean, variance and skewness from SPD (from the top) plotted against n. For
W', 7 = 25 (full), 40 (dotted) and 75 (dashed) days, N = 50 I
v
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Scenario W?2: SPD

Figure 15: Mean, variance and skewness from SPD (from the top) plotted against n. For
W2, 7 = 25 (full), 40 (dotted) and 75 (dashed) days, N = 50 I
v
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Scenario W°: SPD
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Figure 16: Mean, variance and skewness from SPD (from the top) plotted against n. For
W8, 7 = 25 (full), 40 (dotted) and 75 (dashed) days, N = 50 I
bz,
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Scenario W': PK

Figure 17: PK(x) plotted against w], r = 20 days
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Scenario W?: PK

Figure 18: PK(x) plotted against w2, r = 20 days
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Scenario W°: PK
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Figure 19: PK(x) plotted against w2, r = 20 days
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Scenario W'
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Figure 20: IV (left), SPD (middle) and PK (right), for w! = d; (red) and uy (blue) 7 = 20

days
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Scenario W?
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Figure 21: IV (left), SPD (middle) and PK (right), for w2 = d> (red) and vz (blue) 7 = 20

days
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Scenario W°
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Figure 22: IV (left), SPD (middle) and PK (right), for w3 = d (red) and us (blue) T = 20

days
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