Statistics of Risk Aversion

Enzo Giacomini and Wolfgang Härdle

CASE Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Pricing Kernels & Risk Aversion

- 1. S_t asset value at time t in a complete market
- 2. *u* risk averse utility function from representative investor
- 3. marginal rate of substitution or pricing kernel, $\tau = T t$

$$M(S_T) = \frac{u'(S_T)}{u'(s_t)}$$

under risk aversion u concave: M decreasing

Figure 1: Theoretical (blue) and empirical (red) pricing kernels, estimated from DAX on 19990502 for $\tau=10$ days, expressed in moneyness $\kappa=S_T/S_te^{r\tau}$

Figure 2: Estimated PK across moneyness κ and maturity τ , DAX on 20010710

Figure 3: Empirical PK across κ and τ , estimated form DAX on 20010710, 20010904 and 20011130

Empirical pricing kernels

- 1. do not reflect risk aversion across all strikes
- 2. vary across time to maturity τ and time t

$$M(x) = M_{t,\tau}(x)$$

How to explain pricing kernel and risk aversion dynamics?

Outline

- Motivation ✓
- 2. Pricing Kernels
- 3. DSFM and Pricing Kernel Estimation
- 4. Empirical Results
- 5. References

Pricing Kernels

Asset price follows diffusion process

$$\frac{dS_t}{S_t} = \mu(S_t, t)dt + \sigma(S_t, t)dB_t$$

where $0 \le t \le s \le T$ and B_t is standard Brownian motion under measure P. The risk neutral measure Q is obtained by $\frac{dQ}{dP}\Big|_{\mathcal{F}_t} = \zeta_t$. For a payoff $\Psi(S_s)$ with maturity $\tau = s - t$,

$$\left| e^{-r\tau} E^Q \left[\left. \Psi(S_s) \right| \mathcal{F}_t \right] = E^P \left[\left. \Psi(S_s) e^{-r\tau} \frac{\zeta_s}{\zeta_t} \right| \mathcal{F}_t \right]$$

The pricing kernel is defined as

$$M_{t,\tau} = e^{-r\tau} \frac{\zeta_s}{\zeta_t}$$

Merton Optimization Problem

Market completness, representative investor with concave utility function *u*

- 1. wealth $\{W_s\}$ and consumption processes $\{C_s\}$, $C_s=0$
- 2. all wealth consumed at T, $C_T = W_T$
- 3. amount $\{\xi_s\}$ invested in S_s chosen by

$$\max_{\{\xi_s,t\leq s\leq T\}} E[u(W_T)|\mathcal{F}_t]$$

subjected to

$$W_s \geq 0$$

 $dW_s = \{rW_s + \xi_s(\mu - r)\}ds + \xi_s\sigma dB_s$

Merton Equilibrium

In Merton equilibrium the pricing kernel (PK) is path independent and equals the marginal rate of substitution

$$e^{-r\tau}\frac{q_t(S_T)}{p_t(S_T)}=M_{t,\tau}(S_T)=\frac{u'(S_T)}{u'(s_t)}$$

where

- 1. q_t is conditional density of S_T under the risk neutral measure Q state price density (SPD)
- p_t is conditional density of S_T under the objective measure P objective density

Merton Equilibrium

Figure 4: Utility function, risk neutral (SPD) and objective densities

Pricing Kernel Estimation

Ait-Sahalia and Lo (2000) estimate PK as the ratio between estimated SPD and estimated objective density

$$\widehat{M}_{t, au}(S_T) = e^{-r au} rac{\widehat{q}_t(S_T)}{\widehat{p}_t(S_T)}$$

q is estimated from option and p from underlying prices

SPD Estimation

- Breeden and Litzenberger (1978) obtain SPD from option prices
- 2. Ait-Sahalia and Lo (1998) used the estimate

$$\widehat{q}_t(S_T) = e^{r\tau} \left. \frac{\partial^2 C_{t,BS}\{S_t, K, \tau, r_t, \widehat{\sigma}_t(\kappa, \tau)\}}{\partial K^2} \right|_{K=S_T}$$
(1)

- 3. $C_{t,BS}$ is the Black-Scholes price at time t
- 4. $\widehat{\sigma}_t(\kappa, \tau)$ is a nonparametric estimator for the implied volatility (Implied Volatility Surface IVS)

Implied Volatility

- 1. at day i there are J_i options traded
- 2. each trade $j=1,\ldots,J_i$ at day $i=1,\ldots,I$ corresponds to an implied volatility $\sigma_{i,j}$ and a pair of moneyness and maturity $X_{i,j}=(\kappa_{i,j},\tau_{i,j})^{\top}$
- 3. $\kappa_{i,j} = \frac{\kappa}{F(t_{i,j})}$ is moneyness
- 4. K strike
- 5. $F(t_{i,j}) = S_{t_{i,j}} \exp(r_{\tau_{i,j}} \tau_{i,j})$ futures prices

IV - Degenerated Design

Figure 5: Left panel: call and put implied volatilities observed on 20000502. Right panel: data design on 20000502; ODAX, difference-dividend correction according to Hafner and Wallmeier (2001) applied.

Dynamic Semiparametric Factor Models (DSFM)

regress log implied volatilities $Y_{i,j} = \log \sigma_{i,j}$ on $X_{i,j}$

$$Y_{i,j} = \sum_{l=0}^{L} z_{i,l} m_l(X_{i,j}) + \varepsilon_{i,j}$$

- 1. $m_l(\cdot)$ are smooth basis functions, l = 0, ..., L
- 2. $z_{i,l}$ are time dependent factors
- 3. $\varepsilon_{i,j}$ is noise

The basis functions expanded using a series estimator, Borak et al. (2007)

$$m_l(X_{i,j}) = \sum_{k=1}^K \gamma_{l,k} \psi_k(X_{i,j})$$

for functions $\psi_k : \mathbb{R} \to \mathbb{R}$, k = 1, ..., K and coefficients $\gamma_{l,k} \in \mathbb{R}$. Defining $Z = (z_{l,l})$, $\Gamma = (\gamma_{l,k})$ the least square estimators are

$$(\widehat{\Gamma}, \widehat{Z}) = \arg\min_{\Gamma \in \mathcal{G}, Z \in \mathcal{Z}} \sum_{i=1}^{J} \sum_{j=1}^{J} \{Y_{i,j} - z_i^{\mathsf{T}} \Gamma \psi(X_{i,j})\}^2$$

where

1.
$$z_i = (z_{i,0}, \ldots, z_{i,L})^{\top}, \psi = (\psi_1, \ldots, \psi_K)^{\top}$$

2.
$$\mathcal{G} = \mathcal{M}(L+1,K), \mathcal{Z} = \{Z \in \mathcal{M}(I,L+1) : z_{i,0} \equiv 1\}, \mathcal{M}(a,b)$$
 is the set of $(a \times b)$ matrices

IVS and DSFM

The implied volatility surface at day i is estimated as

$$\widehat{\sigma}_i(\kappa,\tau) = \exp\left\{\widehat{\mathbf{z}}_i^{\top}\widehat{\mathbf{m}}(\kappa,\tau)\right\} \tag{2}$$

where

- 1. $\widehat{m} = (\widehat{m}_0, \dots, \widehat{m}_L)^{\mathsf{T}}$
- $\mathbf{2.} \ \widehat{m}_{l} = \widehat{\boldsymbol{\gamma}}_{l}^{\mathsf{T}} \boldsymbol{\psi}$
- 3. $\gamma_l = (\gamma_{l,1}, \ldots, \gamma_{l,K})^{\mathsf{T}}$

Implied SPD and DSFM

Using (1) the implied SPD may be approximated by

$$\widehat{q}_t(\kappa,\tau,\widehat{z}_t,\widehat{m}) \quad = \quad \varphi(d_2) \left. \left\{ \frac{1}{K\widehat{\sigma}_t \sqrt{\tau}} + \frac{2d_1}{\widehat{\sigma}_t} \frac{\partial \widehat{\sigma}_t}{\partial K} + \frac{K \sqrt{\tau} d_1 d_2}{\widehat{\sigma}_t} \left(\frac{\partial \widehat{\sigma}_t}{\partial K} \right)^2 + K \sqrt{\tau} \frac{\partial^2 \widehat{\sigma}_t}{\partial K^2} \right\} \right|_{K=S_T}$$

where $\varphi(x)$ is the standard normal pdf, $d_1 = \frac{\log\left(\frac{\hat{s}_t}{K}\right) + (r + \frac{1}{2}\widehat{\sigma}_t^2)^{\tau}}{\widehat{\sigma}_t \sqrt{\tau}}$ and $d_2 = d_1 - \widehat{\sigma}_t \sqrt{\tau}$

PK and DSFM

As in Ait-Sahalia and Lo (2000) we define an estimate $\widehat{M}_t(\kappa, \tau)$ of the PK as the ratio between the estimated SPD and the estimated p:

$$\widehat{M}_{t}(\kappa,\tau,\widehat{z}_{t},\widehat{m}) = e^{-r_{t}\tau} \frac{\widehat{q}_{t}(\kappa,\tau,\widehat{z}_{t},\widehat{m})}{\widehat{p}_{t}(\kappa,\tau)}$$

Here \widehat{p}_t is estimated by a GARCH(1,1) model.

It is our interest to examine the dynamic structure of \widehat{M}_t

Empirical Results

Intraday DAX index and option data

- 1. from 20010101 to 20020101
- 2. 253 trading days
- 3. L = 3
- 4. \hat{q}_t estimated with DSFM
- 5. \widehat{p}_t estimated from last 240 days with GARCH(1,1)

Figure 6: Loading factors \hat{z}_{tl} , l = 1, 2, 3 from the top

Figure 7: Basis functions \widehat{m}_l , l = 0, ..., 3

	\widehat{z}_{t1}	\widehat{z}_{t2}	\widehat{z}_{t3}
min	0.36	-0.37	-0.07
max	0.75	0.49	0.05
median	0.66	0.01	0.00
mean	0.63	0.00	0.00
std.dev.	0.09	0.05	0.02
u	1.13	0.73	0.07
d	0.18	-0.57	-0.10

Table 1: Descriptive statistics of loading factors.

Figure 8: Estimated SPD across κ and τ at t= 20010710

Figure 9: Estimated PK across κ and τ at t= 20010710

IV, SPD and PK dynamics

Figure 10: IV (left), SPD (middle) and PK (right), $\tau=20$ days. Red: t=20010824, $\widehat{z}_{t1}=0.68$, blue: t=20010921, $\widehat{z}_{t1}=0.36$

Figure 11: Mean of SPD, $\tau=18,\ldots,55$ days, \widehat{z}_1 (below)

	\widehat{z}_1	$\frac{ ho}{\widehat{z}_{2}}$	\widehat{z}_3
Mean	0.66	-0.32	-0.52
Var	-0.53	-0.42	0.11
Skew	-0.86	0.19	0.40

Table 2: Correlation between SPD mean, variance and skewness and loading factors, $\tau=$ 20 days

Figure 12: Correlation between $\widehat{z_l}$ and SPD mean (left), variance (middle) and skewness (right), l=1 (blue), 2 (green) and 3 (red). Horizontal axis: τ

Scenario loadings W¹

- 1. linear increase in *N* steps on loading of factor *I* from levels $d_I = \min \widehat{z}_{t,I} 0.5 |\min \widehat{z}_{t,I}|$ to $u_I = \max \widehat{z}_{t,I} + 0.5 |\max \widehat{z}_{t,I}|$
- remaining loading factors constant at median of estimated values
- 3. scenario loadings to factor I in matrices $W^I = (w_{n,j}^I)$, I, j = 0, ..., 3, and n = 1, ..., N with

$$w_{n,j}^{l} = \left\{d_{j} + \frac{n-1}{N-1}(u_{j} - d_{j})\right\}\mathbf{1}(j = l) + med(\widehat{z}_{t,j})\mathbf{1}(j \neq l)$$

Scenario /

- 1. IV, SPD and PK estimated with loadings W^I : influence of variations in factor I with remaining factors constant at median
- 2. observed changes in mean, variance and skewness: typical effect of variation in factor *I*

Figure 13: IV (above), SPD (below), for variation in loading factor 1 (left) and 3 (right), $\tau=20$ days

Scenario W1: SPD

Figure 14: Mean, variance and skewness from SPD (from the top) plotted against n. For W^1 , $\tau = 25$ (full), 40 (dotted) and 75 (dashed) days, N = 50

Scenario W^2 : SPD

Figure 15: Mean, variance and skewness from SPD (from the top) plotted against n. For W^2 , $\tau = 25$ (full), 40 (dotted) and 75 (dashed) days, N = 50

Scenario W³: SPD

Figure 16: Mean, variance and skewness from SPD (from the top) plotted against n. For W^3 , $\tau = 25$ (full), 40 (dotted) and 75 (dashed) days, N = 50

Scenario W¹: PK

Figure 17: $PK(\kappa)$ plotted against w_1^1 , $\tau = 20$ days

Scenario W^2 : PK

Figure 18: $PK(\kappa)$ plotted against w_2^2 , $\tau=20$ days

Scenario W^3 : PK

Figure 19: $PK(\kappa)$ plotted against w_3^3 , $\tau = 20$ days

Scenario W¹

Figure 20: IV (left), SPD (middle) and PK (right), for $w_1^1 = d_1$ (red) and u_1 (blue) $\tau = 20$ days

Scenario W²

Figure 21: IV (left), SPD (middle) and PK (right), for $w_2^2=d_2$ (red) and u_2 (blue) $\tau=20$ days

Scenario W³

Figure 22: IV (left), SPD (middle) and PK (right), for $w_3^3 = d_3$ (red) and u_3 (blue) $\tau = 20$ days

References 5-43

References

Y. Ait-Sahalia and A. Lo Nonparametric Risk Management and Implied Risk Aversion Journal of Econometrics, 94 (2000) 9-51.

P. Fishburn
Utility Theory

Management Science, Vol. 14, No. 5, Theory Series (Jan, 1968) 335-378.

H. Föllmer and A. Schied Stochastic Finance Walter de Gruyter, Berlin 2002.

References 5-44

- J. Franke, W. Härdle and C. Hafner Statistics of Financial Markets Springer-Verlag, Heidelberg, 2004.
- W. Härdle, T. Kleinow and G. Stahl Applied Quantitative Finance Springer-Verlag, Heidelberg, 2002.
- R. Merton Continuous-Time Finance Blackwell Publishers, Cambridge, 1990.

